ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ"

Transcript

1 ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: Web: users.auth.gr/katsk Τηλ: Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία : Γραφικές παραστάσεις Θεωρία : Μη-γραμμικός αντιστάτης Ηλεκτρικές Μετρήσεις Ζ Βολές Ειδική θερμότητα Ευθύγραμμες κινήσεις Παλμογράφος Εξετάσεις Υπέρηχοι Λ ιάρκεια ασκήσεων ώρες

2 Κανονισμός εργαστηρίου Επαρκής προετοιμασία των φοιτητών πριν την εκτέλεση της άσκησης Ατομική γραπτή αναφορά (παράδοση στο επόμενο εργαστήριο) Τελικός βαθμός: 0% βαθμός γραπτών αναφορών 0% καθημερινή επίδοση (τεστ) 0% τελική εξέταση Προσέλευση : το αργότερο λεπτάμετάτηνακέραιαώραέναρξης Απουσίες: το πολύ Περισσότερες των δύο () απουσιών επανάληψη του μαθήματος Αναπλήρωση απουσιών: σε συμπληρωματικά εργαστήρια Υπολογιστής τσέπης (κομπιουτεράκι) χαρτιά μιλιμετρέ Αναφορές χειρόγραφες ή όχι Γραφικές παραστάσεις προτιμότερο όχι στον υπολογιστή Ανταλλαγή τηλεφώνων με τον έτερο της ομάδας Λίστα με e-mals. Πείραμα Καθορισμός του φαινομένου που θέλουμε να παρατηρήσουμε Σχεδιασμός πειράματος Πειραματική μέτρηση Εντοπισμός και εκτίμηση σφαλμάτων σφάλματα Συμπεράσματα αποτελέσματα βεβαιότητα νομοτέλεια Καταγραφή (μέθοδος, υπολογισμοί, αποτελέσματα, ακρίβεια, αβεβαιότητα) Θεωρία εργαστηριακή αναφορά

3 Ευστοχία Ακρίβεια Ευστοχία (accuracy): ηλώνει πόσο πλησιάζει η πειραματική τιμή την πραγματική Ακρίβεια (precso): ηλώνει το «πόσο επακριβώς» προσδιορίζω ένα μέγεθος (π.χ. με πόσα σημαντικά ψηφία),.,.0,. V κλπ Καλή ευστοχία Καλή ακρίβεια Κακή ευστοχία Καλή ακρίβεια Καλή ευστοχία Κακή ακρίβεια Κακή ευστοχία Κακή ακρίβεια Αβεβαιότητα Στον πειραματικό προσδιορισμό ενός μεγέθους υπάρχουν πηγές αβεβαιότητας (ucertates). Ελάχιστη υποδιαίρεση των οργάνων που χρησιμοποιούνται (ακρίβεια) ιακυμάνσεις στις επαναλαμβανόμενες μετρήσεις που πραγματοποιούμε για να προσδιορίσουμε ένα μέγεθος. (τυχαία σφάλματα, radom errors)

4 Εισαγωγή στα σφάλματα Εισαγωγή στα σφάλματα Μέτρηση της ίδιου μεγέθους (π.χ. περίοδος ταλάντωσης ενός εκκρεμούς) περισσότερες από μία φορές διαφορετικές τιμές Ποια είναι η σωστή; Πώς είναι δυνατό να μετράω «το ίδιο πράγμα» πολλές φορές και να παίρνω διαφορετικές τιμές; Κάθε μέτρηση υπόκειται σε σφάλματα ακόμα και αν χρησιμοποιούμε τα τελειότερα όργανα Μαθηματικός ορισμός του σφάλματος ε x X μετρούμενη τιμή πραγματική τιμή

5 Πως εκφράζονται τα σφάλματα Απόλυτο σφάλμα : L0.00 ± 0.0cm ακρίβεια του οργάνου σφάλμα που προκύπτει από τη στατιστική επεξεργασία πολλών μετρήσεων Σχετικό ή κλασματικό σφάλμα: L0.0 cm ± 0.00 Επί τοις εκατό σφάλμα: 00 L0.0 cm ± 0.% Κατηγορίες σφαλμάτων Συστηματικά & Τυχαία Κακή βαθμονόμηση οργάνων Παράδειγμα : σφάλμα μηδενός Η ένδειξη ενός βολτομέτρου που δεν είναι συνδεδεμένο στο κύκλωμα αντί για «0» είναι 0.V όταν θα χρησιμοποιηθεί για τη μέτρηση της τάσης σε ένα κύκλωμα, όλες οι μετρήσεις θα είναι μεγαλύτερες κατά 0.V από την πραγματική τιμή. Κακή χρήση εξοπλισμού Παρατηρητής Παράδειγμα : εν διαβάζω σωστά την ένδειξη ενός αμπερομέτρου Παράδειγμα : Ταχύτητα αντίδρασης κατά τη χρήση χρονομέτρου Παράδειγμα : % σφάλμα Κακή βαθμονόμηση βολτομέτρου: τάση V την μετράει για.9v.9 Σφάλμα στη μέτρηση της τάσης 00 % ηλαδή όλες οι μετρήσεις της τάσης θα είναι μικρότερες κατά %

6 Κατηγορίες σφαλμάτων Συστηματικά & Τυχαία Μέθοδος μέτρησης Εξωτερικοί / αστάθμητοι παράγοντες ιαφορετικό κύκλωμα χρησιμοποιώ για να μετρήσω μια μικρή αντίσταση και μια μεγάλη αντίσταση Θερμοκρασία, πίεση, μαγνητικά πεδία ΕΦΑΡΜΟΓΗ Για τη μέτρηση του μήκους ενός τραπεζιού χρησιμοποιείται ένα ατσάλινο μέτρο του οποίου η βαθμονόμηση έγινε στους ο C. Ποιο είναι το % σφάλμα στον προσδιορισμό του μήκους του τραπεζιού όταν η μέτρηση γίνεται στους 0 ο C; Συντελεστής θερμικής διαστολής του ατσαλιού ο C -. Το μήκος της ατσάλινης ράβδου στους ο C είναι : L 0 m. Το μήκος της στους 0 ο C είναι: LL 0 +LL 0 +L 0 ατ0.99m Απόλυτο σφάλμα μετρούμενο μήκος πραγματικό μήκος % σφάλμα % 0.99

7 Κατηγορίες σφαλμάτων Συστηματικά & Τυχαία Εμφανίζονται με τυχαίο τρόπο και μεταβάλλονται από μέτρηση σε μέτρηση Π.χ. Μέτρηση της περιόδου ταλάντωσης ενός εκκρεμούς με τη χρήση χρονομέτρου Ελαχιστοποιούνται: όταν μετράμε το ίδιο μέγεθος πολλές φορές Υπολογίζονται: με τη βοήθεια στατιστικών μεθόδων Θεωρία σφαλμάτων (γιατυχαίασφάλματα) Συμβολισμοί - ορισμοί Έστω ότι πραγματοποιώ μετρήσεις ενός μεγέθους με γνωστή τιμή Χ είγμα η συλλογή, το σύνολο των μετρήσεων Κατανομή το σύνολο των μετρήσεων που θα μπορούσα να είχα κάνει (έστω Ν). Συχνότητα επανάληψης, ν πόσες φορές επαναλαμβάνεται μία τιμή Πιθανότερη τιμή Μέσος όρος: x Σφάλμα μεμονωμένης μέτρησης x ε x -X Πραγματική τιμή Κατανομή δείγμα ( μετρήσεις) ΟΣΟ ΠΕΡΙΣΣΟΤΕΡΕΣ ΜΕΤΡΗΣΕΙΣ ΠΑΡΩ ΓΙΑ ΤΟ ΙΙΟ ΜΕΓΕΘΟΣ, ΤΟΣΟ ΕΛΑΧΙΣΤΟΠΟΙΩ ΤΟ ΣΦΑΛΜΑ, ΗΛΑΗ ΑΥΞΑΝΩ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΣΥΜΠΤΩΣΗΣ ΤΗΣ ΠΙΘΑΝΟΤΕΡΗΣ ΤΙΜΗΣ ΜΕ ΤΗΝ ΠΡΑΓΜΑΤΙΚΗ

8 Θεωρία σφαλμάτων (γιατυχαίασφάλματα) Σφάλμα μεμονωμένης μέτρησης x ε x X Τυπική απόκλιση της κατανομής σ ε N ( x X) N Μέση τιμή κατανομής N μ x N Γενικά: μ X Εκφράζει πόσο αποκλίνουν οι μετρήσεις από την πραγματική τιμή μέση τιμή Θεωρούμε ότι είναι η πιθανότερη τιμή αλλά για Ν τότε μ X Μέσος όρος δείγματος x x Σφάλμα του μέσου όρου E x X Θεωρία σφαλμάτων (γιατυχαίασφάλματα) Τυπικό σφάλμα στο μέσο όρο Κατανομή δείγμα μετρήσεις Μέσος όρος: x Σφάλμα μέσου όρου: E Έστω ότι παίρνω κ δείγματα από την κατανομή με μετρήσεις το καθένα. δείγμα μετρήσεις Μέσος όρος: x Σφάλμα μέσου όρου: δείγμα μετρήσεις Μέσος όρος: x Σφάλμα μέσου όρου: E E Κάθε δείγμα έχει το δικό του μέσο όρο x κ

9 Θεωρία σφαλμάτων (γιατυχαίασφάλματα) x κ Όλοι οι μέσοι όροι σχηματίζουν μια νέα κατανομή. Η τυπική απόκλιση αυτής της κατανομής ονομάζεται ΤΥΠΙΚΟ ΣΦΑΛΜΑ ΣΤΟ ΜΕΣΟ ΟΡΟ. Κατανομή μέσων όρων x x x x σ m κ E κ E x X x κ mea (μέσος όρος) τυπικό σφάλμα στομέσοόρο Ισχύει ότι: σ m σ τυπικό σφάλμα της κατανομής πληθυσμός δείγματος Υπολογισμός τυχαίων σφαλμάτων όταν δεν γνωρίζουμε την πραγματική τιμή Παίρνουμε μία ομάδα μετρήσεων (δείγμα) Ο μέσος όρος αποτελεί την καλύτερη εκτίμηση του X Απόκλιση της μέτρησης d x x x x Τυπική απόκλιση δείγματος s d Ισχύει: s τυπική απόκλιση του δείγματος d υπολογίζεται βάσει του μέσου όρου του δείγματος N σ ε N τυπική απόκλιση της κατανομής υπολογίζεται βάσει της μέσης τιμής της κατανομής

10 Υπολογισμός τυχαίων σφαλμάτων όταν δεν γνωρίζουμε την πραγματική τιμή Τυπικό σφάλμα στο μέσο όρο σ m s d ( ) % σφάλμα στο Μ.Ο. π σ m x 00 Αποτέλεσμα μέτρησης: ± ή x ±π % x σ m * Τα παραπάνω ισχύουν για μετρήσεις που ικανοποιούν μια κανονική κατανομή Παράδειγμα α/α 8 x 8 d d Μέσος όρος x x Τυπική απόκλιση s d. 9 Τυπικό σφάλμα στο Μ.Ο. σ m 9 s % σφάλμα στο Μ.Ο. σ m 0. π % x

11 ιάδοση σφαλμάτων Πολλές φορές ένα μέγεθος προκύπτει ως συνδυασμός άλλων μεγεθών τα οποία έχουν προσδιοριστεί με κάποιο σφάλμα, π.χ.: V I 0 V.0 ± 0.V I 0. ± 0.0m RV/I0ΚΩ ±??? Μέγεθος: Ζf(,,C ) Σφάλμα Ζ: Α Ζ C C ιάδοση σφαλμάτων ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) e e Α Ζ + Ζ + Ζ Ζ log ΠΡΟΣΘΕΣΗ & ΑΦΑΙΡΕΣΗ Προσθέτω τα τετράγωνα των απόλυτων σφαλμάτων ΙΑΙΡΕΣΗ & ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ Προσθέτω τα τετράγωνα των σχετικών σφαλμάτων

12 ΕΦΑΡΜΟΓΗ Πόσοςείναιοόγκοςκύβουακμήςα0.±0.cm; V V a a a a V V a a a V a a a. V 0± cm N R(ΚΩ),,,9,,9,8,,,,98,,0,,0,,,9,,0,8 Ιστόγραμμα Πολύγωνο συχνοτήτων Μέτρηση της αντίστασης ενός αντιστάτη Μέγιστη τιμή,kω Ελάχιστη τιμή,kω Μέσος όρος,κω Εύρος τιμών:,-, ΚΩ Κλάσεις κ+.log()~ Πλάτος κλάσης / 0,ΚΩ Αντίσταση (ΚΩ) ΠΙΝΑΚΑΣ ΣΥΧΝΟΤΗΤΩΝ v 8

13 Ιστόγραμμα Πολύγωνο συχνοτήτων ΠΙΝΑΚΑΣ ΣΥΧΝΟΤΗΤΩΝ Αντίσταση (ΚΩ) v 8 8 Πολύγωνο συχνοτήτων ιστόγραμμα.. ν R(ΚΩ) N R(ΚΩ), d (KΩ) 0.8 Κανονική κατανομή (Γκαουσιανή) 8,,9,,9,8,, d (ΚΩ) - ως -0, -0, ως -0, -0, ως 0, 0, ως 0, 0, ως v 9 0,,98,, d d αρνητικές θετικές, 0.0,0 0.,, συμμετρική καμπύλη,9 0. 8, 0.0 9,0-0. 0,8-0.9

14 Κανονική κατανομή (Γκαουσιανή) d (ΚΩ) - ως -0, -0, ως -0, -0, ως 0, 0, ως 0, 0, ως v καμπύλη Gauss κωδωνοειδής ή κανονική κατανομή ν d (ΚΩ) Συμμετρική καμπύλη γύρω από το 0. Η μέτρηση υπόκειται σε τυχαία σφάλματα. ν Κανονική κατανομή (Γκαουσιανή) 0 σ σ σ0. σ d(κω) f z ( ) σ z Εμβαδό κάτω από την κορυφή e πσ Πιθανότηταμίανέαμέτρηση να είναι στο διάστημα ±σ 8% Πιθανότηταμίανέαμέτρηση να είναι στο διάστημα ±σ 9% FWHM (πλήρες εύρος στο μισό του ύψους) FWHM l σ.σ FWHM ~ σ

15 Κανονική κατανομή (Γκαουσιανή).%.% Εάν γίνει μία νέα μέτρηση η πιθανότητα να βρίσκεται μεταξύ μ±σ είναι 9% Σημαντικά ψηφία Αριθμός ψηφίων που αναγράφονται για να δηλωθεί σωστά η ακρίβεια στον προσδιορισμό ενός μεγέθους. περισσότερο σημαντικό ψηφίο σημαντικά ψηφία,0 λιγότερο σημαντικό ψηφίο ακόμα και είναι μηδέν 80 λιγότερο σημαντικό ψηφίο (μη μηδενικό),0 x0,80 x0,8 x0? σημαντικά ψηφία δεκαδικά ψηφία

16 Σημαντικά ψηφία Μικρότερη υποδιαίρεση ακρίβεια του οργάνου ( Α) Τρία σημαντικά ψηφία (ένα δεκαδικό) Κατ εκτίμηση ψηφίο Ένα σημαντικό ψηφίο. ± 0. Α μισό της ελάχιστης υποδιαίρεσης ΠΡΟΣΟΧΗ: Ακόμη και αν το θερμόμετρο δείξει.0 o C πρέπει να γράψω.0 και όχι απλά γιατί έτσι δηλώνω και την ακρίβεια του οργάνου Μετρήσειςμετοίδιοόργανο δίνονται με την ίδια ακρίβεια.0 ± 0.0 cm Σημαντικά ψηφία και πράξεις ΠΡΟΣΘΕΣΗ & ΑΦΑΙΡΕΣΗ: κρατάω τόσα δεκαδικά όσα δεκαδικά έχει ο αριθμός με τα λιγότερα δεκαδικά ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ & ΙΑΙΡΕΣΗ: κρατάω τόσα σημαντικά όσα σημαντικά έχει ο αριθμός με τα λιγότερα σημαντικά, +,,9,0, X,,0. Στρογγυλοποιήσεις,,,,,,,,

17 Βολή σε στόχο Στόχος φωτοευαίσθητος σε laser απόκλιση (σφάλμα) μέτρηση πραγματική τιμή Η σκοπευτική ικανότητα καθορίζεται από τη θέση του μέσου όρου (πόσο αποκλίνει από το κέντρο) και από τη διασπορά των μετρήσεων (τυπική απόκλιση) Η εκτίμηση της σκοπευτικής ικανότητας γίνεται χρησιμοποιώντας ένα δείγμα (Ν μετρήσεων) από την κατανομή των άπειρων μετρήσεων που μπορούν να γίνουν. Υπόδειγμα εργαστηριακής αναφοράς. ( η σελίδα) Ονοματεπώνυμο, ομάδα, τμήμα, ημερομηνία που έγινε η άσκηση. Τίτλος της άσκησης.. Περίληψη. Θεωρητική εισαγωγή. Πειραματικό μέρος (όργανα, οι πειραματικές διατάξεις (με σχήματα), μεταβλητές, διαδικασία μέτρησης).. Επεξεργασία (πίνακες, διαγράμματα, υπολογισμοί). Συμπεράσματα Όλες οι σχέσεις αριθμούνται και αναφέρονται στη συνέχεια με τους αριθμούς τους. Οι πίνακες αριθμούνται χωριστά (,, ή Ι, II, III. IV, V...) και περιλαμβάνουν λεζάντα. Τα σχήματα (π.χ. πειραματικές διατάξεις, γραφικές παραστάσεις) αριθμούνται χωριστά με κανονική αρίθμηση (,,..) και περιλαμβάνουν λεζάντα. Οι γραφικές παραστάσεις γίνονται στο κατάλληλο χαρτί Το τελικό αποτέλεσμα κάθε αριθμητικής επεξεργασίας παρουσιάζεται με την μορφή x (x ± σ m ) μονάδες, π.χ. R (8, ± 0,) Ω

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Θεωρία ελαχίστων τετραγώνων (β ) Μη-γραμμικός αντιστάτης Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Προσδιορισμός της νομοτέλειας Πείραμα για τη μελέτη ενός

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση τυπικής αβεβαιότητας τύπου B Η εκτίμηση βασίζεται στις διαθέσιμες πληροφορίες και την εμπειρία, χρησιμοποιώντας συνήθως: τα χαρακτηριστικά του κατασκευαστή

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Χειμερινό Εξάμηνο 007 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Χειμερινό Εξάμηνο 007 Πρόβλημα 1 Προσδιορίστε ποια από τα παρακάτω

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα.

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα. Ε. Κ. Παλούρα 00 Ε. Κ. Παλούρα 00 Εισαγωγή στη θεωρία σφαλμάτων Εισαγωγή στη θεωρία σφαλμάτων Πείραμα Συστηματική παρατήρηση & μέτρηση φυσικών φαινομένων Επαλήθευση απλών νόμων Εκπαίδευση στον υπολογισμό

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

Εργαστήριο Φυσικής II Ηλεκτρομαγνητισμός Άσκηση 1: Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων

Εργαστήριο Φυσικής II Ηλεκτρομαγνητισμός Άσκηση 1: Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά όργανα μετρήσεων συνεχούς ρεύματος, και οι τρόποι χρήσης τους

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ

ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ ΣΚΟΠΟΣ Σκοπός αυτής της μελέτης είναι αφενός να επαληθεύσουμε το νόμο του Ohm πειραματικά και αφετέρου να μετρήσουμε την αντίσταση

Διαβάστε περισσότερα

Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R

Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: (Το πολύ 5 γραμμές συνοπτικά τι διεξήχθη στο πείραμα και γιατί) Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης

Διαβάστε περισσότερα

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Μετρήσεις και Σφάλματα/Measurements and Uncertainties Μετρήσεις και Σφάλματα/Measurements and Uncertainties Κατά την καταγραφή δεδοµένων, σε κάθε εγγραφή δεδοµένου θα πρέπει να δίδεται µαζί και το αντίστοιχο εκτιµώµενο σφάλµα ή αβεβαιότητα. Ο όρος σφάλµα

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΡΕΥΝΩΝ ΕΝΕΡΓΕΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΑΝΗ Γ. ΛΑΥΡΕΝΤΗ Ο ΗΓΙΑ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟ ΟΣΗΣ ΚΤΗΡΙΩΝ Στόχοι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Περιεχόμενα 1) Γενικές Πληροφορίες ) Ανάλυση σφαλμάτων 3) Γραφικές παραστάσεις 4) Υπόδειγμα Εργαστηριακής Άσκησης 5) Εργαστηριακές Ασκήσεις Άσκηση 1 Μέτρηση

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣ 685

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣ 685 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣ 685 Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα Γραφείο: B244, Πτέρυγα Ε, 2 Όροφος, Τμήμα Φυσικής, Νέα Πανεπιστημιούπολη Τηλ: 2289 2844 E-mail: mousa@ucy.ac.cy Ώρες Εργαστηρίου: Δευτέρα 19:0

Διαβάστε περισσότερα

Μετρήσεις σε ράβδους γραφίτη.

Μετρήσεις σε ράβδους γραφίτη. 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΔΙΟΡΘΩΣΗΣ (Προτεινόμενες Λύσεις)

ΟΔΗΓΟΣ ΔΙΟΡΘΩΣΗΣ (Προτεινόμενες Λύσεις) ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 2014

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου

Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου Πειραματική διάταξη μελέτης, της χαρακτηριστικής καμπύλης διπόλου Επισημάνσεις από τη θεωρία. 1 Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική συσκευή που έχει δύο πόλους (άκρα) και όταν συνδεθεί σε ηλεκτρικό

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Επεξεργαςία πειραματικών δεδομζνων

Επεξεργαςία πειραματικών δεδομζνων Επεξεργαςία πειραματικών δεδομζνων Επεξεργασία μετρήσεων. Στα θέματα που ακολουθούν, η επεξεργασία των μετρήσεων στηρίζεται στη δημιουργία γραφημάτων α βαθμού, δηλαδή της μορφής ψ=α χ+β,και στην εξαγωγή

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου

Διαβάστε περισσότερα

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή. Τις περισσότερες φορές στις ασκήσεις του εργαστηρίου,

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ ΒΟΗΘΕΙΑ

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Ηλεκτρονική ΦΥΣ 686. Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα

Ηλεκτρονική ΦΥΣ 686. Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα Ηλεκτρονική ΦΥΣ 686 Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα Γραφείο: B244, Πτέρυγα Ε, 2 Όροφος, Τμήμα Φυσικής, Νέα Πανεπιστημιούπολη Τηλ: 2289 2844 E-mail: mousa@ucy.ac.cy Ώρες Εργαστηρίου: Δευτέρα 17:0 0-21:00

Διαβάστε περισσότερα

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Επισημάνσεις από τη θεωρία

Επισημάνσεις από τη θεωρία 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ Ν.ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη Φυσική 13 Δεκεμβρίου2014 α. β. γ. Ονοματεπώνυμο μαθητών Επισημάνσεις από τη θεωρία Σχολείο Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική

Διαβάστε περισσότερα

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Σύνοψη Πέραν από την ιδιαίτερη προσοχή που θα πρέπει να επιδείξουμε κατά τη λήψη μετρήσεων σε ένα πείραμα, μεγάλη σημασία έχει ο τρόπος που θα παρουσιάσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΕΡΓΑΣΙΑ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ 1 Μ.ΠΗΛΑΚΟΥΤΑ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΕΡΓΑΣΙΑ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ 1 Μ.ΠΗΛΑΚΟΥΤΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚΕΣ ΥΠΟΔΕΙΞΕΙΣ ΓΙΑ ΤΗΝ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ ΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΣΠΟΥΔΑΣΤΩΝ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗΣ 1 ΤΥΠΙΚΟ ΜΕΡΟΣ ΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3) ΑΣΚΗΣΗ 8 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ Αντικείμενο της άσκησης είναι να πραγματοποιήσετε μετρήσεις σε ένα L κύκλωμα σειράς έτσι ώστε α) να σχεδιάσετε την καμπύλη συντονισμού β) να προσδιορίσετε τις χαρακτηριστικές

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ TD ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΑΜ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ: / / 0 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: / / 0 ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΑΝΤΙΚΕΙΜΕΝΟ της εργαστηριακής άσκησης είναι

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β) ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ 5 - Δεκεμβρίου - 2015 Χριστόφορος Στογιάννος 1 ΕΚΦΕ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 Eξεταζόμενο μάθημα: ΦΥΣΙΚΗ ΟΜΑΔΑ..... 1 η Δραστηριότητα Σκοπός της άσκησης

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ

Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203

Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203 YES, YES, YES!!! NO PSPICE in the Final Exam! (Exam counts for 32%) Διάλεξη 13 (Επανάληψη Εργαστηρίων 0-5) 30/11/11 1 Εργαστήριο 1-Πολύμετρο Το πολύμετρο αποτελεί

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα )

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203

Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων ΗΜΥ203 YES, YES, YES!!! NO PSPICE in the Final Exam! (Exam counts for 32%) Εργαστήριο 1Πολύμετρο Διάλεξη 13 (Επανάληψη Εργαστηρίων 05) 30/11/11 Το πολύμετρο αποτελεί

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων.

ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων. ΠΡΟΣΑΡΤΗΜΑ IΙΙ IΙΙ-1. Αξιολόγηση Αναλυτικών εδοµένων ύο όροι που χρησιµοποιούνται ευρύτατα στη διερεύνηση της αξιοπιστίας των δεδοµένων είναι η επαναληψιµότητα (precson) και η ακρίβεια (accurac). Επαναληψιµότητα

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 204 3 Ώρες εργαστηρίου την εβδομάδα Προαπαιτούμενo: Φυσική ΙΙ (ΕΤΥ102) Βαθμός Μαθήματος: 0.1*( 1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + Βαθμός Τελικής

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα