ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 1: Hλεκτρικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 1: Hλεκτρικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε."

Transcript

1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 1: Hλεκτρικά πεδία Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοποί ενότητας (1) Υπολογισμός της ηλεκτρικής δύναμης σε μια κατανομή διακριτών φορτίων χρησιμοποιώντας το νόμου του Coulomb. Υπολογισμός του ηλεκτρικού πεδίου διακριτών και συνεχών κατανομών φορτίων. 4

5 Ηλεκτρικά φορτία Υπάρχουν δύο είδη ηλεκτρικών φορτίων: Το θετικό και το αρνητικό. Αρνητικό φορτίο φέρει, για παράδειγμα, το ηλεκτρόνιο. Θετικό φορτίο φέρει, για παράδειγμα, το πρωτόνιο. Τα ομόσημα φορτία απωθούνται, ενώ τα ετερόσημα φορτία έλκονται. 5

6 Παραδείγματα έλξης και άπωσης μεταξύ ηλεκτρικών φορτίων Εικόνα 1: Παραδείγματα έλξης και άπωσης μεταξύ ηλεκτρικών φορτίων. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 6

7 Διατήρηση του ηλεκτρικού φορτίου (1/2) Σε ένα απομονωμένο σύστημα, το ηλεκτρικό φορτίο πάντα διατηρείται. Για παράδειγμα, όταν τρίβουμε μια γυάλινη ράβδο επάνω σε ένα μεταξωτό ύφασμα, μεταφέρονται ηλεκτρόνια από το γυαλί στο μετάξι. Κάθε ηλεκτρόνιο προσθέτει ένα αρνητικό φορτίο στο μετάξι. Στη ράβδο απομένει ισόποσο θετικό φορτίο. Η ηλέκτριση οφείλεται στη μεταφορά φορτίου από το ένα σώμα στο άλλο. Δεν δημιουργείται φορτίο από το μηδέν. 7

8 Διατήρηση του ηλεκτρικού φορτίου (2/2) Εικόνα 2: Διατήρηση του ηλεκτρικού φορτίου. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 8

9 Κβάντωση του ηλεκτρικού φορτίου (1/2) Το ηλεκτρικό φορτίο, q, είναι κβαντισμένο. Το ηλεκτρικό φορτίο υπάρχει σε μορφή διακριτών «πακέτων». q = N e. όπου, N είναι ένας ακέραιος αριθμός και e είναι το στοιχειώδες φορτίο. Η μονάδα του ηλεκτρικού φορτίου στο σύστημα μονάδων System International (SI) είναι το Coulomb (C). 9

10 Κβάντωση του ηλεκτρικού φορτίου (2/2) e = 1.6 x C. Για το ηλεκτρόνιο: q = e. Για το πρωτόνιο: q = +e. 10

11 Ηλεκτρικοί αγωγοί Ηλεκτρικοί αγωγοί ονομάζονται τα υλικά στα οποία κάποια από τα ηλεκτρόνια είναι ελεύθερα. Τα ελεύθερα ηλεκτρόνια δεν είναι δεσμευμένα στα άτομα. Τα ηλεκτρόνια αυτά μπορούν να κινούνται με σχετική ελευθερία μέσα στο υλικό. Καλοί αγωγοί είναι, για παράδειγμα, ο χαλκός, το αλουμίνιο, και ο άργυρος. Όταν ένας καλός αγωγός φορτιστεί σε μια μικρή περιοχή του, τότε το φορτίο κατανέμεται άμεσα σε ολόκληρη την επιφάνειά του. 11

12 Ηλεκτρικοί μονωτές Ηλεκτρικοί μονωτές ονομάζονται τα υλικά στα οποία όλα τα ηλεκτρόνια είναι δεσμευμένα στα άτομα. Αυτά τα ηλεκτρόνια δεν μπορούν να κινούνται ελεύθερα μέσα στο υλικό. Μονωτές είναι, για παράδειγμα, το γυαλί, το καουτσούκ, και το ξύλο. Όταν ένας μονωτής φορτιστεί σε μια μικρή περιοχή του, τότε το φορτίο δεν μπορεί να κατανεμηθεί σε άλλα σημεία του υλικού. 12

13 Ημιαγωγοί Οι ηλεκτρικές ιδιότητες των ημιαγωγών είναι ενδιάμεσες εκείνων των αγωγών και των μονωτών. Παραδείγματα ημιαγώγιμων υλικών είναι το πυρίτιο και το γερμάνιο. Ημιαγωγοί από τέτοια υλικά χρησιμοποιούνται συνήθως στην κατασκευή ηλεκτρονικών ολοκληρωμένων κυκλωμάτων (τσιπ). Οι ηλεκτρικές ιδιότητες των ημιαγωγών μπορούν να τροποποιηθούν με την προσθήκη ελεγχόμενων ποσοτήτων ορισμένων ατόμων (ντοπάρισμα). 13

14 Φόρτιση με επαγωγή (1/6) Κατά τη φόρτιση μέσω επαγωγής, δεν απαιτείται επαφή με το σώμα που επάγει το φορτίο. Περίπτωση 1 η : Φόρτιση μεταλλικής σφαίρας με επαγωγή: Έστω ότι έχουμε μια ουδέτερη μεταλλική σφαίρα. Η σφαίρα έχει ίσο αριθμό θετικών και αρνητικών φορτίων. Εικόνα 3: Φόρτιση με επαγωγή. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 14

15 Φόρτιση με επαγωγή (2/6) Κοντά στη σφαίρα τοποθετείται μια φορτισμένη ράβδος από καουτσούκ. Η ράβδος δεν έρχεται σε επαφή με τη σφαίρα. Γίνεται ανακατανομή των ηλεκτρονίων της ουδέτερης σφαίρας. Η σφαίρα γειώνεται. Κάποια ηλεκτρόνια εγκαταλείπουν τη γειωμένη σφαίρα διαμέσου του σύρματος. Εικόνα 4: Φόρτιση με εγαγωγή. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 15

16 Φόρτιση με επαγωγή (3/6) Αφαιρείται το σύρμα της γείωσης. Τώρα θα υπάρχουν περισσότερα θετικά φορτία. Τα φορτία δεν είναι κατανεμημένα ομοιόμορφα. Στη σφαίρα επάγεται θετικό φορτίο. Εικόνα 5: Φόρτιση με εγαγωγή. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 16

17 Φόρτιση με επαγωγή (4/6) Αφαιρείται η ράβδος. Τα ηλεκτρόνια που απομένουν στη σφαίρα ανακατανέμονται. Στη σφαίρα υπάρχει πάλι θετικό συνολικό φορτίο μόνο που τώρα είναι κατανεμημένο ομοιόμορφα. Παρατηρούμε ότι η ράβδος δεν χάνει το αρνητικό φορτίο της κατά τη διαδικασία αυτή. Εικόνα 6: Φόρτιση με επαγωγή. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 17

18 Φόρτιση με επαγωγή (5/6) Περίπτωση 2 η : Αναδιάταξη των φορτίων στους μονωτές. Στους μονωτές συμβαίνει μια διαδικασία παρόμοια με αυτή της επαγωγής στους αγωγούς. Γίνεται αναδιάταξη των φορτίων που υπάρχουν στα μόρια του υλικού. Η προσέγγιση των θετικών φορτίων στην επιφάνεια του σώματος και των αρνητικών φορτίων στην επιφάνεια του μονωτή προκαλεί μια ελκτική δύναμη μεταξύ του σώματος και του μονωτή. 18

19 Φόρτιση με επαγωγή (6/6) Εικόνα 7: Φόρτιση με επαγωγή. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 19

20 Γάλλος φυσικός. Charles Coulomb Η πιο σημαντική συνεισφορά του ήταν στους τομείς του ηλεκτροστατικής και του μαγνητισμού. Ασχολήθηκε και με την έρευνα στους τομείς: Αντοχή υλικών, Στατική των κατασκευών, Εργονομία. Εικόνα 8:Charles Coulomb. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 20

21 Ο νόμος του Coulomb (1/2) Ο Charles Coulomb μέτρησε το μέτρο της ηλεκτρικής δύναμης που αναπτύσσεται μεταξύ δύο μικρών φορτισμένων σφαιρών. Το μέτρο της δύναμης είναι αντιστρόφως ανάλογο του τετραγώνου της απόστασης r μεταξύ των φορτίων και ασκείται κατά μήκος της ευθείας που ενώνει τα δύο φορτία. Το μέτρο της δύναμης είναι ανάλογο του γινομένου των τιμών των φορτίων, q 1 και q 2, που φέρουν τα δύο σωματίδια. Ο νόμος του Coulomb δίνει το μέτρο της ηλεκτρικής δύναμης που αναπτύσσεται μεταξύ δύο ακίνητων σημειακών φορτίων. 21

22 Ο νόμος του Coulomb (2/2) Εικόνα 9: Ο νόμος του Coulomb. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 22

23 Η εξίσωση του νόμου του Coulomb Ο νόμος του Coulomb διατυπώνεται μαθηματικά ως εξής: F e = k e q 1 q 2 r 2 Όπου, k e είναι η σταθερά του Coulomb. K e = 8,9876 x 10 9 Nm 2 /C 2. Η σταθερά του Coulomb γράφεται και k e = 1 4πε 0 Όπου, ε 0 είναι η διηλεκτρική σταθερά του κενού ή διηλεκτρική ικανότητα του κενού. ε 0 = 8,8542 x C 2 /Nm 2. 23

24 Η διανυσματική φύση των ηλεκτρικών δυνάμεων (1/4) Σε διανυσματική μορφή ο νόμος του Coulomb για την ηλεκτρική δύναμη F 12 που ασκεί το φορτίο q 1 στο φορτίο q 2 διατυπώνεται ως εξής: F 12 = k e q 1 q 2 r 2 r 12 όπου r 12 είναι το μοναδιαίο διάνυσμα με κατεύθυνση από το q 1 προς το q 2. Μεταξύ ομόσημων φορτίων αναπτύσσεται απωστική δύναμη. 24

25 Η διανυσματική φύση των ηλεκτρικών δυνάμεων (2/4) Εικόνα 10: Η διανυσματική φύση των ηλεκτρικών δυνάμεων. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 25

26 Η διανυσματική φύση των ηλεκτρικών δυνάμεων (3/4) Μεταξύ ομόσημων φορτίων αναπτύσσεται απωστική δύναμη. Οι ηλεκτρικές δυνάμεις υπακούουν στον τρίτο νόμο του Νεύτωνα (δράσηςαντίδρασης). Η δύναμη που δέχεται το q 1 είναι ίση κατά μέτρο και αντίθετη με τη δύναμη που δέχεται το q 2. Εικόνα 11: Η διανυσματική φύση των ηλεκτρικών δυνάμεων. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 26

27 Η διανυσματική φύση των ηλεκτρικών δυνάμεων (4/4) Μεταξύ των ετερόσημων φορτίων αναπτύσσεται ελκτική δύναμη. Εικόνα 12: Η διανυσματική φύση των ηλεκτρικών δυνάμεων. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 27

28 Παράδειγμα (1/2) Δύο ίσα σημειακά φορτία q 1 = q 2 = μc απέχουν μεταξύ τους απόσταση r = m. Πόσο είναι το μέτρο της δύναμης που ασκεί το ένα στο άλλο; Η δύναμη είναι ελκτική ή απωστική; Σταθερά του νόμου Coulomb: k e = 8.99 x 10 9 N. m 2 /C 2. Εικόνα 13: Παράδειγμα. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 28

29 Παράδειγμα (2/2) Ας δούμε την εικόνα του προβλήματος. Νόμος Coulomb F = k e q 1 q 2 r 2 Αντικαθιστώντας τις τιμές έχουμε: F 12 = F 21 = F = 8,99 29

30 Παράδειγμα Η1.3 (1/2) Όπως φαίνεται στην Εικόνα Η1.8, στον άξονα x υπάρχουν τρία σημειακά φορτία. Το θετικό φορτίο q 1 = 15.0 μc βρίσκεται στη θέση x = 2.00 m, το θετικό φορτίο q 2 = 6.00 μc βρίσκεται στην αρχή των αξόνων και η συνισταμένη δύναμη που ασκείται στο q 3 είναι μηδενική. Ποιά είναι η συντεταγμένη του q 3 στον άξονα x; Εικόνα 14: Παράδειγμα Η1.3. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 30

31 Παράδειγμα Η1.3 (2/3) Λύση. Επειδή το φορτίο q 3 είναι σε ισορροπία, το μέτρο F 23 της δύναμης Coulomb που ασκεί το φορτίο q 2 στο q 3 πρέπει να είναι ίσο με το μέτρο F 13 που ασκεί το q 1 στο q 3, δηλαδή, F 23 = F 13. k e q 2 q 3 x 2 = k e q 1 q 3 2,00 x 2 Απαλείφουμε τα q 3 και k e και ξαναγράφουμε την εξίσωση 2,00 x 2 q 2 = x 2 q 1. 31

32 Λύση (συνέχεια) Παράδειγμα Η1.3 (3/3) (2,00-x) 2 q 2 =x 2 q 1 (4,00-4,00x+x 2 ) q 2 =x 2 q 1 (4,00-4,00x+x 2 )(6,00x10-6 C) = x 2 (15,0x10-6 C) (4,00-4,00x+x 2 )6,00 = x 2 15,0 24,0 24,0x+6,00x 2 =x 2 15,0 Φέρνοντας όλους τους όρους στο ίδιο μέλος ανάγουμε τη δευτεροβάθμια εξίσωση στην απλή μορφή: 9,00x 2 +24,0x-24,0=0 ή 3,00x 2 +8,00x+8,00=0 Βρίσκουμε τη θετική ρίζα της δευτεροβάθμιας εξίσωσης : x = m. 32

33 Παράδειγμα Η1.4 (1/4) Δύο μικρές πανομοιότυπες φορτισμένες σφαίρες, κάθε μια με μάζα kg, ισορροπούν αναρτημένες σε νήματα (Εικόνα 15). Το μήκος L κάθε νήματος είναι ίσο με m, ενώ η γωνία θ είναι ίση με Βρείτε το φορτίο κάθε σφαίρας. Εικόνα 15: Παράδειγμα Η1.4. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 33

34 Παράδειγμα Η1.4 (2/4) Λύση Στην Εικόνα 15 φαίνεται το διάγραμμα δυνάμεων για την αριστερή σφαίρα. Η σφαίρα ισορροπεί κάτω από την επίδραση των εξής δυνάμεων: της τάσης Τ του νήματος. της ηλεκτρικής δύναμης F e από την άλλη σφαίρα. του βάρους της mg. Αναλύουμε την τάση σε δύο συνιστώσες, μια οριζόντια (Τ sinθ) και μια κατακόρυφη (T cosθ). 34

35 Λύση (συνέχεια). Παράδειγμα Η1.4 (3/4) Από το δεύτερο νόμο του Νεύτωνα για την αριστερή σφαίρα έχουμε για τους δύο άξονες: F x = Tsinθ F e = 0 Tsinθ = 0 (1) F y = Tcosθ mg = 0 Tcosθ = mg (2) Διαιρούμε κατά μέλη την Εξίσωση (1) με την εξίσωση (2) για να βρούμε την F e. tanθ= F e mg F e = mg tanθ Άπό το ορθογώνιο τρίγωνο της Εικόνας 15 βρίσκουμε τη σχέση μεταξύ α, L και θ: sinθ= α L a = Lsinθ. 35

36 Παράδειγμα Η1.4 (4/4) Λύση (συνέχεια). Λύνουμε το νόμο του Coulomb ως προς το φορτίο q: q = F er 2 k e = F e 2a 2 k e = mgtanθ(2lsinθ) 2 k e και αντιθιστούμε τις αριθμητικές τιμές q = 3,00x10 2 kg 9,80m s 2 tan 5,00 o 2 0,150m sin 5,00 2 8,99x10 9 Nm 2 /C 2 = 4,42x10-8 C. 36

37 Το ηλεκτρικό πεδίο Ορισμός (1/2) Στον χώρο γύρω από ένα φορτισμένο σώμα υπάρχει ηλεκτρικό πεδίο. Αυτό το φορτισμένο σώμα είναι το φορτίο-πηγή. Όταν σε αυτό το ηλεκτρικό πεδίο εισέλθει ένα άλλο φορτισμένο σώμα, το δοκιμαστικό φορτίο, τότε ασκείται πάνω του ηλεκτρική δύναμη Fe. Εικόνα 16: Το ηλεκτρικό πεδίο Ορισμός. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 37

38 Το ηλεκτρικό πεδίο Ορισμός (2/2) Το διάνυσμα του ηλεκτρικού πεδίου, Ε, σε ένα σημείο του χώρου ορίζεται ως ο λόγος της ηλεκτρικής δύναμης, F e, που δέχεται ένα θετικό δοκιμαστικό φορτίο, q 0, που έχει τοποθετηθεί σε σημείο αυτό, προς το δοκιμαστικό φορτίο. E= F e q 0 Η μονάδα ηλεκτρικού πεδίου στο σύστημα SI είναι το N/Coulomb. Εικόνα 17: Το ηλεκτρικό πεδίο Ορισμός. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 38

39 Σχέση μεταξύ των F και E Η σχέση αυτή ισχύει μόνο για ένα σημειακό φορτίο. Δηλαδή φορτία με μηδενικές διαστάσεις. Για μεγαλύτερα σώματα, το πεδίο μπορεί έχει διαφορετική τιμή σε διαφορετικά σημεία του σώματος. Αν το φορτίο q είναι θετικό, τότε τα διανύσματα της δύναμης και του πεδίου είναι ομόρροπα. Αν το φορτίο q είναι αρνητικό, τότε τα διανύσματα της δύναμης και του πεδίου είναι αντίρροπα. 39

40 Διανυσματική μορφή του ηλεκτρικού πεδίου (1/2) Εικόνα 18: Διανυσματική μορφή του ηλεκτρικού πεδίου. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 40

41 Διανυσματική μορφή του ηλεκτρικού πεδίου (2/2) Ο νόμος του Coulomb, ο οποίος εκφράζει τη δύναμη που αναπτύσσεται μεταξύ του φορτίου-πηγής και του δοκιμαστικού φορτίου, μπορεί να γραφτεί στη μορφή: όπου είναι το μοναδιαίο διάνυσμα με κατεύθυνση από το q προς το q 0. Καθώς το ηλεκτρικό πεδίο στο σημείο Σ, ορίζεται από τον τύπο. το ηλεκτρικό πεδίο που δημιουργεί το (σημειακό) φορτίο q σε απόσταση r είναι: 41

42 Σχετικά με την κατεύθυνση του ηλεκτρικού πεδίου (1/2) Αν το φορτίο q είναι θετικό, τότε η δύναμη F έχει κατεύθυνση μακριά από το q. Το πεδίο E έχει επίσης κατεύθυνση μακριά από το θετικό φορτίο-πηγή. Αν το φορτίο q είναι αρνητικό, τότε η δύναμη F έχει κατεύθυνση προς το q. Το πεδίο E έχει επίσης κατεύθυνση προς το αρνητικό φορτίο-πηγή. 42

43 Σχετικά με την κατεύθυνση του ηλεκτρικού πεδίου (2/2) Εικόνα 19:Περισσότερα σχετικά με την κατεύθυνση του ηλεκτρικού πεδίου. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 43

44 Πρόβλημα (1/2) Βρείτε το μέτρο και την κατεύθυνση του ηλεκτρικού πεδίου σε σημείο που βρίσκεται m ακριβώς πάνω από σωμάτιο που έχει ηλεκτρικό φορτίο μc. Σταθερά του νόμου Coulomb: k = 8.99 x 10 9 N. m 2 /C 2. Εικόνα 20: Πρόβλημα. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 44

45 Λύση: Πρόβλημα (2/2) Το μέτρο του ηλεκτρικού πεδίου σε απόσταση r από το σημειακό φορτίο Q είναι: Ε = k e Q r 2 Αντικαθιστώντας τις τιμές έχουμε: E = 8,99x10 9 Nm 2 0,500m 2 4,00x10 6 C (0,500m) 2 E = 8,99x10 9 Nm2 (4,00x10 6 C) E = 8,99x109 4,00x10 6 C 2 0,500m 2 0,250 E = N/C E = = N/C ή 144 x 10 3 N/C. Nm 2 C 2 C m 2 45

46 Το ηλεκτρικό πεδίο που δημιουργούν πολλά φορτία Το συνολικό ηλεκτρικό πεδίο, E, το οποίο δημιουργεί μια ομάδα φορτίων-πηγών q i σε οποιοδήποτε σημείο Σ, ισούται με το διανυσματικό άθροισμα των ηλεκτρικών πεδίων όλων των φορτίων. 46

47 Παράδειγμα Η1.5 (1/6) Τα φορτία q 1 = μc και q 2 = 3.00 μc βρίσκονται στον άξονα x, σε αποστάσεις a = 6.00 cm και b = 15.0 cm, αντίστοιχα, από την αρχή των αξόνων (Εικόνα 21). Βρείτε τις συνιστώσες του ολικού ηλεκτρικού πεδίου στο σημείο Σ, με συντεταγμένες (x, y)=(0, 20.0 cm). Εικόνα 21: Παράδειγμα Η1.5. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 47

48 Παράδειγμα Η1.5 (2/6) Λύση: Βρίσκουμε το μέτρο του ηλεκτρικού πεδίου που δημιουργεί το φορτίο q 1 στο σημείο Σ. E 1 = k e q 1 r 1 2 = k e = 8, Nm 2 C 2 = 8, Nm 2 C 2 q 1 a 2 + y 2 4, C 0,06m 2 + 0,20m 2 4, C 0,0436m 2 = 82, N C 48

49 Λύση (συνέχεια): Παράδειγμα Η1.5 (3/6) Βρίσκουμε το μέτρο του ηλεκτρικού πεδίου που δημιουργεί το φορτίο q 2 στο σημείο Σ. q 2 E 2 = k e 2 r = k q 2 e 2 b 2 + y 2 = 8, Nm 2 3, C C 2 0,15m 2 + 0,20m 2 = 8, Nm 2 4, C C 2 0,0625m 2 = 43, N C 49

50 Παράδειγμα Η1.5 (4/6) Λύση (συνέχεια): cos φ = a r 1 = a a 2 + y 2 = 0,287 sin φ == y r 1 = y a 2 +y 2 = 0,958 50

51 Παράδειγμα Η1.5 (5/6) Λύση (συνέχεια): cos θ = b b = r 2 b 2 + y = 0,600 2 sin θ == y y = r 2 b 2 + y = 0,800 2 Εκφράζουμε τα διανύματα του ηλεκτρικού πεδίου με τις δύο συνιστώσες τους: E 1 = E 1 cos φ i + E 1 sin φ j = 82, N C 0,287 i + 82,5 51

52 Παράδειγμα Η1.5 (6/6) Λύση (συνέχεια): E 2 = E 2 cos θ i + E 2 sin θ j = 43,1 52

53 Το ηλεκτρικό πεδίο που δημιουργεί μια συνεχή κατανομή φορτίων (1/2) Διαιρούμε την κατανομή φορτίου σε στοιχειώδη φορτία, καθένα από τα οποία έχει φορτίο Δq. Υπολογίζουμε το ηλεκτρικό πεδίο ΔΕ που δημιουργεί καθένα από αυτά τα στοιχειώδη φορτία στο σημείο Σ. Είναι ΔΕ = k e Δq r 2 r Υπολογίζουμε το συνολικό πεδίο αθροίζοντας τις συνεισφορές όλων των στοιχειωδών φορτίων. Επειδή η κατανομή φορτίου είναι συνεχής E = k e i Δq i r 1 2 r i = k e dq r 2 r 53

54 Το ηλεκτρικό πεδίο που δημιουργεί μια συνεχή κατανομή φορτίων (2/2) Εικόνα 22: Το ηλεκτρικό πεδίο που δημιουργεί μια συνεχής κατανομή φορτίων. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 54

55 Συνεχής κατανομή φορτίων: Πυκνότητα φορτίου Όταν ένα φορτίο Q είναι κατανεμημένο ομοιόμορφα σε έναν όγκο V, η χωρική πυκνότητα φορτίου,. Όταν ένα φορτίο Q είναι κατανεμημένο ομοιόμορφα σε μια επιφάνεια εμβαδού A, η επιφανειακή πυκνότητα φορτίου,. Όταν ένα φορτίο Q είναι κατανεμημένο ομοιόμορφα κατά μήκος μιας ευθείας μήκους l, η γραμμική πυκνότητα φορτίου,. ρ = Q V με μονάδες C m 3 σ = Q A με μονάδες C m 2 λ = Q l με μονάδες Q m 55

56 Παράδειγμα Η1.6 (1/3) Μια ράβδος μήκους l = 1.00 m είναι ομοιόμορφα φορτισμένη με θετικό φορτίο ανά μονάδα μήκους και συνολικού φορτίου Q = 5 μc. Υπολογίστε το ηλεκτρικό πεδίο σε ένα σημείο Σ του άξονα της ράβδου, σε απόσταση α = 10 cm από το ένα άκρο της. Εικόνα 23: Παράδειγμα Η1.6. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 56

57 Παράδειγμα Η1.6 (2/3) Έστω x ο άξονας της ράβδου, έστω dx είναι το μήκος ενός στοιχειώδους τμήματός της και dq είναι το φορτίο του τμήματος αυτού. Επειδή η ράβδος φέρει φορτίο ανά μονάδα μήκους λ, το φορτίο dq στο στοιχειώδες τμήμα είναι dq = λ dx. Βρίσκουμε την τιμή του ηλεκτρικού πεδίου που δημιουργεί το στοιχειώδες αυτό τμήμα: dq dε = k e x 2 = k λdx e x 2 Βρίσκουμε το συνολικό πεδίο στο Σ αθροίζοντας τις συνεισφορές όλων των dx (ολοκληρώνοντας) από x = α ως x = α+l. E = de = k e a l+a λdx x 2 57

58 Παράδειγμα Η1.6 (3/3) Λύση (συνέχεια): Παρατηρούμε ότι οι k e και λ= Q/l είναι σταθερές και μπορούν να βγουν έξω από το ολοκλήρωμα Ε = k e Q l a l+a dx x 2 Υπολογίζουμε την τιμή του ολοκληρώματος E = k e Q l E = k e Q l 1 x a l+a 1 l+a 1 a = k e Q l 1 1 a l+a = k e Q l dx. Είναι dx x 2 x 2 l a l+a Αντικαθιστώντας τις τιμές, έχουμε: E = 8, Nm 2 /C 2 40, N C 0,1m 1m+0,1m = k eq a l+a 5, C =- 1 x = 58

59 Παράδειγμα Η1.7 (1/4) Ένας δακτύλιος ακτίνας α = 10.0 cm φέρει φορτίο Q = 1.00 μc. Υπολογίστε το ηλεκτρικό πεδίο που δημιουργεί ο δακτύλιος σε ένα σημείο Σ πάνω στον κεντρικό άξονα x του δακτυλίου, σε απόσταση x = 20.0 cm από το κέντρο του (Εικόνα 24). Εικόνα 24: Παράδειγμα Η1.7. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 59

60 Παράδειγμα Η1.7 (2/4) Λύση: Έστω de το ηλεκτρικό πεδίο στο σημείο Σ το οποίο οφείλεται σε ένα στοιχειώδες τμήμα φορτίου dq του δακτυλίου. Το διάνυσμα de μπορεί να αναλυθεί σε δύο συνιστώσες, την αξονική de x και την κάθετη στον άξονα de y. Λόγω συμμετρίας, οι κάθετες συνιστώσες του πεδίου αλληλοαναιρούναι. Άρα μπορούμε να αγνοήσουμε τις συνιστώσες de y και να επικεντρωθούμε στις αξονικές συνιστώσες de x. Υπολογίζουμε την αξονική συσινστώσα de x που οφείλεται στο στοιχειώδες φορτίο dq. dq de x = k e r 2 cosθ = k dq e a 2 + x 2 cosθ 60

61 Λύση (συνέχεια): Παράδειγμα Η1.7 (3/4) Από τη γεωμετρία του ορθογωνίου τριγώνου, υπολογίζουμε το cosθ. cosθ = x r = x a 2 + x = x 2 a 2 + x 2 1/2 Αντικαθιστούμε στην προηγούμενη εξίσωση: dq x de x = k e a 2 + x 2 a 2 + x 2 1/2 = k e x a 2 + x 2 3/2 dq Όλα τα σημεία του δακτυλίου συνεισφέρουν εξίσου στο πεδίο στο σημείο Σ επειδή ισαπέχουν από αυτό. Ολοκληρώνοντας, βρίσκουμε το συνολικό πεδίο στο σημείο Σ: k e x k e x E = de x = a 2 dq = + x2 3/2 a 2 dq E + x2 3/2 = k e x a 2 + x 2 3/2 dq 61

62 Παράδειγμα Η1.7 (4/4) Λύση (συνέχεια): k e x Ε = a 2 + x 2 3/2 Q Αντικαθιστώντας τις τιμές, έχουμε: E = 8, Nm 2 /C 2 0,200m 0,100m 2 + 0,200m 2 3/2 1, C E = 16, N C 62

63 Παράδειγμα Η1.8 (1/4) Δίσκος ακτίνας R = 15.0 cm φέρει ομοιόμορφη επιφανειακή πυκνότητα φορτίου. Το συνολικό φορτίο του δίσκου είναι Q = 5.00 μc. Υπολογίστε το ηλεκτρικό πεδίο σε ένα σημείο Σ πάνω στον κεντρικό άξονα του δίσκου, σε απόσταση x = 20.0 cm από το κέντρο του (Εικόνα 25). Εικόνα 25: Παράδειγμα Η1.8. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 63

64 Παράδειγμα Η1.8 (2/4) ΛΥΣΗ. Μπορούμε να χωρίσουμε το δίσκο σε στοιχειώδεις δακτυλίους ακτίνας r και πλάτους dr. Το φορτίο dq ενός τέτοιου δακτυλίου είναι dq = da, όπου da είναι το εμβαδόν του δακτυλίου. Είναι da = 2 r dr (Βλ., Παράρτημα Β3, σελ. 987) Επομένως: dq = (2 r dr) = 2 rdr. 64

65 Παράδειγμα Η1.8 (3/4) Το ηλεκτρικό πεδίο de x που δημιουργεί αυτός ο στοιχειώδης δακτύλιος στο σημείο Σ δίνεται από το αποτέλεσμα του προηγούμενου Παραδείγματος Η1.7, αν αντικαταστήσουμε το με το r και το Q με το dq. Βρίσκουμε το συνολικό πεδίο στο σημείο Σ, ολοκληρώνοντας την παράσταση αυτή από r = 0 ως r = R. Υπολογίζουμε την τιμή του ολοκληρώματος rdr/(r 2 +x 2 ) 3/2 (βλ. Παράρτημα Β.5, σελ. 997). Είναι rdr /(r 2 +x 2 ) 3/2 = 1/(r 2 +x 2 ) 1/2, επομένως: 65

66 Λύση (συνέχεια): E = 2k e xπσ Παράδειγμα Η1.8 (4/4) 1 R r 2 + x 2 1/2 0 Θέτοντας σ = Q / A = Q / (πr 2 ), η σχέση γίνεται: Ε = 2k e π Q R 1 πr 2 r 2 + x = 2k eq R 2 1 x R 2 + x 2 1/2 Αντικαθιστώντας τις τιμές, έχουμε: E = 2 2, Nm 2 /C 2 5, C 0,150m 2 1 E = 2k e Q R 2 1 R 2 + x x 66

67 Γραμμές ηλεκτρικού πεδίου Θετικό σημειακό φορτίο Οι γραμμές του πεδίου κατευθύνονται ακτινικά προς τα έξω σε κάθε διεύθυνση. Οι γραμμές έχουν κατεύθυνση μακριά από το φορτίο-πηγή. Εικόνα 26: Γραμμές ηλεκτρικού πεδίου Θετικό σημειακό φορτίο. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 67

68 Γραμμές ηλεκτρικού πεδίου Αρνητικό σημειακό φορτίο Οι γραμμές του πεδίου κατευθύνονται ακτινικά προς το φορτίο σε κάθε διεύθυνση. Οι γραμμές έχουν κατεύθυνση προς το φορτίο-πηγή. Εικόνα 27: Γραμμές ηλεκτρικού πεδίου Αρνητικό σημειακό φορτίο. Πηγή: Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 68

69 Γραμμές ηλεκτρικού πεδίου Ηλεκτρικό δίπολο Ηλεκτρικό δίπολο είναι ένα ζεύγος ίσων και ετερόσημων φορτίων. Το πλήθος των γραμμών του πεδίου που ξεκινούν από το θετικό φορτίο είναι ίσο με το πλήθος των γραμμών που καταλήγουν στο αρνητικό φορτίο. Εικόνα 28:Γραμμές ηλεκτρικού πεδίου Ηλεκτρικό δίπολο. Πηγή: Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 69

70 Γραμμές ηλεκτρικού πεδίου Ομόσημα φορτία Τα φορτία είναι ίσα και θετικά. Επειδή τα φορτία είναι ίσα, από καθένα τους ξεκινά ίδιο πλήθος γραμμών. Σε μεγάλη απόσταση, το πεδίο είναι περίπου ίσο με εκείνο ενός σημειακού φορτίου με τιμή 2q. Επειδή δεν υπάρχουν αρνητικά φορτία, οι γραμμές του ηλεκτρικού πεδίου εκτείνονται έως το άπειρο. Εικόνα 29:Γραμμές ηλεκτρικού πεδίου Ομόσημα φορτία. Πηγή: R.A. SERWAY, J.W. JEWETT «Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 70

71 Γραμμές ηλεκτρικού πεδίου Άνισα και ετερόσημα φορτία Το θετικό φορτίο έχει διπλάσια τιμή από το αρνητικό φορτίο. Το πλήθος των γραμμών που ξεκινούν από το θετικό φορτίο είναι διπλάσιο εκείνου που καταλήγουν στο αρνητικό φορτίο. Σε μεγάλη απόσταση, το πεδίο είναι περίπου ίσο με εκείνο ενός σημειακού φορτίου με τιμή +q. Εικόνα 30:Γραμμές ηλεκτρικού πεδίου Άνισα και ετερόσημα φορτία. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 71

72 Γραμμές ηλεκτρικού πεδίου Γενικά στοιχεία Η πυκνότητα των γραμμών του πεδίου χαρακτηρίζει το μέτρο του πεδίου Παράδειγμα: (βλ. εικόνα δίπλα). Η πυκνότητα των γραμμών του πεδίου που διέρχονται από την επιφάνεια A είναι μεγαλύτερη από την πυκνότητα των γραμμών του πεδίου που διέρχονται από την επιφάνεια B. Επομένως, το μέτρο του ηλεκτρικού πεδίου είναι μεγαλύτερο στην επιφάνεια A απ ό,τι στην B. Εικόνα 31: Γραμμές ηλεκτρικού πεδίου Γενικά στοιχεία. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 72

73 Κίνηση φορτισμένων σωματιδίων (1/2) Αν ένα φορτισμένο σωματίδιο βρεθεί μέσα σε ένα ηλεκτρικό πεδίο, θα δεχτεί μια ηλεκτρική δύναμη. Αν αυτή είναι η μόνη δύναμη που ασκείται στο σωματίδιο, τότε είναι και η συνισταμένη δύναμη που δέχεται. Η συνισταμένη δύναμη θα επιταχύνει το σωματίδιο σύμφωνα με τον δεύτερο νόμο του Νεύτωνα. 73

74 Κίνηση φορτισμένων σωματιδίων (2/2) Αν το πεδίο είναι ομογενές, τότε η επιτάχυνση θα είναι σταθερή. Αν το σωματίδιο φέρει θετικό φορτίο, η επιτάχυνσή του έχει την κατεύθυνση του ηλεκτρικού πεδίου. Αν το σωματίδιο φέρει αρνητικό φορτίο, η επιτάχυνσή του έχει κατεύθυνση αντίθετη από εκείνη του ηλεκτρικού πεδίου. 74

75 Ηλεκτρόνιο μέσα σε ομογενές Λύση: πεδίο Παράδειγμα (1/4) Το ηλεκτρόνιο βάλλεται οριζόντια με αρχική πεδίο ταχύτητα v i = v i i σε ένα ομογενές ηλεκτρικό πεδίο E. Το ηλεκτρόνιο επιταχύνεται με κατεύθυνση προς τα κάτω. Το ηλεκτρόνιο είναι αρνητικά φορτισμένο, επομένως η επιτάχυνσή του είναι αντίθετη της κατεύθυνσης του πεδίου. 75

76 Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα (2/4) Εικόνα 32: Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα. Πηγή: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 76

77 Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα (3/4) Όσο βρίσκεται μεταξύ των φορτισμένων πλακών, διαγράφει παραβολική τροχιά. Πόση είναι η επιτάχυνση του ηλεκτρονίου ενόσω βρίσκεται μέσα στο ηλεκτρικό πεδίο μεταξύ των πλακών. Πόσο χρόνο χρειάζεται να βγει από τις πλάκες. Αν η κατακόρυφη θέση του ηλεκτρονίου όταν εισέρχεται στο πεδίο είναι y i = 0, ποιά είναι η κατακόρυφη θέση του όταν εξέρχεται από αυτό. 77

78 Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα (4/4) Εικόνα 33: Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα. Πηγή:R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 78

79 Βιβλιογραφία 1. Raymond A. Serway, John W. Jewett, «ΦΥΣΙΚΗ ΓΙΑ ΕΠΙΣΤΗΜΟΝΕΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ: ΗΛΕΚΤΡΙΣΜΟΣ ΚΑΙ ΜΑΓΝΗΤΙΣΜΟΣ, ΦΩΣ ΚΑΙ ΟΠΤΙΚΗ, ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ», 8η Έκδοση Αμερικανική/ 2013, ΙSBN: , Εκδ. ΚΛΕΙΔΑΡΙΘΜΟΣ ΕΠΕ. 2. Young D. Hugh, «Πανεπιστημιακή Φυσική, Τόμος Β, Ηλεκτρομαγνητισμός-Οπτική-Σύγχρονη Φυσική», 1η εκδ./1994, ΙSBN: , Εκδ. ΠΑΠΑΖΗΣΗ ΑΕΒΕ. 3. Knight D. Randall, «ΦΥΣΙΚΗ ΓΙΑ ΕΠΙΣΤΗΜΟΝΕΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ: Τόμος ΙΙ - ΤΑΛΑΝΤΏΣΕΙΣ, ΚΎΜΑΤΑ, ΟΠΤΙΚΉ, ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΌΣ», 1η έκδ./2010, ΙSBN: , Εκδ. Σ.ΠΑΡΙΚΟΥ & ΣΙΑ ΕΕ. 79

80 Τέλος Ενότητας

81 Σημείωμα Αναφοράς Copyright ΤΕΙ Δυτικής Μακεδονίας, Πουλάκης. «Ηλεκτρομαγητισμός». Έκδοση: 1.0. Κοζάνη Διαθέσιμο από τη δικτυακή διεύθυνση: URL.

82 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο. που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο. που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο. Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 82

83 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς. το Σημείωμα Αδειοδότησης. τη δήλωση Διατήρησης Σημειωμάτων. το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει). μαζί με τους συνοδευόμενους υπερσυνδέσμους. 83

84 Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφί ες: R.A. SERWAY, J.W. JEWETT«Φυσική για επιστήμονες και μηχανικούς: Ηλεκτρισμός και Μαγνητισμός, Φως και Οπτική, Σύγχρονη Φυσική», 8η Αμερικανική/ 2013, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ. 84

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 2: Ο νόμος του Gauss Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία 1η ΠΑΡΟΥΣΙΑΣΗ Ηλεκτρικά πεδία Ηλεκτρισμός και μαγνητισμός Κλάδος της Φυσικής που μελετάει τα ηλεκτρικά και τα μαγνητικά φαινόμενα. (Σχεδόν) όλα τα φαινομενα που αντιλαμβανόμαστε με τις αισθήσεις μας οφείλονται

Διαβάστε περισσότερα

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία 1η ΠΑΡΟΥΣΙΑΣΗ Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία Ηλεκτρισμός και μαγνητισμός Κλάδος της Φυσικής που μελετάει τα ηλεκτρικά και τα μαγνητικά φαινόμενα. (Σχεδόν) όλα τα φαινομενα που αντιλαμβανόμαστε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρισμός και μαγνητισμός Ηλεκτρικά Πεδία Οι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κεφάλαιο Η1. Ηλεκτρικά πεδία

Κεφάλαιο Η1. Ηλεκτρικά πεδία Κεφάλαιο Η1 Ηλεκτρικά πεδία Ηλεκτρισµός και µαγνητισµός Οι νόµοι του ηλεκτρισµού και του µαγνητισµού έχουν πρωταρχικό ρόλο στη λειτουργία πολλών σύγχρονων συσκευών. Οι ενδοατοµικές και ενδοµοριακές δυνάµεις,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 3: Ηλεκτρικό δυναμικό. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 3: Ηλεκτρικό δυναμικό. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 3: Ηλεκτρικό δυναμικό Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 1: Ηλεκτρικό φορτίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στις έννοιες του φορτίου και της φόρτισης Θετικοί και αρνητικοί φορείς φορτίου.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/15/2014 Ο νόμος του Gauss Νόμος Gauss Ο νόμος

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 1: Εισαγωγή Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γενική Φυσική ΙΙ (ΦΥΣ 132) Ηλεκτρισμός, Ηλεκτρομαγνητισμός και Οπτική

Γενική Φυσική ΙΙ (ΦΥΣ 132) Ηλεκτρισμός, Ηλεκτρομαγνητισμός και Οπτική Γενική Φυσική ΙΙ (ΦΥΣ 132) Ηλεκτρισμός, Ηλεκτρομαγνητισμός και Οπτική Διδάσκων: Τζιχάντ Μούσα e-mail: mousa@ucy.ac.cy Τηλ: 22.89.2844 Γραφείο: B244 ΘΕΕ02 Τμήμα Φυσικής Πανεπιστημιούπολη Διδασκαλία: Τρίτη-Παρασκευή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 2: Ηλεκτρικό πεδίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια του ηλεκτρικού πεδίου Ηλεκτρικό πεδίο φορτισμένης πηγής Ορισμός έντασης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 3: Ο Νόμος του Gauss Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία των δυναμικών γραμμών Παραδείγματα δυναμικών γραμμών σημειακού φορτίου,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 6: ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 6: ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 6: ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 4: Χωρητικότητα και διηλεκτρικά. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 4: Χωρητικότητα και διηλεκτρικά. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 4: Χωρητικότητα και διηλεκτρικά Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Ηλεκτρικά Κυκλώματα Ι ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

Ηλεκτρικά Κυκλώματα Ι ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ Ηλεκτρικά Κυκλώματα Ι ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ 1 1. ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ Οι αρχαίοι Έλληνες ανακάλυψαν από το 600 π.χ. ότι, το κεχριμπάρι μπορεί να έλκει άλλα αντικείμενα όταν το τρίψουμε με μαλλί.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ 1 1. ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ Οι αρχαίοι Έλληνες ανακάλυψαν από το 600 π.χ. ότι, το κεχριμπάρι μπορεί να έλκει άλλα αντικείμενα όταν το τρίψουμε με μαλλί.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Ηλεκτροστατική 1. Στις κορυφές κανονικού n-πλεύρου τοποθετούνται ίδια φορτία q. Να δειχθεί ότι η

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 1 Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 Ο Ηλεκτρική δύναμη και φορτίο Ηλεκτρισμένα σώματα 1.1 Ποια είναι ; Σώματα (πλαστικό, γυαλί, ήλεκτρο) που έχουν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 5: Μαγνητικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 5: Μαγνητικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 5: Μαγνητικά πεδία Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία του ηλεκτρικού δυναμικού στις 3 διαστάσεις μέσω:

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb. Βασικές έννοιες Τα σώματα μπορούν να αλληλεπιδράσουν ηλεκτρικά. Ο Θαλής ο Μιλήσιος παρατήρησε πρώτος την έλξη μικρών αντικειμένων από ήλεκτρο, αφού πρώτα τριφτεί σε ξηρό ύφασμα. Το φαινόμενο αυτό ονομάστηκε

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η σύντομη παρουσίαση μελέτης της

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.5: Το Ολοκλήρωμα στην Φυσική Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 9: Στροφορμή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της στροφορμής Διαφοροποίηση υλικού σημείου από στερεό σώμα Εναλλακτικοί

Διαβάστε περισσότερα

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1 . Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μάθημα: Τεχνική Μηχανική

Μάθημα: Τεχνική Μηχανική Μάθημα: Τεχνική Μηχανική Ενότητα 1: Τεχνική Μηχανική Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 4: Ηλεκτρική δυναμική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 4: Ηλεκτρική δυναμική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός της ηλεκτρική δυναμικής ενέργειας. Σύγκριση με τη βαρυτική ενέργεια

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 6: Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μάθημα: Στατική και Δυναμική των Κατασκευών

Μάθημα: Στατική και Δυναμική των Κατασκευών Μάθημα: Στατική και Δυναμική των Κατασκευών Ενότητα 1: Στατική και Δυναμική των Κατασκευών Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία Στατικός Ηλεκτρισµός, Ηλεκτρικό Φορτίο και η διατήρηση αυτού Ηλεκτρικό φορτίο στο άτοµο Αγωγοί και Μονωτές Επαγόµενα Φορτία Ο Νόµος του Coulomb Το Ηλεκτρικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 4: Ισχύς στο Συνεχές Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Νίκος Ν. Αρπατζάνης Εισαγωγή Το άτομο αποτελείται από ένα θετικά φορτισμένο πυρήνα, που περιβάλλεται από αρνητικά φορτισμένα ηλεκτρόνια Άτομο Li πυρήνας με 3 πρωτόνια (+) και 3 ηλεκτρόνια

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία Στατικός Ηλεκτρισμός, Ηλεκτρικό Φορτίο και η διατήρηση αυτού Ηλεκτρικό φορτίο στο άτομο Αγωγοί και Μονωτές Επαγόμενα Φορτία Ο Νόμος του Coulomb Το Ηλεκτρικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 17: Μαγνητοστατική σε υλικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τα στοιχεία θεωρίας που αφορούν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 3: Οι νόμοι του Νεύτωνα

ΦΥΣΙΚΗ. Ενότητα 3: Οι νόμοι του Νεύτωνα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 3: Οι νόμοι του Νεύτωνα Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής Τσόκας Γρηγόρης Καθηγητής Εφαρμοσμένης

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 9: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του δρομέα Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 5: Ανέλιξη Poisson Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 1: Έλεγχος Μηχανών Συνεχούς Ρεύματος με ξένη διέγερση Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.07: Ολοκληρώματα με Ριζικά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα