Εφαρμογή Προηγμένων Αλγορίθμων Επεξεργασίας Εικόνας για Εξαγωγή Αρχικών Αριθμητικών Δεδομένων απο Καμπύλες Επιβίωσης και Χρήση τους σε Μετα-ανάλυση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρμογή Προηγμένων Αλγορίθμων Επεξεργασίας Εικόνας για Εξαγωγή Αρχικών Αριθμητικών Δεδομένων απο Καμπύλες Επιβίωσης και Χρήση τους σε Μετα-ανάλυση"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Εφαρμογή Προηγμένων Αλγορίθμων Επεξεργασίας Εικόνας για Εξαγωγή Αρχικών Αριθμητικών Δεδομένων απο Καμπύλες Επιβίωσης και Χρήση τους σε Μετα-ανάλυση Σπύρος Ηλίας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνοι Δρ.Π.Μπάγκος Δρ.Κ.Δελήμπασης Επίκουροι Καθηγητές Λαμία,

2 Ευχαριστίες Η συγκεκριμένη εργασίας έλαβε χώρα στη Λαμία στο Πανεπιστήμιο Θεσσαλίας του τμήματος Πληροφορικής με Εφαρμογές στην Βιοϊατρική από τον Φεβρουάριο του 2010 μέχρι και το Φεβρουάριο του Η παρούσα εργασία υλοποιήθηκε με την βοήθεια του εισηγητή του θέματος κ.μπάγκου Παντελή σε συνεργασία με τον κ.δελήμπαση Κωνσταντίνο επίκουρους καθηγητές του τμήματος Πληροφορικής με Εφαρμογές στην Βιοϊατρική, τους οποίους ευχαριστώ για την βοήθεια τους. Θα ήθελα επίσης να ευχαριστήσω τους δικούς μου ανθρώπους για την υποστήριξη και την υπομονή τους. 2

3 Περιεχομένα 1 Εισαγωγή Εισαγωγή στην Μετα-ανάλυση Σχεδιασμός Μετα-ανάλυσης Πλεονεκτήματα μειονεκτήματα Επιστημονικά πεδία εφαρμογής της μετα-ανάλυσης Τρόποι Πραγματοποίησης μετα-ανάλυσης και Στατιστικά Μεγέθη Μέγεθος επίδρασης (effect size) Μέγεθος επίδρασης Hazard Ratio Ερμηνεία αποτελεσμάτων γραφήματος μετα-ανάλυσης Μεθοδολογία Σύγκριση fixed effect model και random effect model Κλασικές Μέθοδοι μετα-ανάλυσης Εναλλακτικές μέθοδοι μετα-ανάλυσης Μεθοδολογία μετα-ανάλυσης από δημοσιευμένες καμπύλες Kaplan Meier Καμπύλη επιβίωσης KAPLAN MEIER Μέθοδος μετα-ανάλυσης από δημοσιευμένες καμπύλες Προτεινόμενη μεθοδολογία και εξαγωγή δεδομένων από καμπύλες Kaplan Meier για την πραγματοποίηση μετα-ανάλυσης Εισαγωγή εικόνας Προεπεξεργασία του γραφήματος Εντοπισμός καμπύλης Έλεγχος εντοπισμού καμπύλης Έλεγχος πλήθους καμπυλών Καθορισμός κλίμακας αξόνων Διαδικασία Μετα-ανάλυσης Υλικά, υπολογιστική υλοποίηση Διαθέσιμα δεδομένα Περιβάλλον ανάπτυξης Matlab Παρουσίαση της εφαρμογής User interface Αποτελέσματα Εισαγωγή Συνθετικές Καμπύλες Αποτελέσματα από πραγματικές καμπύλες Πραγματικό παράδειγμα Υπολογισμού του Log Hazard Ratio και της διακύμανσης από δημοσιευμένες καμπύλες Παρουσίαση μελετών για καρκίνο στους πνεύμονες και μετα-ανάλυση Μετα-ανάλυση Συμπεράσματα Βιβλιογραφία

4 Περίληψη Σε μελέτες που πραγματοποιούνται για την εύρεση νέων φαρμάκων ή θεραπειών διαφόρων νόσων και παθήσεων προκύπτουν σημαντικά αποτελέσματα. Τα αποτελέσματα αυτά από τις μεμονωμένες μελέτες επιβίωσης συνδυάζονται με στατιστικές μεθόδους ανάλυσης έτσι ώστε οι μελετητές να καταλήξουν σε ασφαλή συμπεράσματα όσον αφορά το αντικείμενο έρευνας. Η διαδικασία αυτή ονομάζεται μετα-ανάλυση. Οι μελέτες που χρησιμοποιούνται για την πραγματοποίηση μιας μετα-ανάλυσης ασχολούνται με το ίδιο αντικείμενο. Τα δεδομένα των μελετών που συμπεριλαμβάνονται σε μια μετα-ανάλυση προέρχονται κυρίως από δημοσιευμένες μελέτες καθώς και από άλλες πηγές. Υπάρχουν πολλές μέθοδοι μετα-ανάλυσης οι οποίες για να εφαρμοστούν χρειάζονται τα ατομικά δεδομένα των συμμετεχόντων (individual patient data) από τις μεμονωμένες μελέτες. Συνήθως όμως δημοσιεύονται βασικά αποτελέσματα αυτών, όπως ένας εκτιμητής με τα διαστήματα εμπιστοσύνης του, ή μια καμπύλη επιβίωσης Kaplan-Meier και οι συμμετέχοντες της μελέτης. Οι κλασικές μέθοδοι εφαρμογής δεν είναι ικανές να χρησιμοποιηθούν για μετα-ανάλυση και έτσι προέκυψε η ανάγκη για την ανάπτυξη μιας μεθόδου που θα εκμεταλλεύεται τις πληροφορίες που δίνονται από τις καμπύλες επιβίωσης K-M. Στην συγκεκριμένη εργασία παρουσιάζεται η ανάπτυξη μιας εφαρμογής που χρησιμοποιεί τα δεδομένα από τις καμπύλες K-M και εξάγει τις απαραίτητες πληροφορίες για την πραγματοποίηση μιας μετα-ανάλυσης. Για κάθε μία από τις επιμέρους μελέτες που θα συμπεριληφθούν στην μετα-ανάλυση η παρούσα εφαρμογή εκτελεί μια σειρά βημάτων μέχρι να προκύψει το τελικό αποτέλεσμα από την ολοκλήρωση της διαδικασίας. Τα βήματα αυτά είναι: 1. Εισαγωγή της εικόνας που περιέχει την καμπύλη επιβίωσης K-M και βασικές πληροφορίες της μελέτης. 2. Επεξεργασία της εικόνας για τον εντοπισμό των καμπυλών και εύρεση αριθμητικών στοιχείων της καμπύλης για την κάθε μελέτη. 3. Υπολογισμός στατιστικών μεγεθών για την κάθε καμπύλη και συνδυασμός αυτών για το αποτέλεσμα της μετα-ανάλυσης. Η εφαρμογή αναπτύχθηκε σε περιβάλλον Matlab με την χρησιμοποίηση μιας σειράς αλγορίθμων και συναρτήσεων. Ο έλεγχος της ορθής λειτουργίας της εφαρμογής πραγματοποιήθηκε μέσα από αριθμητικές συγκρίσεις των αποτελεσμάτων της εφαρμογής με συγκεκριμένες καμπύλες K-M των οποίων τα δεδομένα ήταν ήδη γνωστά. Συγκεκριμένα τον υπολογισμό της διαφοράς μεταξύ των τιμών που προέκυψαν από την εφαρμογή και των πραγματικών τιμών των καμπυλών και την γραφική αναπαράσταση αυτών. Επίσης παρατίθενται και στοιχεία από την σύγκριση με εμπορικά διαθέσιμο λογισμικό αντίστοιχης λειτουργίας που δείχνει ότι η παρούσα υλοποίηση είναι πιο ολοκληρωμένη και απαιτεί λιγότερη αλληλεπίδραση με τον χρήστη. Τέλος η εφαρμογή χρησιμοποιείται για την πραγματοποίηση μιας μετα-ανάλυση σε 5 πραγματικές μελέτες οι οποίες προέρχονται από δημοσιεύσεις. Τα αποτελέσματα των μεμονωμένων μελετών καθώς και της συνολικής μετα-ανάλυσης που προέκυψαν από την χρήση της εφαρμογής συγκρίνονται με τα πραγματικά αποτελέσματα από τις δημοσιευμένες καμπύλες. Το τελικό αποτέλεσμα που προκύπτει από την λειτουργία της εφαρμογής συμπίπτει με αυτό της πραγματικής μελέτης. Λέξεις-Κλειδιά μετα-ανάλυση, καμπύλες επιβίωσης Kaplan Meier, επεξεργασία εικόνας, μελέτες επιβίωσης 4

5 Abstract In this work we report the development of a computational tool, which estimates the numerical survival probabilities from bitmap K-M curves and performs meta-analysis of an arbitrary number of studies, using these obtained values. The tool uses image processing techniques and requires minimal user interaction. The proposed tool has been assessed quantitatively using the data from a published meta-analysis of five survival studies. Meta-analysis of survival (time-to-event) data, from published studies is difficult, since there are different estimates that can be used and in many cases one cannot perform the transformation without having access to individual data. However, the majority of the published studies report a survival probability plot (K- M curve) that includes information for the survival probabilities as well as the censoring events. This work reports the development of a tool that performs meta-analysis using the bitmap of the individual K-M plots. The proposed tool uses the bitmap of the K-M plots of any number of individual survival studies, as well as the total number of participants and minimum and maximum follow up for each study. A minimum user input is utilized to automatically track each survival curve and obtain its numeric values concerning time and survival probability. Dijkstra s algorithm was used for curve tracking and affine transformation was used to obtain the time and probability from the position of each detected pixel of the curve. The statistical quantities (the log-hazard ratio and its variance) are subsequently computed for each survival curve of each study. Finally, the log-hazard ratios are combined to calculate the pooled log hazard ratio. The proposed tool, developed using Matlab, is able to handle any number of survival studies, with intersecting K-M curves, with minimum user interaction: at least 2 point input for each curve in each K-M plot and at least 3 point input on the figure axes to define the scales of each axis. First, results are presented concerning only the accuracy of obtaining the numerical values of the survival curves from the bitmaps of the K-M graphs. For this reason a number of synthetic K-M graphs were generated with known survival probability at different times. The proposed tool was used to extract the numeric values, which were compared to the ground truth. The same comparison took place using another, commercial WWW-based product. Results show that both methods work well and achieve median probability error below 1%. It has to be mentioned however that our approach operates with as many as 2 point inputs, whereas the approach in requires as many as 30 point inputs. Finally the proposed tool was used to repeat the meta-analysis of 5 studies investigating the benefit of postoperative cisplatin-based chemotherapy in patients with non small-cell lung cancer. The pooled estimate of the log-hazard ratio and its 95% confidence interval that was extracted from the K-M curves was compared against the results reported in the published metaanalysis and it was found nearly identical (up to the third decimal place). A computational tool has been reported that can perform meta-analysis of individual studies, using the bitmaps of K-M graphs. Initial results show the accuracy of the proposed tool. Keywords meta-analysis, survival curves Kaplan Meier, image processing, survival studies 5

6 1 Εισαγωγή Εισαγωγή στην Μετα-ανάλυση Σημαντικές μελέτες επιβίωσης πραγματοποιούνται με σκοπό την ανακάλυψη νέων μεθόδων θεραπείας. Σε πολλές περιπτώσεις οι μεμονωμένες μελέτες δεν είναι ικανές να έχουν στατιστικά σημαντικό αποτέλεσμα ανεξάρτητα από το μέγεθος του δείγματος. Για το λόγο αυτό πραγματοποιούνται αρκετές μελέτες με το ίδιο αντικείμενο έρευνας. Οι μελέτες αυτές ξεχωριστά περιέχουν κάποια μικρή πληροφορία αλλά όλες μαζί μπορούν να δώσουν ένα σημαντικό αποτέλεσμα. Έτσι προέκυψε η ανάγκη να χρησιμοποιηθούν τυπικές στατιστικές μέθοδοι ελέγχου της ετερογένειας μέσω της σύνθεσης των μεμονωμένων αποτελεσμάτων με την διαδικασία της μετα-ανάλυσης [1]. Ο όρος μετα-ανάλυση [2] αναφέρεται στη στατιστική σύνθεση των αποτελεσμάτων από μια σειρά διαφορετικών πρωτογενών μελετών που ασχολούνται με το ίδιο αντικείμενο [3] Πρόκειται για μια σχολαστική μελέτη που δεν εφαρμόζεται από μια μόνο μέθοδο αλλά ποικίλει ανάλογα με τα δεδομένα των μεμονωμένων μελετών. Στην ιατρική βιβλιογραφία, μετα-ανάλυση εφαρμόστηκε αρχικά στον τομέα των τυχαιοποιημένων κλινικών δοκιμών [4] αλλά σήμερα θεωρείται ένα πολύτιμο εργαλείο για τον συνδυασμό των αποτελεσμάτων από διαφορετικές μελέτες [5]. Με την πάροδο του χρόνου έχει εξελιχθεί και χρησιμοποιείται πλέον όχι μόνο στο χώρο της υγείας αλλά και σε άλλους τομείς. Οι στατιστικές μέθοδοι που χρησιμοποιούνται σε μια μετα-ανάλυση μπορεί να εφαρμοστούν σε κάθε σύνολο δεδομένων, η σύνθεση θα έχει νόημα μόνο αν οι μελέτες έχουν συλλεχθεί συστηματικά. Η μέθοδος της μετα-ανάλυσης θεωρείται στατιστικά σημαντική καθώς συνδυάζει διαφορετικές μελέτες [6] που έχουν σχέση μεταξύ τους (ασχολούνται με το ίδιο αντικείμενο) αλλά είναι ταυτόχρονα και ανεξάρτητες. Οι μελέτες επιλέγονται με κατάλληλα µε κριτήρια τα οποία καθορίζονται στο πρωτόκολλο της μετα-ανάλυσης. Υπάρχουν διαφορετικές μέθοδοι πραγματοποίησης μιας μετα-ανάλυσης πάνω σε διάφορα σύνολα δεδομένων. Οι μέθοδοι μετα-ανάλυσης άρχισαν να αναπτύσσονται πριν από την δεκαετία του 90 και μέχρι σήμερα εξελίσσονται και βελτιώνονται. Η ιστορία ξεκινάει με την πραγματοποίηση των πρώτων προσπαθειών συνδυασμού και ομαδοποίησης αποτελεσμάτων μέσω αφηγηματικών ανασκοπήσεων για την εξαγωγή συμπερασμάτων. Οι αφηγηματικές ανασκοπήσεις [7] είναι μελέτες που γίνονται από ερευνητές χωρίς να υπάρχει σαφή διάκριση και κριτήρια επιλογής των μελετών που θα συμπεριληφθούν στην ανασκόπηση, ανομοιογένεια στον τρόπο λήψης πρωτογενών δεδομένων και άλλα σφάλματα που οδηγούν σε λανθασμένα συμπεράσματα. Με τη χρήση αυτής της τεχνικής υπάρχουν για παράδειγμα αναλύσεις για την αποτελεσματικότητα του ίδιου φαρμάκου που οι αναλυτές χρησιμοποιούσαν διαφορετικά όρια στην μελέτη με αποτέλεσμα να καταλήγουν σε αντίθετα συμπεράσματα. Για το λόγο αυτό πολύ σημαντικό ρόλο παίζει ο σχεδιασμός μιας μετα-ανάλυσης. Για την πραγματοποίηση μιας ποιοτικής [8] και αποτελεσματικής μετα-ανάλυσης είναι πολύ σημαντικό το στάδιο αναζήτησης και εύρεσης των κατάλληλων μελετών. Αυτό θα επιτευχθεί με την μέθοδο της συστηματικής ανασκόπησης καθώς αποτελεί ουσιαστικά την καρδιά της μετα-ανάλυσης. Ειδικά στις περιπτώσεις μετα-αναλύσεων με αντικείμενο κλινικές μελέτες για κάποιο νέο φάρμακο ή θεραπεία, είναι ζωτικής σημασίας ο σωστός σχεδιασμός και η επιλογή των μελετών που θα συμμετάσχουν σε αυτή, αν αναλογιστεί κανείς την σημαντικότητα των αποτελεσμάτων. Για το λόγο αυτό η αναζήτηση δεδομένων που έχουν σχέση με το αντικείμενο μελέτης γίνεται με μεγάλη προσοχή και σε κάθε μέσο που μπορεί να παρέχει πληροφορία δηλαδή, σε βάσεις δεδομένων στο διαδίκτυο, σε περιοδικά, σε βιβλία και σε αδημοσίευτες μελέτες ή ακόμα και σε μελέτες που σε εξέλιξη. Σκοπός της παρούσας εργασίας είναι η μετα-ανάλυση σε κλινικές μελέτες με την μέθοδο αξιοποίησης πληροφοριών από τα δεδομένα που παρέχουν οι καμπύλες επιβίωσης Kaplan Meier που θα παρουσιαστούν στο κεφάλαιο 2. 6

7 1.1.2 Σχεδιασμός Μετα-ανάλυσης Για τον σχεδιασμό μιας μετα-ανάλυσης υπάρχουν κάποια βασικά βήματα που πρέπει να εκτελεσθούν όπως γίνεται σε κάθε είδους μελέτης ή έρευνας [9]. Το πρώτο βήμα περιλαμβάνει τον ορισμό του προβλήματος η του αντικειμένου της έρευνας. Οι ερευνητές καλούνται δηλαδή να γράψουν ένα λεπτομερέστατο πρωτόκολλο της μελέτης που δηλώνει τους στόχους, τις υποθέσεις που πρέπει να ελεγχθούν, και τα υποπεδία που μπορεί να σχετίζονται με το συγκεκριμένο θέμα. Στην συνέχεια ακολουθεί το βήμα των προτεινόμενων μεθόδων και κριτηρίων επιλογής σχετικών μελετών με το αντικείμενο της έρευνας. Η συμπερίληψη ή ο αποκλεισμός ορισμένων μελετών μπορεί να στρεβλώσει σε μεγάλο βαθμό τα αποτελέσματα της μεταανάλυσης. Ως εκ τούτου, τα κριτήρια για την επιλογή των μελετών πρέπει να καθορίζονται εκ των προτέρων με την βιβλιογραφική έρευνα [10]. Τέλος έχουμε το βήμα που περιλαμβάνει τις μεθόδους εξαγωγής δεδομένων και πληροφοριών για περαιτέρω επεξεργασία και οδήγηση σε σημαντικά στατιστικά συμπεράσματα. Αποτελέσματα που βασίζονται σε αποδείξεις και σημαντικά συμπεράσματα για μελλοντικές μελέτες. Τα βήματα που παρουσιάστηκαν θα μπορούσαν να χωριστούν σε ακόμη πιο μικρά. Κάποια βασικά θέματα που πρέπει να δοθεί ιδιαίτερη προσοχή είναι: 1. Η αποφυγή συγχώνευσης διαφορετικών τύπων μελετών για να έχουμε ορθότερα συμπεράσματα. 2. Ο ορισμός αυστηρών κριτηρίων αποκλεισμού μελετών για την επίτευξη μεγαλύτερης ομοιογένειας. 3. Η αντιμετώπιση της κάθε μελέτης σαν μια ξεχωριστή οντότητα για καλύτερα αποτελέσματα. 4. Εκτίμηση του σφάλματος δημοσίευσης δηλαδή έλεγχος των μελετών που συμπεριλαμβάνουμε στην έρευνα γιατί αυτές που δημοσιεύονται πιο εύκολα γενικά είναι οι μελέτες με τα θετικά μόνο αποτελέσματα άρα οδηγούμαστε σε λάθος συμπεράσματα Πλεονεκτήματα και μειονεκτήματα Πλεονεκτήματα Παρέχει μια αντικειμενική σύνθεση πολλών σχετικών μελετών ή πειραμάτων για ένα συγκεκριμένο πρόβλημα προκειμένου να οδηγηθεί η έρευνα σε ένα μοναδικό συνολικό συμπέρασμα. Η μετα-ανάλυση είναι ένας πολύ καλός τρόπος για την μείωσης της πολυπλοκότητας, του μεγέθους της έρευνας και έχει σαν αποτέλεσμα την εξασφάλιση χρόνου και χρήματος βοηθώντας τους μελετητές να συλλέγουν πολύ περισσότερα δεδομένα χωρίς να απασχολείται μια ολόκληρη ερευνητική ομάδα. Η σωστή διαδικασία εφαρμογής της μετα-ανάλυσης επιτρέπει την αξιολόγηση της μεροληπτικότητας των μελετών που συμμετέχουν στην διαδικασία με την πραγματοποίηση στατιστικών ελέγχων που διασφαλίζουν την εγκυρότητα των αποτελεσμάτων. Η διαδικασία επιλογής των μελετών που θα συμμετάσχουν στην μετα-ανάλυση έχει γίνει πιο αυστηρή με καθορισμένα κάθε φορά κριτήρια και αυτό έχει ως αποτέλεσμα τα συμπεράσματα που προκύπτουν από την μετα-ανάλυση να είναι πολύ πιο αξιόπιστα. Μειονεκτήματα Δεν υπάρχει κάποια συγκεκριμένη μεθοδολογία επιλογής των μελετών που θα συμμετάσχουν στην μετα-ανάλυση παρά μόνο η στρατηγική αναζήτησης και επιλογής που θα εφαρμοστεί από τον κάθε ερευνητή με κριτήρια που θα θεωρήσει ο ίδιος κατάλληλα. Η μετα-ανάλυση είναι πολύ συχνά μεροληπτική προς την κατεύθυνση ενός γενικού συμπεράσματος στατιστικής σημαντικότητας, επειδή δεν έχει την δυνατότητα να πάρει υπόψη της τα αποτελέσματα μελετών που έχουν οδηγήσει σε μη σημαντικά στατιστικά συμπεράσματα διότι δεν έχουν δημοσιευθεί. Η μετα-ανάλυση συχνά οδηγεί σε μία υπεραπλούστευση κάποιων ερευνητικών προβλημάτων δεδομένου ότι επικεντρώνει την προσοχή της σε μια συνολική μέση επίδραση αντί να μελετήσει τους ενδιάμεσους παράγοντες. 7

8 1.1.4 Επιστημονικά πεδία εφαρμογής της μετα-ανάλυσης Στην ιατρική, οι συστηματικές ανασκοπήσεις και η μετα-ανάλυση αποτελούν τον πυρήνα του κινήματος για την εξασφάλιση ότι οι ιατρικές θεραπείες βασίζονται στα βέλτιστα διαθέσιμα εμπειρικά δεδομένα. Για παράδειγμα, το Cochrane Collaboration [11] έχει δημοσιεύσει αποτελέσματα για περισσότερες από 3700 μετα-αναλύσεις (Από τον Ιανουάριο του 2009) τα οποία συνθέτουν τα δεδομένα σχετικά με τις θεραπείες σε όλους τους τομείς της υγείας, συμπεριλαμβανομένων και των ειδικών περιπτώσεων των πονοκέφαλων, του καρκίνου, των αλλεργιών, των καρδιαγγειακών παθήσεων, την πρόληψη του πόνου, και την κατάθλιψη. Πραγματοποιείτε επίσης έλεγχος σε στοιχεία που έχουν σχέση με παρεμβάσεις που σχετίζονται με νέομεταγεννητική φροντίδα, τον τοκετό, βρεφικές και παιδικές ασθένειες, καθώς και ασθένειες κοινές σε εφήβους, ενήλικες και ηλικιωμένους. Τα είδη των παρεμβάσεων περιλαμβάνουν χειρουργική επέμβαση, τα φάρμακα, τον βελονισμό και κοινωνικές παρεμβάσεις. Το περιοδικό BMJ [12] δημοσιεύει μια σειρά από άρθρα με Evidence Based Medicine, που βασίστηκε στα αποτελέσματα συστηματικών ανασκοπήσεων. Οι συστηματικές ανασκοπήσεις και οι μετα-αναλύσεις χρησιμοποιούνται επίσης για την μέτρηση της απόδοσης διαφόρων διαγνωστικών εξετάσεων, και επιδημιολογικών συσχετίσεων μεταξύ της έκθεσης και ο επιπολασμού της νόσου, μεταξύ άλλων θεμάτων. Ερευνητικά κέντρα [10] διεξάγουν συνήθως μια σειρά μελετών για την αξιολόγηση της αποτελεσματικότητα ενός φαρμάκου. Χρησιμοποιούν μετα-ανάλυση για να συνθέσουν τα δεδομένα από τις μελέτες αυτές, πραγματοποιώντας ένα πιο ισχυρό έλεγχο (και ακριβέστερη εκτίμηση) της επίδρασης του φαρμάκου. Επιπλέον, η μετα-ανάλυση παρέχει ένα πλαίσιο για την αξιολόγηση της σειράς μελετών ως σύνολο, αντί να ελέγχουν κάθε μια μεμονωμένα. Οι αναλύσεις αυτές παίζουν σημαντικό ρόλο στην εσωτερική έρευνα, για τις αναφορές στις κυβερνητικές υπηρεσίες, καθώς και στο μάρκετινγκ. Οι μετα-αναλύσεις χρησιμοποιούνται επίσης για να συνθέσουν τα στοιχεία σχετικά με ανεπιθύμητες παρενέργειες των φαρμάκων, δεδομένου ότι αυτά εκδηλώνονται σπάνια και θα πρέπει να συσσωρεύονται πληροφορίες σε μια σειρά μελετών για να εκτιμηθεί σωστά ο κίνδυνος αυτών των γεγονότων. Στον τομέα της εκπαίδευσης η μετα-ανάλυση έχει εφαρμοστεί σε ποικίλα θέματα, όπως η σύγκριση της εκπαίδευσης εξ αποστάσεως με την παραδοσιακή διδασκαλία σε μια αίθουσα, η αξιολόγηση των επιπτώσεων της εκπαίδευσης στις αναπτυσσόμενες οικονομίες, διάφορα τεστ γνώσεων και αξιολόγησης καθώς επίσης και άλλα παιδαγωγικά πειράματα. Η μέθοδος της μετα-ανάλυσης [13] είναι πολύ σημαντική καθώς υπάρχει η δυνατότητα αξιοποίησης πληροφοριών από τις ποικίλες καταστάσεις και τους παράγοντες που επηρεάζουν την εκπαίδευση για την εξαγωγή σημαντικών συμπερασμάτων. Αποτελέσματα διαφόρων ερευνών και η χρήση αυτών σε μεταναλύσεις έχουν επηρεάσει σε πολύ μεγάλο βαθμό τον τρόπο εκπαίδευσης σε αρκετές περιοχές ανά τον κόσμο. Στην ψυχολογία, η μετα-ανάλυση έχει εφαρμοστεί για την βασική επιστήμη, όπως επίσης και για την υποστήριξη θεωριών [14] όσον αφορά τον τρόπο λειτουργίας του ατόμου σε διάφορες καταστάσεις ανάλογα με την ψυχολογική του κατάσταση. Έχει χρησιμοποιηθεί για την αξιολόγηση στις αλλαγές της προσωπικότητας όλη τη διάρκεια της ζωής ενός ατόμου, για την εκτίμηση της επίδρασης της βίας μέσα στην επιθετική συμπεριφορά, την απόδοση και την στάση των ανθρώπων στο χώρο εργασίας με βάση τις πέντε διαστάσεις της συμπεριφοράς. Έχουν επίσης πραγματοποιηθεί πολύ σημαντικές έρευνες [2] για να γίνει εξέταση των διαφορών στα δύο φύλα στα πεδία της μαθηματικής ικανότητας, της ηγεσίας, και της μη λεκτικής επικοινωνίας. Αποτελεί πλέον ένα σύγχρονο εργαλείο στην επιλογή θεραπείας για ψυχολογικά προβλήματα, συμπεριλαμβανομένου της ψυχαναγκαστικής διαταραχής, της διαταραχής παρορμητικότητας, της νευρικής βουλιμίας, της κατάθλιψη, των φοβιών, και την διαταραχή πανικού. Στον τομέα της εγκληματολογίας, κυβερνητικοί οργανισμοί έχουν χρηματοδοτήσει μετα-αναλύσεις που εξετάζουν τη σχετική αποτελεσματικότητα των διαφόρων προγραμμάτων για τη μείωση της εγκληματικής συμπεριφοράς. Αυτές περιλαμβάνουν πρωτοβουλίες για την πρόληψη της εγκληματικότητας, τη μείωση της υποτροπής, την αξιολόγηση της αποτελεσματικότητας των διαφορετικών στρατηγικών για περιπολίες της αστυνομίας και για τη χρήση των ειδικών δικαστηρίων που ασχολούνται με εγκλήματα που έχουν σχέση με ναρκωτικά. Πολλές μελέτες οδήγησαν [15] στο συμπέρασμα ότι δεν αρκούν οι ποινικές κυρώσεις χωρίς σωστή παροχή υπηρεσιών αποκατάστασης και χωρίς αναφορά σε ψυχολογικά αίτια έτσι προέκυψαν διάφορα μοντέλα αντιμετώπισης και βελτίωσης του σωφρονισμού των εγκληματιών. 8

9 Στον τομέα της οικολογίας, οι μετα-αναλύσεις που χρησιμοποιούνται για τον προσδιορισμό των περιβαλλοντικών επιπτώσεις των αιολικών πάρκων, βιοτικών αντιστάσεων στην εισβολή εξωτικών φυτών, οι επιπτώσεις των αλλαγών στην τροφική αλυσίδα των θαλασσών, οι αντιδράσεις των φυτών στην παγκόσμια κλιματική αλλαγή κα. 1.2 Τρόποι Πραγματοποίησης μετα-ανάλυσης και Στατιστικά Μεγέθη Οι μετα-αναλύσεις γίνονται όλο και περισσότερο αποδεκτές ως το καλύτερο μέσο για να συνοψίζεις τα αποτελέσματα μιας σειράς τυχαιοποιημένων ελεγχόμενων μελετών ώστε να αντιμετωπίζονται παρόμοιες περιπτώσεις [16]. Ο καλύτερος τρόπος για να πραγματοποιηθεί μια μετα-ανάλυση σε όλες τις σχετικές τυχαιοποιημένες κλινικές μελέτες είναι η ανάλυση των στατιστικών δεδομένων από όλους τους ασθενείς που συμμετείχαν σε αυτές. Τα στατιστικά δεδομένα προκύπτουν από τα γεγονότα (time to event data) ή αλλιώς θανάτους των ασθενών κατά την διάρκεια μιας χρονικής περιόδου της μελέτης [17]. Τον πιο δύσκολο ρόλο στην όλη διαδικασία τον έχουν αυτοί που θα αναλάβουν την συλλογή τον έλεγχο και την ανάλυση των πρώτων δεδομένων από αυτές τις μελέτες με λίγα λόγια την διαδικασία της συστηματικής ανασκόπησης. Με αυτό τον τρόπο αυξάνεται η ακρίβεια και η δυνατότητα ενημέρωσης των δεδομένων καθώς επίσης η ευελιξία και η έκταση των αναλύσεων στην εκάστοτε μελέτη. Λιγότερο αυστηρές μετα-αναλύσεις (αφηγηματικές ανασκοπήσεις) που βασίζονται μόνο σε στοιχεία που προέρχονται από τις δημοσιευμένες εκθέσεις μπορεί να δώσουν διαφορετικά αποτελέσματα. Η συλλογή δεδομένων των επιμέρους ασθενών απαιτεί μεγάλο χρονικό διάστημα, αρκετούς πόρους και επιμονή. Ωστόσο μέχρι σήμερα αυτή η προσέγγιση έχει υιοθετηθεί σε ένα σχετικά μικρό αριθμό μετα-αναλύσεων. Για το λόγο αυτό, οι περισσότερες μετα-αναλύσεις βασίζονται στην άντληση δεδομένων από τη δημοσιευμένη βιβλιογραφία, διαδικτυακές βάσεις δεδομένων δημοσιεύσεις σε περιοδικά αλλά και μελέτες που δεν έχουν δημοσιευτεί. Έτσι μπορούμε να έχουμε την δυνατότητα να επεξεργαστούμε μεγαλύτερο όγκο δεδομένων σε μικρότερο χρονικό διάστημα χρησιμοποιώντας λιγότερους πόρους. Γενικά υπάρχουν διαφορετικοί τρόποι και στατιστικές μεταβλητές για την πραγματοποίηση μιας μετα-ανάλυσης Μέγεθος επίδρασης (effect size) Οι μεταβλητές που χρησιμοποιούνται για την πραγματοποίηση μιας μετα-ανάλυσης περιγράφονται από κάποιο μέγεθος επίδρασης (effect size), που ουσιαστικά είναι μια τιμή η οποία αντικατοπτρίζει το ποσοστό επίδρασης της θεραπείας (treatment effect) σε διάφορες κλινικές μελέτες ή την σχέση μεταξύ δύο μεταβλητών για πολλών ειδών μελέτες [2]. Υπολογίζεται αρχικά το μέγεθος επίδρασης για κάθε μια από τις μελέτες που θα συμπεριληφθούν στην συνολική μετα-ανάλυση και έπειτα χρησιμοποιούμε τα επιμέρους αποτελέσματα για τον υπολογισμό της συνολικής επίδρασης για να καταλήξουμε σε χρήσιμα στατιστικά συμπεράσματα. Οι μετα-αναλύσεις σε κλινικές μελέτες για να περιγράψουν την επίδραση της θεραπείας χρησιμοποιούν διάφορα μεγέθη επίδρασης όπως Odds Ratio, Relative Risk, Risk Differences. Πολύ σημαντικό πριν την πραγματοποίηση μιας μετα-ανάλυσης είναι η επιλογή του κατάλληλου μεγέθους επίδρασης. Τα κριτήρια για αυτήν την επιλογή είναι: Οι διαφορετικές μελέτες που θα συμπεριληφθούν στην μετα-ανάλυση να περιέχουν συγκρίσιμα μεταξύ τους μεγέθη στα αποτελέσματα τους. Στα στοιχεία που παρατίθενται στην εκάστοτε μελέτη πρέπει να υπάρχουν τα αποτελέσματα από τις διάφορες μετρήσεις που θα χρησιμοποιηθούν για την πραγματοποίηση της μετα-ανάλυσης. Το μέγεθος επίδρασης να έχει καλές τεχνικές προδιαγραφές. Για παράδειγμα πρέπει να δίνονται στοιχεία όπως η κατανομή του δείγματος και η διακύμανση του (ή να μπορούν να υπολογιστούν) για την πραγματοποίηση της μελέτης. Ο Σχετικός Κίνδυνος (Relative Risk) είναι ο λόγος των κινδύνων(risks) των δύο πληθυσμών [6] όπως ορίζεται στη σχέση 1. Για παράδειγμα εξετάζουμε τους 2 πληθυσμούς που παρουσιάζονται στον πίνακα ενδεχομένων 2. Οι πληθυσμοί χωρίζονται σε αυτούς που ακολουθούν την κλασική θεραπεία (control group) που είναι συνολικά 100 άτομα και αυτούς που ακολουθούν την νέα μέθοδο θεραπείας (research group) που είναι επίσης 100 στο σύνολο. Έστω ότι πεθαίνουν 5 από το research group και 10 από το control group, προκύπτει έτσι ένας σχετικός κίνδυνος στο research group που ισούται με 5/100 και ένας σχετικός κίνδυνος για το control group που ισούται με 10/100 έτσι ο λόγος των δύο κινδύνων είναι 0,5 όπως προκύπτει από τη 9

10 σχέση 1. Για το Relative Risk οι υπολογισμοί συνεχίζονται στην λογαριθμική κλίμακα. Συγκεκριμένα αφού υπολογιστεί ο φυσικός λογάριθμος του Relative Risk (σχέση 2), η διακύμανση(σχέση 3), το σχετικό του σφάλμα (σχέση 4) και το διάστημα εμπιστοσύνης [(σχέση 6,7) LL, UL] γίνεται η χρήση αυτών των αριθμών για την πραγματοποίηση της μετα-ανάλυσης. Όταν ολοκληρωθεί η όλη διαδικασία της μετα-ανάλυσης, μετατρέπουμε τα αποτελέσματα στην αρχική τους κλίμακα [2]. Η εικόνα 1 είναι μια γραφική αναπαράσταση μετα-ανάλυσης τριών μελετών με 2 πληθυσμούς ανά μελέτη που χρησιμοποιεί το Relative Risk. Τα διαστήματα εμπιστοσύνης που αναφέρθηκαν παραπάνω περιγράφουν την ακρίβεια με την οποία έχει υπολογιστεί το εκάστοτε Effect Size για την κάθε μελέτη που συμμετέχει σε μια μετα-ανάλυση. Η μετατροπή σε λογαριθμική κλίμακα είναι απαραίτητη για να διατηρηθεί η συμμετρία. Πίνακας 1 Παράδειγμα πίνακα με γενικά αποτελέσματα μελέτης. Γεγονότα Μη-Γεγονότα N Research Group A B N1 Control Group C D N2 Πίνακας 2 Συνθετικός πίνακας με τυχαίους αριθμούς που αναπαριστά μια μελέτη. Νεκροί Ζωντανοί Ασθενείς Research Group Control Group RelativeRisk = A N1 C N2 (1) LogRelativeRisk = ln(relativerisk) (2) V LogRelativeRisk = 1 A 1 N1 + 1 C 1 N2 (3) SE LogRelativeRisk= V LogRelativeRisk (4) RelativeRisk = exp(logrelativerisk) (5) LL RelativeRisk = exp(ll LogRelativeRisk ) (6) UL RelativeRisk = exp(ul LogRelativeRisk ) (7) 10

11 Εικόνα 1 Διαδικασία μετα-ανάλυσης με μέγεθος επίδρασης το Relative Risk και κάθε μελέτη να έχει 2 πληθυσμούς [2]. Ένα άλλο effect size είναι το Odds Ratio που υπολογίζει την πιθανότητα γεγονότος (θανάτου) σε σχέση με την πιθανότητα μη γεγονότος. Για παράδειγμα στην περίπτωση που χρησιμοποιηθεί σαν Effect Size το Odds Ratio και με βάση τον πίνακα 2 προκύπτει για το control group μια πιθανότητα θανάτου 5/95 (0.0526) και για το research group μια πιθανότητα 10/90 (0.1111). Το Relative Risk θεωρείται από αρκετούς καλύτερο Effect Size από ότι το Odds Ratio αλλά οι στατιστικές δυνατότητες που προσφέρει το δεύτερο το καθιστούν καλύτερη επιλογή για την πραγματοποίηση μιας μετα-ανάλυσης. Όταν ο αριθμός των θανάτων είναι μικρός το Odds Ratio θα είναι παρεμφερές με το Relative Risk. Στην περίπτωση επιλογής του Odds Ratio επίσης αλλάζουμε την κλίμακα σε λογαριθμική για τον ίδιο λόγο που εφαρμόστηκε και στο Relative Risk. Η διαδικασία της μετα-ανάλυσης δηλαδή περιλαμβάνει υπολογισμό του Odds Ratio (σχέση 8), μετατροπή στην λογαριθμική κλίμακα (σχέση 9), υπολογισμό της διακύμανσης (σχέση 10), του τυπικού σφάλματος και των διαστημάτων εμπιστοσύνης και μετατροπή στην αρχική κλίμακα (οι τελευταίες μεταβλητές υπολογίζονται όπως οι αντίστοιχες του Relative Risk). Οι σχέσεις που θα χρησιμοποιηθούν είναι παρόμοιες με αυτές του Relative Risk. OddsRatio = A D B C (8) LogOddsRatio = ln (OddsRatio) (9) V OddsRatio = 1 A + 1 B + 1 C + 1 D (10),όπου A, B,C, D όπως έχουν οριστεί στον πίνακα 1.Ένα ακόμη σημαντικό Effect Size που πρέπει να αναφερθεί είναι το Risk Difference (διαφορά κινδύνου) που είναι ουσιαστικά η διαφορά μεταξύ των δύο κινδύνων. Με 11

12 βάση τα παραπάνω στοιχεία του πίνακα 1 με κίνδυνο 0.05 για το research group και 0.10 για το control group προκύπτει ένα Risk Difference που ισούται με -0,05. Βασική διαφορά από τα δυο προηγούμενα Effect Sizes είναι ότι όλες οι πράξεις γίνονται χωρίς να αλλάξει κλίμακα η μεταβλητή μας. Η διαδικασία μετα-ανάλυσης με το συγκεκριμένο Effect Size περιλαμβάνει τον υπολογισμό του Risk Difference, της διακύμανσης και του τυπικού σφάλματος Μέγεθος επίδρασης Hazard Ratio Στην περίπτωση της παρούσας εργασίας το Effect Size που θα χρησιμοποιήσουμε είναι παρόμοιο με το Relative Risk και είναι το Hazard Ratio (HR). Δηλαδή τα στατιστικά αποτελέσματα που είναι χρήσιμα να εξαχθούν από την ελεγχόμενη τυχαιοποιημένη μελέτη επιβίωσης ασθενών είναι το Hazard Ratio και η διακύμανση. Συγκεκριμένα το Hazard Ratio [16] ερμηνεύει την αποτελεσματικότατα κάποιας νέας θεραπείας η φαρμάκου με την σύγκριση δύο καμπυλών επιβίωσης που αναπαριστούν 2 διαφορετικούς πληθυσμούς. Ο ένας πληθυσμός είναι αυτός που του χορηγείται ένα νέο φάρμακο ή κάποια νέα θεραπεία και ο άλλος πληθυσμός είναι αυτός στον οποίο εφαρμόζονται κλασικές μέθοδοι θεραπείας (Research group και Control group ).Το Hazard Ratio είναι η μοναδική στατιστική μεταβλητή που συνοψίζει το censoring και τον χρόνο μέχρι την εμφάνιση κάποιου γεγονότος (time to event). Ο όρος censoring αναφέρεται σε άτομα που σταμάτησαν να συμμετέχουν στην μελέτη χωρίς να είναι γνωστό σε τι κατάσταση βρίσκονται. Το γεγονός είναι ο θάνατος κάποιου ατόμου κατά την διάρκεια συμμετοχής του στη μελέτη. Αν δεν λαμβάνεται υπόψιν το censoring και ο χρόνος μέχρι κάποιο γεγονός στον υπολογισμό του log Hazard Ratio τότε αυτό που προκύπτει είναι το relative risk. Συχνά αναφέρεται ότι η χρήση του Hazard Ratio έμμεσα υποθέτει ανάλογους κινδύνους και για τους δύο πληθυσμούς που συγκρίνονται,αλλά αυτό δεν είναι απόλυτο για κάθε περίπτωση. Το Hazard Ratio είναι μια μεταβλητή που συνοψίζει την διαφορά των καμπυλών επιβίωσης δυο πληθυσμών και αναπαριστά την συνολική μείωση στον κίνδυνο θανάτου από μια συγκεκριμένη θεραπεία σε σχέση με τον έλεγχο καθ όλη τη διάρκεια της παρακολούθησης του ασθενούς. Για να υπάρχει η δυνατότητα καλύτερης ερμηνείας αυτού του στατιστικού μεγέθους είναι πολύ σημαντική η γραφική αναπαράσταση του είτε με την μορφή καμπύλης επιβίωσης είτε με την μορφή αναπαράστασης γραφήματος κινδύνου(hazard function plot). Οι καμπύλες επιβίωσης παρουσιάζονται αναλυτικά στο κεφάλαιο 2. Θεωρούμε ότι σε μια μετα-ανάλυση συμμετέχουν Κ μελέτες και για κάθε i=1,,κ μελέτη θα υπολογίζεται Log Hazard Ratio ln(hri ) και η διακύμανση της εκάστοτε μελέτης var[ln(hri )] ξεχωριστά. Το Hazard ratio ορίζεται με την βοήθεια του relative risk από την σχέση Hr = (RR 1)/RR. Περισσότερες λεπτομέρειες θα αναφερθούν στην μεθοδολογία που ακολουθεί σε παρακάτω κεφάλαιο. Αφού συγκεντρωθούν τα αποτελέσματα αυτά θα υπολογιστεί τελικά ένα συνολικό log Hazard ratio ln(hr) από την σχέση 11 και μια συνολική διακύμανση var[hr] από την σχέση 12 για τις Κ μελέτες. ln(hr) = K ln(hri) i=1var[hr i ] 1 K i=1var[hr i ] (11) K var[ln(hr)] = [ i=1 ] (12) var[hr i ] Είναι προφανές από τους τύπους ότι η συνολική πιθανότητα κινδύνου είναι ένας σταθμισμένος μέσος όρος των επιμέρους πιθανοτήτων κινδύνου από την κάθε μελέτη με τα βάρη αντιστρόφως ανάλογα προς την διακύμανση του log hazard για κάθε δοκιμή. Η μέθοδος υπολογισμού αυτών των δύο στατιστικών μεγεθών θα παρουσιαστεί με λεπτομέρειες παρακάτω. 1 12

13 1.3 Ερμηνεία αποτελεσμάτων γραφήματος μετα-ανάλυσης Τα αποτελέσματα μιας ολοκληρωμένης μετα-ανάλυσης έχουν ένα συγκεκριμένο τρόπο γραφικής απεικόνισης όπως την εικόνα 2 που ονομάζεται forest plot. Ο πίνακας που αναπαριστά ουσιαστικά η εικόνα 2 αποτελείται από: Την 1 η στήλη που περιέχει το όνομα της μελέτης Την 2 η στήλη που περιέχει το σύνολο των γεγονότων (πλήθος θανάτων ανά μελέτη) Την 3 η στήλη που περιέχει το σύνολο των συμμετεχόντων στην εκάστοτε μελέτη Την 4 η στήλη που περιέχει την γραφική αναπαράσταση του αποτελέσματος της μετα-ανάλυσης Την 5 η στήλη που περιέχει τα αποτελέσματα του διαστήματος εμπιστοσύνης με ακρίβεια 95% Το κάθε τετράγωνο στην 4 η στήλη αναπαριστά ουσιαστικά το αποτέλεσμα της εκάστοτε μελέτης με το μέγεθος να διαφέρει ανάλογα με την βαρύτητα που δίνεται στις διαφορετικές μελέτες όταν υπολογίζεται η συνολική επίδραση. Το μέγεθός του δηλαδή επηρεάζεται από το σύνολο των συμμετεχόντων στην εκάστοτε μελέτη (μέγεθος του δείγματος). Έτσι στις μελέτες τις οποίες συμμετείχαν περισσότεροι ασθενείς δίνονταν μεγαλύτερη βαρύτητα και αντίστοιχα λιγότερη σε αυτές με λιγότερους ασθενείς. Οι οριζόντιες γραμμές που ενώνονται με τα τετράγωνα αναπαριστούν το διάστημα εμπιστοσύνης 95%. Το διαμάντι στην εικόνα 2 αναπαριστά το συνολικό αποτέλεσμα της μετα-ανάλυσης που προκύπτει από όλες τις μελέτες [2]. Ο οριζόντιος άξονας με τις υποδιαιρέσεις, αναπαριστά τις τιμές του Hazard Ratio ανάλογα με τα αποτελέσματα από την μετα-ανάλυση. Αν το 1 βρίσκεται στο 95 % διάστημα εμπιστοσύνης σημαίνει ότι δεν υπάρχει καμία στατιστική σημαντικότητα στο 5%. Αν ένα τετράγωνο βρίσκεται στη μέση της κάθετης γραμμής που ξεκινάει από το 1 σημαίνει δεν υπάρχει κάποια διαφορά στην θεραπεία που χρησιμοποιήθηκε στο control group σε σχέση με αυτή του research group [17]. Αν ένα τετράγωνο βρίσκεται δεξιά της κάθετης γραμμής που είναι ένα σημαίνει ότι η θεραπεία του control group (παλιός τρόπος θεραπείας) είναι αποτελεσματικότερη της θεραπείας του research group (θεραπεία υπό έρευνα) και αν είναι στα αριστερά σημαίνει ακριβώς το αντίθετο. Στην τελευταία στήλη έχουμε το πραγματικό αποτέλεσμα της εκάστοτε μελέτης και το διάστημα εμπιστοσύνης στην παρένθεση. Εικόνα 2 Αποτελέσματα των μελετών που συμμετείχαν στην μετα-ανάλυση και συνολικό αποτέλεσμα (forest plot) [18]. 13

14 2 Μεθοδολογία Τα δεδομένα που χρησιμοποιούνται για την πραγματοποίηση μιας μετα-ανάλυσης τις περισσότερες φορές αντλούνται από δημοσιευμένες μελέτες. Η μετα-ανάλυση μπορεί να εφαρμοστεί με διαφορετικές μεθόδους ανάλογα με τα δεδομένα που υπάρχουν στη διάθεση του αναλυτή. Οι μέθοδοι χωρίζονται σε αυτές που υπολογίζουν fixed effect model, αυτές που υπολογίζουν random effect model, η και τα δυο [2]. Η μέθοδος που θα χρησιμοποιηθεί στην παρούσα εργασία βασίζεται σε καμπύλες επιβίωσης Kaplan-Meier και βασικά στοιχεία της μελέτης όπως θα παρουσιαστούν παρακάτω. Για την καλύτερη αναγνώριση και κατανόηση των διαφορετικών μεθόδων παρουσιάζεται μια άτυπη διαίρεση αυτών σε κλασικές και εναλλακτικές μεθόδους. 2.1 Σύγκριση fixed effect model και random effect model Το fixed effect model αναφέρεται σε effect sizes που ισχύει σαν αρχική υπόθεση το γεγονός ότι οι πληθυσμοί που συμμετέχουν στις μελέτες είναι πανομοιότυποι, δεν υπάρχουν παράγοντες που να τους κάνουν να διαφέρουν ή αυτοί ο παράγοντας είναι ίδιοι για όλους τους συμμετέχοντες [19]. Αυτό σημαίνει ότι το πραγματικό effect size που υπολογίζεται έχει ίδιο αποτέλεσμα σε όλες τις μελέτες. Εφόσον χρησιμοποιείται το ίδιο πραγματικό effect size για όλες τις μελέτες, το υπολογισμένο effect size ποικίλει επειδή υπάρχει το τυχαίο λάθος που εμφανίζεται σε κάθε μελέτη. Αυτό το λάθος δεν θα υπήρχε μόνο στην περίπτωση που το μέγεθος του δείγματος μας δηλαδή οι συμμετέχοντες θα ήταν άπειροι. Το random effect model αναφέρεται σε μελέτες που πραγματοποιούνται και λαμβάνονται υπόψιν τα διαφορετικά χαρακτηριστικά ή οι παράγοντες που επηρεάζουν το αποτέλεσμα του effect size που χρησιμοποιείται στην εκάστοτε μετα-ανάλυση. Για παράδειγμα έχουμε μια σειρά μελετών με δύο ομάδες πληθυσμού ανά μελέτη που ελέγχεται η υπόθεση αν η θεραπεία μέσω placebo φαρμάκων [2] είναι αποτελεσματικότερη από κάποιο εμβόλιο. Αν η θεραπεία που είναι υπό έλεγχο έχει αποτέλεσμα, το effect size που θα προκύψει θα είναι «παρόμοιο» σε όλες τις μελέτες που συμμετέχουν στην μετα-ανάλυση. Το effect size στην συγκεκριμένη μετα-ανάλυση μπορεί να είναι υψηλότερο η χαμηλότερα επειδή επηρεάζεται από παράγοντες όπως η ηλικία, η σωματική υγεία του ασθενούς ή ακόμα και το φύλλο. Επειδή οι συμμετέχοντες στις μελέτες ποικίλουν όπως επίσης και τα χαρακτηριστικά αυτών θα έχουμε διαφορετικά effect sizes για διαφορετικές μελέτες. Θα πρέπει να αναφερθεί ότι στις μελέτες πραγματοποιείται έλεγχος ετερογένειας και επιλέγοντας να χρησιμοποιηθεί random effect model αν δεν υπάρχει ετερογένεια είναι σαν να έχουμε fixed effect model δηλαδή οι πληθυσμοί είναι όμοιοι. Στην περίπτωση όμως που χρησιμοποιείται fixed effect model και από τον έλεγχο προκύψει ετερογένεια σημαίνει σημαίνει ότι θα προκύψουν εσφαλμένα αποτελέσματα. Είναι ένας σημαντικός έλεγχος για την διασφάλιση σωστών αποτελεσμάτων. 2.2 Κλασικές Μέθοδοι μετα-ανάλυσης Η μέθοδος του Peto υπολογίζει το log odds ratio μέσα από πίνακες ενδεχομένων. Ο πίνακας αυτός περιέχει το σύνολο των ασθενών που παρουσιάζουν κάποιο γεγονός (θάνατος) και αυτών που δεν παρουσιάζουν κάποιο γεγονός, όπως φαίνεται στον πίνακα 2 παραγράφου Ο χρόνος που χρειάζεται να ολοκληρωθεί η εκάστοτε μελέτη χωρίζεται σε μικρότερες χρονικές περιόδους και έτσι προκύπτουν διαφορετικοί πίνακες ενδεχομένων για κάθε μια από αυτές [21]. Το treatment effect υπολογίζεται σε αυτή την μέθοδο από το odds ratio. Μια άλλη μέθοδος που χρησιμοποιεί τα odds ratio για τον υπολογισμό του treatment effect είναι αυτή που ονομάζεται μέθοδος log rank. Η συγκεκριμένη μέθοδος υλοποιείται όπως ακριβώς και του Peto, με την διαφορά ότι οι χρονικές περίοδοι είναι όσες το σύνολο των γεγονότων και κάθε γεγονός ορίζει το τέλος μιας χρονικής περιόδου [21]. Αυτό σημαίνει ότι όταν έχουμε γεγονός γράφεται 1 και όταν έχουμε αποχώρηση κάποιου από την μελέτη (censoring) γράφεται 0 στον εκάστοτε πίνακα ενδεχομένων. Η συγκεκριμένη μέθοδος λαμβάνει υπόψιν της τους censored ασθενείς καθώς με το που αποχωρήσουν από την μελέτη αφαιρούνται από τους υπολογισμούς των διαφόρων στατιστικών μεγεθών. Επίσης υπάρχει και η μέθοδος υπολογισμού Interval-censored που χωρίζει την μελέτη σε χρονικές περιόδους όπου κάθε ένας που συμμετέχει στη μελέτη είτε επιβιώνει κατά την διάρκεια της χρονικής 14

15 περιόδου, είτε πεθαίνει, είτε αποχωρεί από την μελέτη. Τα δεδομένα μπορούν να θεωρηθούν σαν αποτελέσματα μελετών Bernoulli καθώς κάθε ασθενής έχει μια πιθανότητα να είναι σε κίνδυνο (at risk) κατά την διάρκεια του χρονικού διαστήματος που έχει οριστεί δηλαδή να εμφανίσει ή να μην εμφανίσει γεγονός. Για παράδειγμα αν κάποιος που συμμετέχει στη μελέτη και πεθαίνει (γεγονός) στον τρίτο χρόνο με δεδομένο ότι η χρονική περίοδος που έχει οριστεί είναι το 1 έτος- έχει τρεις καταγραφές. Η πρώτη είναι τον πρώτο χρόνο που επέζησε, η δεύτερη καταγραφή είναι το δεύτερο χρόνο που ισχύει το ίδιο και τον τρίτο χρόνο είναι που παρουσίασε το γεγονός. Τα δεδομένα σε αυτή την μέθοδο αντιμετωπίζονται σαν interval censored δηλαδή είναι γνωστή η χρονική περίοδος που συνέβη ένα γεγονός αλλά όχι ο ακριβής χρόνος. Στις μεθοδολογίες μετα-ανάλυσης που αναφέρθηκαν πριν ξεκινήσει η διαδικασία της μετα-ανάλυσης και εφόσον υπάρχουν τα IPD πραγματοποιείται ένας έλεγχος το λεγόμενο Log rank test. Το συγκεκριμένο test ελέγχει αν η συνάρτηση επιβίωσης που χρησιμοποιείται στους δύο πληθυσμούς είναι ίδια [17]. Σε περίπτωση που είναι ίδια η συγκεκριμένη μελέτη θα συμπεριληφθεί στην μετα-ανάλυση αλλιώς την απορρίπτουμε. 2.3 Εναλλακτικές μέθοδοι μετα-ανάλυσης Μια εναλλακτική μέθοδος που χρησιμοποιεί δεδομένα από μετα-αναλύσεις με IPD με αποτελέσματα timeto-event είναι ο λόγος των ποσοστών (percentile ratio). Η συγκεκριμένη μέθοδος έχει προταθεί επειδή τα percentile ratios μπορεί να προσδιοριστούν και να χρησιμοποιηθούν για την σύγκριση οποιονδήποτε 2 καμπυλών επιβίωσης και το αποτέλεσμα που προκύπτει να αποτελεί την βάση για την σύγκριση και τον συνδυασμό των treatment effects για όλες τις μελέτες της μετα-ανάλυσης [22]. Υπάρχουν περιπτώσεις που δεν μπορεί να υπολογιστεί το HR σε κάποιες μελέτες ώστε να πραγματοποιηθεί η μετα-ανάλυση. Η αιτία που συμβαίνει αυτό είναι γιατί δεν υπάρχουν τα IPD ή γενικά είναι ανεπαρκή τα δεδομένα που υπάρχουν στην διάθεση του αναλυτή. Έτσι προτάθηκε η μέθοδος του μέσου λόγου (median ratio) που μπορεί να εφαρμοστεί με τρείς τρόπους. Η διακύμανση να υπολογιστεί κατά προσέγγιση χρησιμοποιώντας 1 ον τους θανάτους στο control group και στο research group για κάθε μελέτη 2 ον τους συνολικούς θανάτους σε κάθε μελέτη 3 ον τον συνολικό αριθμό των ασθενών σε κάθε μελέτη [23]. Για να ελεγχθεί η αποτελεσματικότητα της μεθόδου τα αποτελέσματα από την μετα-ανάλυση συγκρίθηκαν έχοντας σαν effect size είτε το HR, είτε το MR, είτε το OR. Το τελικό συμπέρασμα της σύγκρισης της αρχικής μετα-νάλυσης -που έγινε από IPD με effect size το HR- με τις άλλες 2 μεθόδους είναι ότι ο 1 ος τρόπος του υπολογισμού της διακύμανσης μέσω του MR είναι αυτός είναι ο πιο αποτελεσματικός. Όταν όμως έχουμε στην διάθεση μας τα IPD πάντα επιλέγουμε το HR σαν effect size [23]. Οι αναλυτές γενικά προσπαθούν να αναπτύξουν μεθόδους που δεν χρειάζονται όλα τα δεδομένα (IPD) μιας μελέτης, γιατί συνήθως είναι δύσκολο ή και αδύνατο να εντοπιστούν. Έτσι έχουμε την ανάπτυξη μιας άλλης μεθόδου που χρησιμοποιεί στοιχεία που συνήθως αναφαίνονται στις δημοσιευμένες μελέτες ώστε να υπάρχει η δυνατότητα να συμπεριληφθούν όσο τον δυνατόν περισσότερες σε μια μετα-ανάλυση. Η μεθοδολογία αυτή υπολογίζει ένα αθροιστικό ποσοστό επιβίωσης (συνάρτηση επιβίωσης) για τον κάθε πληθυσμό της εκάστοτε μελέτης. Συγκεκριμένα υπολογίζεται η διαφορά μεταξύ log(-log) αθροιστικού ποσοστού επιβίωσης για τις δύο θεραπείες που ελέγχονται στους δυο πληθυσμούς μιας μελέτης σαν δείκτης διαφοράς για να αναπαραστήσει το effect size της συγκεκριμένης μελέτης [24] Μια ακόμη αξιοσημείωτη είναι αυτή που προτάθηκε από τον Preneger και είναι μια απλή διαδικασία που υπολογίζει το HR κατά προσέγγιση χρησιμοποιώντας τα σύνολα των γεγονότων και των μη γεγονότων από τους πίνακες ενδεχομένων [25]. Η μέθοδος είναι απλή αλλά έχει το μειονέκτημα ότι δεν λαμβάνονται υπόψιν οι censored ασθενείς. 2.4 Μεθοδολογία μετα-ανάλυσης από δημοσιευμένες καμπύλες Kaplan Meier Υπάρχουν αρκετοί τρόποι διεξαγωγής μετα-αναλύσεων αλλά στην συγκεκριμένη εργασία γίνεται μια προσπάθεια αξιοποίησης των εικόνων και των δεδομένων που έχουν δημοσιευτεί από διάφορες μελέτες που μπορεί να έχουν αρκετή ανεκμετάλλευτη πληροφορία. Έτσι στο συγκεκριμένο κεφάλαιο θα γίνει μια παρουσίαση της μεθοδολογίας της μετα-ανάλυσης μέσα από τα δεδομένα που δίνουν οι δημοσιευμένες καμπύλες επιβίωσης (Kaplan-Meier) καθώς επίσης και των μεταβλητών που διέπουν αυτή. 15

16 2.4.1 Καμπύλη επιβίωσης KAPLAN MEIER Το 1958 έγινε μια σημαντική συνεργασία μεταξύ του Edward L. Kaplan και του Paul Meier για την δημοσίευση μιας εργασίας [20] στο περιοδικό the American Statistical Association με θέμα την αντιμετώπιση των ημιτελών παρατηρήσεων σε διάφορες μελέτες. Αυτή η συνεργασία οδήγησε στην ανάπτυξη μιας πολύ σημαντικής μεθόδου αντιμετώπισης μη παραμετρικών υπολογισμών και ημιτελών παρατηρήσεων που βασίστηκε στην θεωρία της πιθανότητας υπό συνθήκη. Πρόκειται για μια μέθοδο που υπολογίζει την πιθανότητα επιβίωσης σε μια συγκεκριμένη χρονική στιγμή χρησιμοποιώντας το ποσοστό των ασθενών που έχουν επιβιώσει μέχρι και εκείνη την στιγμή [21]. Ο υπολογισμός της πιθανότητας επιβίωσης πραγματοποιείται λαμβάνοντας υπόψη τα γεγονότα που είναι ουσιαστικά ο θάνατος κάποιου ασθενή κατά την διάρκεια της μελέτης και τα «censored» δεδομένα της μελέτης που ουσιαστικά είναι ασθενείς που είτε αποχωρούν για κάποιο λόγο από την μελέτη είτε σταματούν να εμφανίζονται και δεν υπάρχει κανένα στοιχείο για να βρεθούν. Συνήθως χρησιμοποιείται για την σύγκριση δυο διαφορετικών πληθυσμών και την μεταξύ τους σχέση όπως φαίνεται και στην εικόνα 3. Η καμπύλη που προκύπτει από την εφαρμογή της μεθόδου Kaplan-Meier και ο τρόπος αναπαράστασης της είναι ένας συνδυασμός όλων όσων αναφέρθηκαν και θα παρουσιαστούν με περισσότερες λεπτομέρειες στη συνέχεια. 120 Kaplan Meier Πιθα νότητα Επιβίωσης(%) Πληθυσμός Α Πληθυσμός Β Χρόνος (Μήνες) Εικόνα 3 Είναι ένα βασικό μοντέλο απεικόνισης της πιθανότητας επιβίωσης που βρέθηκε με την μέθοδο Kaplan Meier Δημιουργία καμπύλης Το παράδειγμα που ακολουθεί θα διευκολύνει την κατανόηση για τον τρόπο που σχηματίζεται η καμπύλη επιβίωσης Kaplan Meier [22]. Έστω 7 ασθενείς που συμμετέχουν σε μια μελέτη που διαρκεί 48 μήνες. Ακολουθεί μια συνοπτική παρουσίαση των σταδίων δημιουργίας καμπυλών Kaplan-Meier. Στην μελέτη θα συμμετάσχει ένας συγκεκριμένος αριθμός ατόμων με αρχική πιθανότητα επιβίωσης ίση 100% Με την εμφάνιση του πρώτου θανάτου θα μειωθεί ο αριθμός των ασθενών και θα αλλάξει και η πιθανότητα επιβίωσης Στον υπολογισμό της πιθανότητας επιβίωσης εκτός από τα γεγονότα που είναι οι θάνατοι σημαντικό ρόλο παίζουν και οι «censored» ασθενείς Με βάση την εμφάνιση των γεγονότων και των censored ασθενών σχηματίζεται μια φθίνουσα καμπύλη ΚΜ 16

17 Εικόνα 4 Παράδειγμα μιας μελέτης που έχει σαν αποτέλεσμα μια καμπύλη επιβίωσης ΚΜ. Εικόνα 5 Διαμόρφωση της καμπύλης μετά το πρώτο συμβάν στην μελέτη. 17

18 Εικόνα 6 Εμφάνιση και άλλων γεγονότων και αποχώρηση κάποιου ασθενή από την μελέτη. Εικόνα 7 Η μορφή της καμπύλης επιβίωσης μέχρι και τον 16 ο μήνα πραγματοποίησης της μελέτης. 18

19 Εικόνα 8 Ολοκλήρωση της μελέτης μετά το πέρας των 48 μηνών. Εικόνα 9 Τελικό αποτέλεσμα καμπύλης επιβίωσης με την μέθοδο K-M. 19

20 Μεταβλητές της μεθόδου K-M Έστω ότι υπάρχουν Ν ασθενείς οι οποίοι συμμετέχουν σε μια μελέτη που διαρκεί Τ χρόνο. Ο συνολικός χρόνος πραγματοποίησης της μελέτης χωρίζεται σε μικρότερα χρονικά σημεία τ j με το j = 1,2,, k και το k το σύνολο των χρονικών σημείων τα οποία ορίζουν την αρχή και την λήξη των χρονικών διαστημάτων t (πχ. χρονικό διάστημα (τ j, τ j+1 ). Το πλήθος των διαστημάτων και το μήκος κάθε χρονικού διαστήματος μπορεί να διαφέρει επειδή διαμορφώνεται ανάλογα με το ρυθμό εμφάνισης των γεγονότων που συμβαίνουν κατά την διάρκεια της μελέτης. Στην πράξη τα χρονικά διαστήματα ορίζονται έτσι ώστε κάθε ένα από αυτά να περιλαμβάνει μικρό αριθμό γεγονότων. Συμβολίζουμε με D j το πλήθος των γεγονότων τα οποία λαμβάνουν χώρα κατά την διάρκεια του χρονικού διάστημα τος (τ j, τ j+1 ). Οι ασθενεί που βρίσκονται σε κίνδυνο (at risk) δηλαδή τα άτομα του πληθυσμού που είναι ζωντανά και συμμετέχουν στην μελέτη συμβολίζονται με το R j και υπολογίζονται κατά την διάρκεια του χρονικού διαστήματος j. Οι censored [21] ασθενείς παίζουν επίσης σημαντικό ρόλο στους παρακάτω υπολογισμούς, συμβολίζονται με C j και λαμβάνονται υπόψιν για το χρονικό διάστημα (τ j, τ j+1 ). Ο υπολογισμός της πιθανότητας επιβίωσης χωρίς censoring προκύπτει από την σχέση 13. S (t) = αριθμός ασθενών που έχουν επιβιώσει μετά το t συνολικο ς αριθμο ς των ασθενώ ν Παράδειγμα εφαρμογής Κ-Μ χωρίς να υπάρχει censoring Έστω 21 ασθενείς που δέχονται μια συγκεκριμένη [23] θεραπεία για την λευχαιμία με τον πίνακα 3 που περιέχει τα στατιστικά στοιχεία της μελέτης και την εικόνα 10 τα αποτελέσματα σε καμπύλη K-M. Περιγραφή του πίνακα: Η πρώτη στήλη περιέχει το μήκος των χρονικών διαστημάτων σε μήνες που έχουν διαμορφωθεί από τις χρονικές στιγμές των θανάτων των ασθενών ανάλογα με τον σχεδιασμό της μελέτης. Η δεύτερη στήλη περιέχει τους ζωντανούς ασθενείς κατά την έναρξη του χρονικού διαστήματος που αντιστοιχεί. Η Τρίτη στήλη περιέχει το σύνολο των ασθενών που πεθαίνουν κατά την διάρκεια της μελέτης στα συγκεκριμένα χρονικά διαστήματα Η τέταρτη στήλη περιέχει της πιθανότητες επιβίωσης που αντιστοιχούν σε συγκεκριμένα χρονικά διαστήματα. Πίνακας 3 Αποτελέσματα μελέτης σε ασθενείς με λευχαιμία που διήρκησε 23 μήνες και κανένας από τους ασθενείς δεν έφυγε από την μελέτη (δλδ. δεν υπήρχε censoring). Χρονικά Διαστήματα (σε μήνες) Ζωντανοί Ασθενείς στην Αρχή των Χρονικών Διαστημάτων Ασθενείς που Πεθαίνουν Κατά την Διάρκεια των Διαστημάτων (13) Ποσοστό επιβίωσης ανά χρονικό διάστημα t R D S (t) , , , , , , , , , , , ,047 20

21 1,2 Μελέτη Λευχαιμίας 1 Ποσοστά επιβίωσης (%) 0,8 0,6 0,4 0,2 Ποσοστό Επιβίωσης Ασθενών Χρόνος(μήνες) Εικόνα 10 Αποτελέσματα μελέτης λευχαιμίας σε καμπύλη επιβίωσης Kaplan Meier Παράδειγμα εφαρμογής Κ-Μ με censoring Ο υπολογισμός των πιθανοτήτων επιβίωσης που στην περίπτωση που έχουμε censoring χρησιμοποιούμε την σχέση 14. S (t) = j:τj <t (1 d j r j ) (14) Ο τύπος αυτός εφαρμόζεται για τα k 1 χρονικά διαστήματα εφόσον τα χρονικά σημεία που τα σχηματίζουν είναι k. Τα χρονικά διαστήματα έχουν οριστεί όπως αναφέρθηκε προηγουμένως από το χρονικό σημείο έναρξης μέχρι και την ολοκλήρωση της μελέτης. Τα δεδομένα που δίνονται [23] είναι +6, 6, 6, 6, 7, +9, +10, 10, +11, 13, 16, +17, +19, +20, 22, 23, +25, +32, +32, +34, +35 με το + να συμβολίζει τους μήνες που παρουσιάζονται censored ασθενείς και τα υπόλοιπα να είναι οι μήνες που παρουσιάζετε κάποιος θάνατος (γεγονός). Από τα δεδομένα αυτά προκύπτει ο πίνακας 4 και η εικόνα 11. Είναι προφανές ότι οι censored ασθενείς δεν συμμετέχουν στους υπολογισμούς αλλά αυτό που επηρεάζει το αποτέλεσμα είναι οι ασθενείς σε κίνδυνο στον χρόνο που έχει παρέλθει. 21

22 Μελέτη Λευχαιμίας Εικόνα 11 Η καμπύλη επιβίωσης που προκύπτει με βάση τα στοιχεία του πίνακα 2. Πίνακας 4 Αποτελέσματα από την μελέτη που πραγματοποιήθηκε σε άτομα που έπασχαν από λευχαιμία. Χρονικά διαστήματα Θάνατοι ανά χρονικό διάστημα Ασθενείς censored ανά χρονικό διάστημα C Ασθενείς σε κίνδυνο ανά χρονικό διάστημα R Ποσοστό επιβίωσης ανά χρονικό διάστημα S t D , , , , , , , , , , , , , , , ,

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας.

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας. ΚΕΦΑΛΑΙΟ 1 Εισαγωγή Η Μεθοδολογία της Έρευνας (research methodology) είναι η επιστήμη που αφορά τη μεθοδολογία πραγματοποίησης μελετών με συστηματικό, επιστημονικό και λογικό τρόπο, με σκοπό την παραγωγή

Διαβάστε περισσότερα

Ανάλυση επιβίωσης (survival analysis)

Ανάλυση επιβίωσης (survival analysis) Hippokratia 2014 Ανάλυση επιβίωσης (survival analysis) Κων/νος Α. Τουλής, MD MRes MSc PhD Ενδοκρινολόγος, 424 ΓΣΝΕ Τι είναι η ανάλυση επιβίωσης; Η ανάλυση επιβίωσης (survival analysis) είναι μια ομάδα

Διαβάστε περισσότερα

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail:

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: haidich@med.auth.gr Υπολογισμός μεγέθους δείγματος Πιο πολλές επιδημιολογικές μελέτες έχουν ως στόχο να εκτιμηθεί κάποιο χαρακτηριστικό

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία

Διαβάστε περισσότερα

ΔΙΑΣΤΡΕΒΛΩΣΗ ΚΑΙ ΣΥΣΤΗΜΑΤΙΚΟ ΛΑΘΟΣ ΣΤΙΣ ΜΕΤΑ-ΑΝΑΛΥΣΕΙΣ

ΔΙΑΣΤΡΕΒΛΩΣΗ ΚΑΙ ΣΥΣΤΗΜΑΤΙΚΟ ΛΑΘΟΣ ΣΤΙΣ ΜΕΤΑ-ΑΝΑΛΥΣΕΙΣ ΔΙΑΣΤΡΕΒΛΩΣΗ ΚΑΙ ΣΥΣΤΗΜΑΤΙΚΟ ΛΑΘΟΣ ΣΤΙΣ ΜΕΤΑ-ΑΝΑΛΥΣΕΙΣ Δημοσθένης Β. Παναγιωτάκος Καθηγητής Βιοστατιστικής Επιδημιολογίας ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ & ΑΓΩΓΗΣ Τμήμα Επιστήμης Διαιτολογίας Διατροφής ΧΑΡΟΚΟΠΕΙΟ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΒΑΣΙΛΕΙΟΥ ΛΕΜΕΣΟΣ 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Έλεγχος υποθέσεων - Ισχύς και Μέγεθος είγματος Sample Size and Power. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

Έλεγχος υποθέσεων - Ισχύς και Μέγεθος είγματος Sample Size and Power. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Έλεγχος υποθέσεων - Ισχύς και Μέγεθος είγματος Sample Size and Power Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Πόσα άτομα να συμπεριλάβω στη μελέτη μου για να είναι έγκυρη,

Διαβάστε περισσότερα

Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών

Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών Πέτρος Γαλάνης, MPH, PhD Εργαστήριο Οργάνωσης και Αξιολόγησης Υπηρεσιών Υγείας Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών Σχέση μεταξύ εμβολίων και αυτισμού Θέση ύπνου των βρεφών και συχνότητα εμφάνισης του

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Κόπωση και ποιότητα ζωής ασθενών με καρκίνο Μαργαρίτα Μάου Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή. Ονοματεπώνυμο: Αργυρώ Ιωάννου. Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή. Ονοματεπώνυμο: Αργυρώ Ιωάννου. Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Διερεύνηση της αποτελεσματικότητας εναλλακτικών και συμπληρωματικών τεχνικών στη βελτίωση της ποιότητας της ζωής σε άτομα με καρκίνο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπων Καθηγητής: Δρ. Νίκος Μίτλεττον Η ΣΧΕΣΗ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΜΕ ΤΗΝ ΕΜΦΑΝΙΣΗ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 2 ΣΤΗΝ ΠΑΙΔΙΚΗ ΗΛΙΚΙΑ Ονοματεπώνυμο: Ιωσηφίνα

Διαβάστε περισσότερα

Επαναληπτικό μάθημα Βασικών επιδημιολογικών εννοιών. Ειρήνη Αγιαννιωτάκη

Επαναληπτικό μάθημα Βασικών επιδημιολογικών εννοιών. Ειρήνη Αγιαννιωτάκη Επιδημιολογία Επαναληπτικό μάθημα Βασικών επιδημιολογικών εννοιών Συγχυτικοί Παράγοντες Οι συγχυτικοί παράγοντες προκύπτουν όταν οι ομάδες των εκτεθέντων και των μη-εκτεθέντων (του υπό μελέτη πληθυσμού)

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Σχεδιασμός και Διεξαγωγή Πειραμάτων

Σχεδιασμός και Διεξαγωγή Πειραμάτων Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας

Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας Εργαστήριο Υγιεινής Επιδημιολογίας και Ιατρικής Στατιστικής Ιατρική Σχολή, Πανεπιστήμιο Αθηνών Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας Δ. Παρασκευής Εργαστήριο Υγιεινής Επιδημιολογίας και

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή Εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή Εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή Εργασία ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΕΣ ΘΕΡΑΠΕΙΕΣ ΩΣ ΠΡΟΣ ΤΗ ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΠΟΝΟΥ ΣΕ ΑΣΘΕΝΕΙΣ ΜΕ ΚΑΡΚΙΝΟ. Ονοματεπώνυμο:

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος

Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος Ονοματεπώνυμο: Αρτέμης Παναγιώτου Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Αναλογία Λόγος Πηλίκο Αναλογία Proportion Αναλογία (Proportion) Ο αριθµητής ΣΥΜΠΕΡΙΛΑΜΒΑΝΕΤΑΙ ΑΠΑΡΑΙΤΗΤΩΣ στον παρανοµαστή

Διαβάστε περισσότερα

Τι πέραν των τυχαιοποιημένων κλινικών. Ζ. Μέλλιος

Τι πέραν των τυχαιοποιημένων κλινικών. Ζ. Μέλλιος Τι πέραν των τυχαιοποιημένων κλινικών μελετών Ζ. Μέλλιος Κλινική Μελέτη Εργαλείο αξιολόγησης κάποιας παρέμβασης στην έκβαση μιας κλινικής κατάστασης Κάθε αλλαγή στην ποσότητα επιφέρει αλλαγές στην ποιότητα

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Κλινικές Μελέτες. Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών

Κλινικές Μελέτες. Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών Κλινικές Μελέτες Δέσποινα Ν. Περρέα Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών Διευθύντρια Εργαστηρίου Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Χρηστέας» Κλινικές Μελέτες

Διαβάστε περισσότερα

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Μέτρα σχέσης Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Στο τέλος...(learning outcomes) Να γνωρίζετε τα κυριότερα μέτρα σχέσης που χρησιμοποιούνται για μετρήσουμε μια συσχέτηση μεταξύ

Διαβάστε περισσότερα

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006 Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ Ροβίθης Μ. 2006 1 Τα στάδια της επιδημιολογικής έρευνας ταξινομούνται με μια λογική σειρά στην οποία κάθε φάση εξαρτάται από την προηγούμενη. Μια εκτεταμένη λίστα είναι

Διαβάστε περισσότερα

Λογαριθµιστική εξάρτηση

Λογαριθµιστική εξάρτηση Είδη δεδοµένων Σε µία επιδηµιολογική έρευνα, καταγράφονται τα παρακάτω δεδοµένα για κάθε άτοµο: Λογαριθµιστική εξάρτηση Βάνα Σύψα Επίκουρη Καθηγήτρια Επιδηµιολογίας και Προληπτικής Ιατρικής Εργαστήριο

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ ΣΕ ΕΥΡΩΠΑΙΚΕΣ ΧΩΡΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ ΣΕ ΕΥΡΩΠΑΙΚΕΣ ΧΩΡΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ ΣΕ ΕΥΡΩΠΑΙΚΕΣ ΧΩΡΕΣ Αθανάσιος Νταραβάνογλου Διπλωματική

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ονοματεπώνυμο Κεντούλλα Πέτρου Αριθμός Φοιτητικής Ταυτότητας 2008761539 Κύπρος

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Στάδιο Εκτέλεσης

Στάδιο Εκτέλεσης 16 ΚΕΦΑΛΑΙΟ 1Ο 1.4.2.2 Στάδιο Εκτέλεσης Το στάδιο της εκτέλεσης μίας έρευνας αποτελεί αυτό ακριβώς που υπονοεί η ονομασία του. Δηλαδή, περιλαμβάνει όλες εκείνες τις ενέργειες από τη στιγμή που η έρευνα

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Κριτική Αξιολόγηση Τυχαιοποιημένης Κλινικής Δοκιμής (RCT)

Κριτική Αξιολόγηση Τυχαιοποιημένης Κλινικής Δοκιμής (RCT) Clinical Research & Evidence-Based Medicine Unit Aristotle University of Thessaloniki Κριτική Αξιολόγηση Τυχαιοποιημένης Κλινικής Δοκιμής (RCT) Πασχάλης Πάσχος MD, MSc Γαστρεντερολόγος Μονάδα Κλινικής

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

χ 2 test ανεξαρτησίας

χ 2 test ανεξαρτησίας χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ

Διαβάστε περισσότερα

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Ανάλυση ποσοτικών δεδομένων ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Εισαγωγή στη στατιστική Στατιστική: σύνολο αρχών και μεθοδολογιών που χρησιμοποιούνται για:

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Διάγνωση και προσυμπτωματικός έλεγχος

Διάγνωση και προσυμπτωματικός έλεγχος Διάγνωση και προσυμπτωματικός έλεγχος Χρήστος Α. Βενέτης MD, MSc Μαιευτήρας- Γυναικολόγος Υποψήφιος Διδάκτωρ Α.Π.Θ. Μονάδα Ανθρώπινης Αναπαραγωγής Α Μαιευτική- Γυναικολογική Κλινική Ιατρική Σχολή, Α.Π.Θ.

Διαβάστε περισσότερα

Μετα-ανάλυση. Δηµήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης

Μετα-ανάλυση. Δηµήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Μονάδα Ενδοκρινολογίας Αναπαραγωγής Α Μαιευτική Γυναικολογική Κλινική ΑΠΘ Μετα-ανάλυση Δηµήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τι είναι

Διαβάστε περισσότερα

Μετα-ανάλυση. Δημήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Μετα-ανάλυση. Δημήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Μονάδα Ενδοκρινολογίας Αναπαραγωγής Α Μαιευτική Γυναικολογική Κλινική ΑΠΘ Μετα-ανάλυση Δημήτριος Γ. Γουλής Αναπληρωτής καθηγητής Ενδοκρινολογίας Αναπαραγωγής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τι είναι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Επιπτώσεις από τη χρήση αντικαταθλιπτικής αγωγής στην εγκυμοσύνη στο έμβρυο Όνομα Φοιτήτριας: Άντρια Λυσάνδρου Αριθμός φοιτητικής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ ΑΝΔΡΕΑΣ ΛΕΩΝΙΔΟΥ Λεμεσός, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

.aiavramidis.gr www

.aiavramidis.gr  www Θεραπευτικός αλγόριθμος στον σακχαρώδη διαβήτη τύπου 2 Inzucchi et al. Diabetes Care. 2015;38(1):140-9 Συνδυασμός αγωνιστών των υποδοχέων του GLP-1 και βασικής ινσουλίνης Βασική ινσουλίνη Αποτελεσματικός

Διαβάστε περισσότερα

Δ. Τερεντές-Πρίντζιος, Χ. Βλαχόπουλος, Κ. Αζναουρίδης, Π. Πιέτρη, Ν. Ιωακειμίδης, Π. Ξαπλαντέρης, Χ. Στεφανάδης

Δ. Τερεντές-Πρίντζιος, Χ. Βλαχόπουλος, Κ. Αζναουρίδης, Π. Πιέτρη, Ν. Ιωακειμίδης, Π. Ξαπλαντέρης, Χ. Στεφανάδης Σχέση ανάμεσα στον εμβολιασμό έναντι του πνευμονιόκοκκου και την εμφάνιση καρδιαγγειακών συμβάντων: μετα-ανάλυση και συστηματική ανασκόπηση προοπτικών μελετών Δ. Τερεντές-Πρίντζιος, Χ. Βλαχόπουλος, Κ.

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία Η Διερεύνηση των Επιδράσεων που Επιφέρει ο Βελονισμός στους Καρκινοπαθείς Ευάγγελος Μπέρος Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Λειτουργικός ορισμός των μεταβλητών

Λειτουργικός ορισμός των μεταβλητών Λειτουργικός ορισμός των μεταβλητών Σύμφωνα με μελέτη του 2000 στις ΗΠΑ, 4.000.000 έφηβοι ήταν καπνιστές Τι σημαίνει «έφηβος»;;; Τι σημαίνει «καπνιστής»;;; Λειτουργικός ορισμός των μεταβλητών Στη συγκεκριμένη

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα

Διαβάστε περισσότερα

Kλινικές ΑΠΑΝΤΗΣΕΙΣ ΣΕ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ

Kλινικές ΑΠΑΝΤΗΣΕΙΣ ΣΕ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ Kλινικές Mελέτες ΑΠΑΝΤΗΣΕΙΣ ΣΕ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ 1Τι είναι οι κλινικές μελέτες είναι σημαντικές; > Μη διστάσετε να ρωτήσετε το γιατρό σας για οποιαδήποτε και άλλη γιατί πληροφορία ή διευκρίνηση χρειάζεστε

Διαβάστε περισσότερα

Κεφάλαιο 2: Έννοιες και Ορισμοί

Κεφάλαιο 2: Έννοιες και Ορισμοί ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 Κεφάλαιο 2: Έννοιες και Ορισμοί Η επιτυχία των επιχειρήσεων βασίζεται στην ικανοποίηση των απαιτήσεων των πελατών για: - Ποιοτικά και αξιόπιστα προϊόντα - Ποιοτικές

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Οι Μετα-αναλύσεις. αναλύσεις. Μπεττίνα Χάιδιτς. Λέκτορας Υγιεινής Ιατρικής Στατιστικής Ιατρικής Σχολής ΑΠΘ haidich@med.auth.gr

Οι Μετα-αναλύσεις. αναλύσεις. Μπεττίνα Χάιδιτς. Λέκτορας Υγιεινής Ιατρικής Στατιστικής Ιατρικής Σχολής ΑΠΘ haidich@med.auth.gr Οι Μετα-αναλύσεις αναλύσεις Μπεττίνα Χάιδιτς Λέκτορας Υγιεινής Ιατρικής Στατιστικής Ιατρικής Σχολής ΑΠΘ haidich@med.auth.gr Εισαγωγή Κεντρικό ρόλο στην αποδεικτική ιατρική Μέθοδος συνολικής εποπτείας των

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά

Διαβάστε περισσότερα

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Από την περασμένη φορά... Πληθυσμός (population): ένα σύνολο ατόμων Παράμετρος (parameter): χαρακτηριστικό του

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Ερώτηση. Ποιο μέτρο συχνότητας υπολογίστηκε;

Ερώτηση. Ποιο μέτρο συχνότητας υπολογίστηκε; Ερώτηση Σε μια συγχρονική μελέτη μετρήθηκε ο δείκτης μάζας σώματος 5000 αγοριών και 5500 κοριτσιών ηλικίας 14-17 ετών. Το 15% των αγοριών και το 8% των κοριτσιών ήταν υπέρβαρα. Ποιο μέτρο συχνότητας υπολογίστηκε;

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΜΕ9900 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή Λέκτορας Διάλεξη

Διαβάστε περισσότερα

Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων

Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων Ονοματεπώνυμο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. Εισαγωγή. Σκοπός

ΠΕΡΙΛΗΨΗ. Εισαγωγή. Σκοπός ΠΕΡΙΛΗΨΗ Εισαγωγή Η παιδική παχυσαρκία έχει φτάσει σε επίπεδα επιδημίας στις μέρες μας. Μαστίζει παιδιά από μικρές ηλικίες μέχρι και σε εφήβους. Συντείνουν αρκετοί παράγοντες που ένα παιδί γίνεται παχύσαρκο

Διαβάστε περισσότερα

Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,

Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3, Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ Παναγιώτου Νεοφύτα 2008969752 Επιβλέπων καθηγητής Δρ. Νίκος Μίτλεττον,

Διαβάστε περισσότερα

Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013

Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013 Σκοπός του μαθήματος Έλεγχος μηδενικής υπόθεσης OR-RR Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Μηδενική υπόθεση p value 95% Διαστήματα Εμπιστοσύνης Odds Ratio Relative Risk Έλεγχος μηδενικής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΖΩΗ ΤΟΥ ΠΑΙΔΙΟΥ ΚΑΙ ΕΦΗΒΟΥ ΜΕ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΑΝΤΛΙΕΣ ΣΥΝΕΧΟΥΣ ΕΚΧΥΣΗΣ ΙΝΣΟΥΛΙΝΗΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή Διατριβή Επιβλέπουσα καθηγήτρια: Κα Παναγιώτα Ταμανά ΣΤΑΣΕΙΣ ΚΑΙ ΠΕΠΟΙΘΗΣΕΙΣ ΑΤΟΜΩΝ ΑΠΕΝΑΝΤΙ ΣΤΟ ΕΜΒΟΛΙΟ ΚΑΤΑ ΤΟΥ ΚΑΡΚΙΝΟΥ

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνολογία Λογισμικού

Πληροφορική 2. Τεχνολογία Λογισμικού Πληροφορική 2 Τεχνολογία Λογισμικού 1 2 Κρίση Λογισμικού (1968) Στην δεκαετία του 1970 παρατηρήθηκαν μαζικά: Μεγάλες καθυστερήσεις στην ολοκλήρωση κατασκευής λογισμικών Μεγαλύτερα κόστη ανάπτυξης λογισμικού

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΑΝΔΡΕΑΣ ΑΝΔΡΕΟΥ Φ.Τ:2008670839 Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Περιγραφική Ανάλυση ποσοτικών μεταβλητών Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ µà¹² ÁÅ½Ã Ä Â ¹º ³ ½µ¹±Â þÿæá ½Ä µ¹ ¼»  ¼µ Ãǹ Æ Antoniou, Antonis

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΨΕΥΔΟΛΕΞΕΩΝ ΑΠΟ ΠΑΙΔΙΑ ΜΕ ΕΙΔΙΚΗ ΓΛΩΣΣΙΚΗ ΔΙΑΤΑΡΑΧΗ ΚΑΙ ΠΑΙΔΙΑ ΤΥΠΙΚΗΣ ΑΝΑΠΤΥΞΗΣ

ΕΠΑΝΑΛΗΨΗ ΨΕΥΔΟΛΕΞΕΩΝ ΑΠΟ ΠΑΙΔΙΑ ΜΕ ΕΙΔΙΚΗ ΓΛΩΣΣΙΚΗ ΔΙΑΤΑΡΑΧΗ ΚΑΙ ΠΑΙΔΙΑ ΤΥΠΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Σχολή Επιστημών Υγείας Πτυχιακή εργασία ΕΠΑΝΑΛΗΨΗ ΨΕΥΔΟΛΕΞΕΩΝ ΑΠΟ ΠΑΙΔΙΑ ΜΕ ΕΙΔΙΚΗ ΓΛΩΣΣΙΚΗ ΔΙΑΤΑΡΑΧΗ ΚΑΙ ΠΑΙΔΙΑ ΤΥΠΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Άντρια Πολυκάρπου Λεμεσός, Μάιος 2017 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα