Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι"

Transcript

1 Άσκηση 1 α) Παρουσιάστε τα AVL δέντρα που προκύπτουν από τις εισαγωγές των κλειδιών 1, 4, 9,, 7,,, 1, 4 και σε ένα αρχικά άδειο AVL δέντρο με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι L 1 R L 7 9 R

2 L R L 1 R Τελικό:

3 Άλλος τρόπος: β) Παρουσιάστε το δέντρο που προκύπτει αν το κλειδί 1 διαγραφεί από το δέντρο του ερωτματος α.

4 Άσκηση 2 α) Παρουσιάστε τα 2- δέντρα που προκύπτουν από τις εισαγωγές των κλειδιών, 1, 1, 2, 2,,, 4, (με τη σειρά που δίνονται) σε ένα αρχικά άδειο 2- δέντρο. Με διακεκομμένους κόμβους συμβολίζονται οι φάσεις ανάμεσα στην εισαγωγ και στη τελικ μορφ των κόμβων

5

6 β) Παρουσιάστε τα δέντρα που προκύπτουν από τις διαγραφές των κλειδιών 2,, από το δέντρο του ερωτματος α. Διαγραφ του κλειδιού 2: διαγράφοντας το κλειδί αυτό, ο κόμβος με τα στοιχεία και 4 δε μπορεί να έχει μόνο δύο παιδιά, γιατί δεν υπάρχουν στοιχεία μικρότερα του. Επομένως, θα «κατέβει» το μαζί με το. Έτσι θα έχουμε στοιχεία μικρότερα και μεγαλύτερα του 4, όπως φαίνεται στο δεύτερο σχμα Διαγραφ του κλειδιού : η διαγραφ αυτ δε θα επηρεάσει καθόλου τη δομ του δέντρου και τις θέσεις των στοιχείων. Επομένως, μετά τη διαγραφ του το 4 θα εξακολουθεί να έχει αριστερό παιδί το κόμβο με το κλειδί και δεξί το κόμβο με τα στοιχεία 4 και

7 Διαγραφ του κλειδιού : με τη διαγραφ του στοιχείου αυτού, θα πραγματοποιηθεί περιστροφ μεταξύ του κόμβου με το κλειδί 4 και του δεξιού παιδιού του, τέτοια ώστε να γίνει το 4 ρίζα και τα 4 και αριστερό και δεξί παιδί του αντίστοιχα, όπως φαίνεται το τελευταίο σχμα

8 Άσκηση Χρησιμοποιστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση h(k)=(k+) % m ως δευτερεύουσα συνάρτηση κατακερματισμού να εισαχθούν τα κλειδιά, 1, 7, 44, 29, 7 και 2 σε ένα πίνακα 7 θέσεων, ο οποίος είναι οργανωμένος με τη μέθοδο: a. της αλυσίδας b. των μικτών αλυσίδων c. των μικτών αλυσίδων με κελάρι ων θέσεων d. της γραμμικς αναζτησης e. του διπλού κατακερματισμού f. του ταξινομημένου κατακερματισμού με ανοιχτ διεύθυνση h(k) = k%7 (αφού ο πίνακας είναι 7 θέσεων). Σε ποια θέση θα μπει το κάθε στοιχείο, καθορίζεται, από το υπόλοιπο της διαίρεσης της τιμς του αριθμού με το πλθος θέσεων του πίνακα. Επομένως: % 7 = 1 1 % 7 = 1 7 % 7 = 2 44 % 7 = 2 7 % 7 = 2 % 7 = 2 α. Μέθοδος της Αλυσίδας με τη μέθοδο αυτ το κάθε στοιχείο με τη σειρά εισάγεται στη θέση του πίνακα, με βάση αυτ που δηλώνει το υπόλοιπό του [7, 44, 2] [, 1, 29] [7] β. Μέθοδος των Μικτών αλυσίδων Τα στοιχεία εισάγονται με τη σειρά στο πίνακα στην κατάλληλη θέση. Ο πίνακας εκτός από την αποθκευση των δεδομένων, περιέχει και μια στλη για αποθκευση των δεικτών. Αρχικά, όλα τα πεδία next των στοιχείων είναι Λ. Όταν συμβεί σύγκρουση, αναζητείται η πρώτη διαθέσιμη θέση από τη θέση του πίνακα. Η θέση που τελικά αποθηκεύεται το στοιχείο αυτό δηλώνεται στο πεδίο next του στοιχείου αυτού που προκάλεσε τη σύγκρουση Εισαγωγ Εισαγωγ 1 Εισαγωγ 7 Εισαγωγ 44 Λ Λ 4 Λ Λ 2 Λ 1 Λ Λ Λ Λ 4 Λ Λ 2 Λ 1 1 Λ Λ Λ 4 Λ Λ 2 7 Λ 1 1 Λ Λ Λ 4 Λ 44 Λ Λ

9 Εισαγωγ 29 Εισαγωγ 7 Εισαγωγ 2 Λ Λ 4 29 Λ 44 Λ Λ Λ 7 Λ 4 29 Λ 44 Λ Λ 7 Λ 4 29 Λ 44 Λ γ. Μέθοδος μικτών Αλυσίδων, με κελάρι ων θέσεων Ακολουθούμε τη παραπάνω μέθοδο, με τη διαφορά, ότι χρησιμοποιούμε τις πρώτες θέσεις ως κελάρι. Εισαγωγ Εισαγωγ 1 Εισαγωγ 7 Εισαγωγ 44 Λ Λ 4 Λ Λ 2 Λ 1 Λ Λ Λ Λ 4 Λ 2 Λ 1 Λ 1 Λ Λ 7 Λ 4 Λ 2 Λ 1 Λ 1 Λ Λ Λ 2 Λ 1 44 Λ 1 Λ Εισαγωγ 29 Εισαγωγ 7 Εισαγωγ 2 Λ Λ 2 29 Λ 1 44 Λ 1 Λ Λ Λ 2 29 Λ 1 44 Λ 1 Λ 2 Λ Λ 2 29 Λ 1 44 Λ 1 Λ δ. Γραμμικ Αναζτηση - Κατακερματισμός με Ανοιχτ Διευθυνσιοδότηση Κάθε κλειδί της αλυσίδας εισάγεται στη κατάλληλη θέση ανάλογα με το αποτέλεσμα του υπολοίπου k%7. Αν η θέση αυτ είναι κατηλυμένη, το στοιχείο αυτό εισάγεται στη πρώτη επόμενη διαθέσιμη. Εισαγωγ Εισαγωγ 1 Εισαγωγ 7 Εισαγωγ 44 Εισαγωγ

10 Εισαγωγ 7 Εισαγωγ ε. Κατακερματισμός με Ανοιχτ Διευθυνσιοδότηση Διπλός Κατακερματισμός Κάθε κλειδί της αλυσίδας εισάγεται στη κατάλληλη θέση ανάλογα με το αποτέλεσμα του υπολοίπου k%7. Αν η θέση αυτ είναι κατηλυμένη, το στοιχείο αυτό εισάγεται στη τρίτη συνεχόμενη θέση του πίνακα. Αν και αυτ δεν είναι διαθέσιμη, συνεχίζουμε την αναζτηση για την επόμενη τρίτη διαθέσιμη θέση. Εισαγωγ : εισάγεται κανονικά στη θέση 1 του πίνακα γιατί h(k)=%7=1. Δε γίνεται κάποια σύγκρουση Εισαγωγ 1 : το στοιχείο 1 εισάγεται κανονικά στη θέση 1 του πίνακα, όμως εκεί βρίσκεται το, οπότε εκτελείται η δεύτερη συνάρτηση κατακερματισμού η οποία είναι h(k)=(k+) % m, άρα εισάγεται στη θέση 4 (τρεις θέσεις μετά από την αρχικ) Εισαγωγ 7: το στοιχείο αυτό εισάγεται στη θέση 2, σύμφωνα με το υπόλοιπο της διαίρεσης. Δε πραγματοποιείται κάποια σύγκρουση, επομένως εισάγεται κανονικά εκεί

11 Εισαγωγ 44: ομοίως με το κλειδί 1, κανονικά εισάγεται στη θέση 2, αλλά εφόσον δη υπάρχει το κλειδί 7, πραγματοποιείται σύγκρουση και εισάγεται θέσεις μετά, δηλαδ στη θέση Εισαγωγ 29: με την εισαγωγ του κλειδιού 29 πραγματοποιούνται 2 συγκρούσεις σειριακά. Η πρώτη όταν εισάγεται στη θέση στην οποία σύμφωνα με το υπόλοιπο h(k)=29%7=1, θα έπρεπε να εισαχθεί στη θέση 1 και η δεύτερη παρατηρείται στη θέση 4, τρεις θέσεις μετά, όπου πάλι υπάρχει κάποιο άλλο στοιχείο, το 1. Οπότε, μετατοπίζεται θέσεις ακόμα και τελικά εισάγεται στη θέση Εισαγωγ 7: κατά την εισαγωγ του κλειδιού 7, πραγματοποιούνται όλες οι παραπάνω συγκρούσεις (για το 29) και μια ακόμα, αυτ με το κλειδί 29, οπότε μετατοπίζεται θέσεις ακόμα και επομένως εισάγεται τελικώς στη θέση Εισαγωγ 2: το κλειδί αυτό θα πρέπει να εισαχθεί στη θέση 2 του πίνακα. Όμως, υπάρχει το στοιχείο 7, όποτε έχουμε σύγκρουση στο σημείο αυτό και εκτελείται η δεύτερη συνάρτηση κατακερματισμού η οποία είναι h(k)=(k+) % m, άρα θα πρέπει να εισαχθεί στη θέση (τρεις θέσεις μετά από την αρχικ). Εκεί βρίσκεται το στοιχείο 44, οπότε για δεύτερη φορά πραγματοποιείται σύγκρουση και μετατίθεται στη θέση 1,όπου και εκεί η θέση δεν είναι άδεια (). Μετά από τη τρίτη σύγκρουση γίνεται μια τέταρτη, στη θέση 4 με το κλειδί 1, μια πέμπτη στη θέση με το κλειδί 29, μια έκτη στη θέση με το κλειδί 7 και τελικώς, εισάγεται στη θέση

12 στ. Ταξινομημένος Κατακερματισμός με Ανοιχτ Διευθυνσιοδότηση Τα κλειδιά διατηρούνται ταξινομημένα σε κάθε αλυσίδα. Κάθε φορά που εισάγεται ένα κλειδί, ελέγχουμε αν είναι μεγαλύτερο όχι από το στοιχείο που βρίσκεται δη στη θέση αυτ. Το όποιο στοιχείο πρέπει να μετατοπιστεί, γίνεται με τριών θέσεων μετατόπιση. Εισαγωγ : εισάγεται κανονικά στη θέση 1 του πίνακα Εισαγωγ 1: η θέση του είναι στη θέση 1, εκεί όπου βρίσκεται το. Όμως, επειδ το 1<, φεύγει το και στη θέση 1 εισάγεται το 1. Το θα μετατοπιστεί θέσεις παραπάνω, σύμφωνα με τη δεύτερη συνάρτηση κατακερματισμού. Οπότε η τελικ μορφ είναι όπως φαίνεται και στο σχμα η δεύτερη στλη Εισαγωγ 7: Το κλειδί 7 εισάγεται κανονικά στη θέση 2, αφού δε πραγματοποιείται κάποια σύγκρουση Εισαγωγ 44: το κλειδί 44 εισάγεται κανονικά στη θέση 2, όπου εκεί υπάρχει το 7 άρα πραγματοποιείται σύγκρουση. Συγκρίνοντας τα δύο στοιχεία αυτά, το 44>7, άρα το 7 παραμένει στη θέση του και το 44 μετατοπίζεται τελικώς τρεις θέσεις πιο πέρα, δηλαδ στη θέση >7 1 1

13 Εισαγωγ 29: Το κλειδί 29 θα πρέπει να εισαχθεί στη θέση 1. Όμως εκεί βρίσκεται το 1, όπου συγκρούονται. Μετά από τη σύγκριση των δύο κλειδιών αυτών το 29 > 1, άρα το 1 παραμένει στη θέση του και μέσω της δεύτερης συνάρτησης κατακερματισμού, το 29 μετατοπίζεται θέσεις πιο πάνω, δηλαδ στη 4. Εκεί συγκρούεται με το, το οποίο είναι μεν μεγαλύτερο από το 29, αλλά επειδ είναι προς το παρόν το μεγαλύτερο στοιχείο που έχει εισαχθεί και δε γίνεται να μεταφερθεί σε χαμηλότερη θέση, παραμένει στη θέση αυτ και το 29 μετατοπίζεται σε άλλες τρεις θέσεις πιο κάτω, οπότε τελικά εισέρχεται στη θέση < >1 29 Εισαγωγ 7: το κλειδί αυτό εισέρχεται κανονικά στη θέση, αλλά συγκρούεται με το 29, που βρίσκεται δη εκεί οπότε καταλγει θέσεις πιο πάνω, στη θέση >29

14 Εισαγωγ 2: Το κλειδί αυτό δημιουργεί όπως και στο προηγούμενο ερώτημα πολλές συγκρούσεις, οι οποίες εμφανίζονται παρακάτω μία προς μία. Το 2 εισάγεται κανονικά στη θέση 2 (2%7=2). Όμως 2<7 και το 7 είναι μικρότερο από άλλα στοιχεία που βρίσκονται αποθηκευμένα σε παρακάτω θέσεις του πίνακα, οπότε διαγράφεται το 7 και στη θέση του μπαίνει το 2. Το 7 μετατοπίζεται τρεις θέσεις πιο πάνω, και συγκρούεται, με το 44 και το διαγράφει, μιας και είναι μικρότερο από αυτό, αλλά όχι και το μικρότερο στοιχείο του πίνακα. Το 44 συγκρούεται με το 1, μετρώντας τρεις θέσεις δηλαδ, αλλά είναι μεγαλύτερο, όποτε δεν αλλάζει κάτι στη διάταξη. Στη συνέχεια, συγκρούεται με το, που τώρα είναι μικρότερο, οπότε το διαγράφει από τη θέση αυτ και παίρνει τη θέση του. Το κλειδί, εν συνεχεία, συγκρούεται με το 29, που βρίσκεται τρεις θέσεις παρακάτω, αλλά είναι μεγαλύτερο, άρα δεν επηρεάζεται κάτι, δε συμβαίνει όμως το ίδιο και με το 7, όπου <7, άρα παίρνει τη θέση του. Τέλος το 7 εισάγεται στην άδεια θέση, όπου εκεί δε πραγματοποιείται καμία σύγκρουση απλά εισάγεται < < < < < <29 29

15 Άσκηση 4 α) Έστω ότι τα κλειδιά με τιμές κατακερματισμού, 111 και εισάγονται διαδοχικά (το ένα μετά το άλλο) στον επεκτάσιμο πίνακα κατακερματισμού του Σχματος_1. Θεωρστε ότι για αυτόν τον πίνακα ισχύει ότι b=4. Παρουσιάστε τους πίνακες κατακερματισμού που προκύπτουν μετά από κάθε εισαγωγ (καθώς και τη διαδικασία που οδηγεί στο τελικό αποτέλεσμα σε κάθε περίπτωση). Εισαγωγ : το κλειδί αυτό θα πρέπει να εισαχθεί στη πρώτη γραμμ του πίνακα, γιατί τα δυο πρώτα στοιχεία του είναι τα. Όμως εκεί υπάρχουν τέσσερα κλειδιά και επειδ b=4, δεν έχει άλλο χώρο. Συνεπώς είναι απαραίτητη η αύξηση του βάθους του πίνακα κατακερματισμού, από δύο σε τρία. Αυτό σημαίνει ότι πλέον θα παίζουν ρόλο τα τρία πρώτα ψηφία των κλειδιών αυτών. Άρα, ο παραπάνω πίνακας θα γίνει τώρα έτσι: , 1 1, 11 1, , 111, 111, Τώρα είμαστε σε θέση να εισάγουμε το, μιας και έχει χώρο, οπότε ο πίνακας έγινε τώρα, όπως φαίνεται παρακάτω: , 1, 1, 11 1, , 111, 111, Να σημειώσουμε, βέβαια, ότι τα κλειδιά που ξεκινάνε από 1 είναι τέσσερα, επομένως, μπορούν όλα να μπουν σε μια γραμμ πίνακα.

16 Εισαγωγ 111: με βάση το προηγούμενο, το κλειδί αυτό ξεκινάει με τη μονάδα, άρα δεν υπάρχει χώρος να εισαχθεί στη τελευταία γραμμ, όπου κανονικά είναι η θέση του, οπότε γίνεται διασπάται η τελευταία γραμμ. Όσα κλειδιά ξεκινάνε από 1 (δηλαδ το δεύτερο ψηφίο να είναι, δεδομένου το πρώτο ότι είναι ένα) εισάγονται στη τέταρτη γραμμ και όσα ξεκινάνε από 11 εισάγονται στη τελευταία. Άρα το κλειδί 111, θα εισαχθεί όπως φαίνεται παρακάτω: , 1, 1, 11 1, , 111, 1111, Εισαγωγ 11111: το κλειδί αυτό, εφόσον ξεκινάει με 11 θα εισαχθεί στη τελευταία γραμμ του πίνακα και αφού δεν έχουν συμπληρωθεί οι θέσεις, μπορεί να εισαχθεί κανονικά χωρία κάποια άλλη αλλαγ - διάσπαση σχετικά με το βάθος του κάδου , 1, 1, 11 1, , 111, 1111, ,

17 β) Παρουσιάστε τους πίνακες κατακερματισμού (καθώς και τη διαδικασία που οδηγεί στο αποτέλεσμα) που προκύπτουν κατά τη διαδοχικ διαγραφ των κλειδιών με τιμές κατακερματισμού 11, 1, 11, 1, 1111 και 111 από τον επεκτάσιμο πίνακα κατακερματισμού του Σχματος 1. Διαγραφ 11: το κλειδί αυτό βρίσκεται στο δεύτερο κάδο, το διαγράφουμε και παρατηρούμε ότι μπορούμε να μεταθέσουμε το κλειδί 1 στον από πάνω κάδο, επομένως θα χρειαζόμαστε μόνο 2 ψηφία των κλειδιών για να τα αναζητσουμε , 1, 1, 11 11, , 111, 1111, , Έτσι, ο πίνακας κατακερματισμού γίνεται: , 1,, , , 111, 1111, , Διαγραφ 1 και 11: τα κλειδιά αυτά διαγράφονται χωρίς να παρατηρείται κάποια αλλαγ, παρά μόνο, μετά και τη δεύτερη διαγραφ, μπορούν όλα τα κλειδιά που ξεκινάνε από το, να συγκεντρωθούν, σε ένα κάδο , 1,, , , 111, 1111, ,

18 Άρα ο πίνακας διαμορφώνεται ως εξς: ,, 1, , 111, 1111, , Διαγραφ 1 και 1111 και 111: σειριακά διαγράφονται τα στοιχεία αυτά χωρίς να μεταβάλλεται κάτι στο πίνακα, εκτός από το τελευταίο (111) που αφού ο δεύτερος κάδος έχει μετά τη διαγραφ του 1111 μία θέση διαθέσιμη, μπορεί να μεταφερθεί το εκεί. Οι διαγραφές φαίνονται παρακάτω: ,, 1, , 111, 1111, , και ο πίνακας διαμορφώνεται ως εξς: 1 1,, , 111, 111, Καταλγοντας, λοιπόν, στη παραπάνω μορφ, ουσιαστικά επιλέγεται ένα στοιχείο με βάση το πρώτο ψηφίο (είτε είτε 1).

19 Άσκηση Χρησιμοποιώντας τη στρατηγικ για μείωση ύψους, να εκτελεστεί η παρακάτω ακολουθία 1 ενώσεων με τη σειρά που δηλώνουν οι παράπλευροι των κόμβων αριθμοί: Θα εκτελέσουμε τις ενώσεις των υποδέντρων που φαίνονται στο σχμα με βάση τη σειρά που αναφέρονται. Αν τα ύψη τους είναι ίσα, τότε ρίζα μπαίνει μία από τις δύο, όποια εμείς θέλουμε. Αν όμως δεν έχουν το ίδιο ύψος, δηλαδ έστω Τ1 και Τ2 δύο δέντρα για τα οποία ισχύει Η(Τ1) > Η(Τ2) τότε βάζουμε ρίζα αυτ με το μικρότερο ύψος. Επομένως, (1): {1,2} με ρίζα οποιοδποτε από τα 1 2, (2): {,4}, με οποιαδποτε ρίζα από τα 4, 4 4 (): {1,11}, με οποιαδποτε ρίζα από τα 1 11, (4): {,7}, με οποιαδποτε ρίζα από τα 7, 7 7 (): {1,14}, με οποιαδποτε ρίζα από τα 1 14,,

20 (): {(),1}, δεν έχουν το ίδιο ύψος, επομένως το δέντρο με το μικρότερο ύψος θα δείχνει στη ρίζα του δέντρου που προέκυψε από την ένωση (). Άρα ανάλογα με το ποιο επιλέγουμε, έχουμε και τα παρακάτω αποτελέσματα (7): {(1),(4)}, η ένωση αυτ εφαρμόζεται σε δύο υποδέντρα με ίδιο ύψος, οπότε έχουμε τις εξς περιπτώσεις (8): {,9}, με οποιαδποτε ρίζα από τα 9, 9 9

21 (9): {(8),12}, δεν έχουν το ίδιο ύψος, επομένως το δέντρο με το μικρότερο ύψος θα δείχνει στη ρίζα του δέντρου που προέκυψε από την ένωση (8). Άρα ανάλογα με το ποιο επιλέγουμε, έχουμε και τα παρακάτω αποτελέσματα (1): {(7),()}, δεν έχουν το ίδιο ύψος τα υποδέντρα αυτά, επομένως το δέντρο με το μικρότερο ύψος θα δείχνει στη ρίζα του δέντρου που προέκυψε από την ένωση (7). Επειδ, όμως, οι περιπτώσεις που προκύπτουν είναι πάρα πολλές, δε θα τις εξετάσουμε όλες. Θα επιλέξουμε μια, αλλά αντίστοιχα υλοποιούνται και οι άλλες: (11): {,(2)}, τα υποδέντρα αυτά δεν έχουν το ίδιο ύψος, οπότε ρίζα του θα είναι η ρίζα της (2) 4 4 (12): {(11), (9)}, τα υποδέντρα αυτά έχουν ακριβώς το ίδιο ύψος. Προκύπτουν πολλές περιπτώσεις ανάλογα με το πώς συνδυάζονται, αλλά εμείς θα επιλέξουμε δυο. Ομοίως σχηματίζονται και οι άλλοι Αν ρίζα είναι της (9) Αν ρίζα είναι της (11) (1): {(1), ()}, τα υποδέντρα αυτά δεν έχουν το ίδιο ύψος, οπότε ρίζα του θα είναι η ρίζα της (1)

22 (14): {(12), (1)}, τα υποδέντρα αυτά δεν έχουν το ίδιο ύψος, οπότε ρίζα του θα είναι η ρίζα της (1). Οι περιπτώσεις και εδώ είναι πολλές, αλλά σχεδιάζονται όλες κατ αντίστοιχο τρόπο (1): {(14), 8} στο τελευταίο βμα ενώνουμε το υποδέντρο του βματος 14 με το 8 στοιχείο. Επειδ το βάθος του υποδέντρου της ένωσης 14 έχει μεγαλύτερο βάθος, το 8 θα ενωθεί με τη ρίζα του, οπο τε προκύπει:

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Ισοζυγισμένα υαδικά έντρα Αναζήτησης

Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Φροντιστήριο 17-1-2011 Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη έντρα 2-3-4 ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Σημερινό Μάθημα 2-3-4 έντρα Ισοζυγισμένα δέντρα αναζήτησης έντρα αναζήτησης πολλαπλών

Διαβάστε περισσότερα

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων, κατακερματισμός και δομές ευρετηρίων για αρχεία. Φροντιστήριο 7 o

Βάσεις Δεδομένων. Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων, κατακερματισμός και δομές ευρετηρίων για αρχεία. Φροντιστήριο 7 o Βάσεις Δεδομένων Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων, κατακερματισμός και δομές ευρετηρίων για αρχεία Φροντιστήριο 7 o 2-2-2008 Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 6 εκεµβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 3 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ

ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί

Διαβάστε περισσότερα

HY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος

HY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος HY240 : Δομές Δεδομένων Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος Εισαγωγή Στο 2 ο μέρος της εργασίας θα πρέπει να γίνουν τροποποιήσεις στο πρόγραμμα που προέκυψε κατά την υλοποίηση του

Διαβάστε περισσότερα

Διαχρονικές δομές δεδομένων

Διαχρονικές δομές δεδομένων Διαχρονικές δομές δεδομένων Μια τυπική δομή δεδομένων μεταβάλλεται με πράξεις εισαγωγής ή διαγραφής Π.χ. κοκκινόμαυρο δένδρο εισαγωγή 0 18 0 5 39 73 1 46 6 80 Αποκατάσταση ισορροπίας 5 39 73 0 46 6 80

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Κεφάλαιο 5. Κεφ. 5 Λειτουργικά Συστήματα 1

Κεφάλαιο 5. Κεφ. 5 Λειτουργικά Συστήματα 1 Λειτουργικά Συστήματα Κεφάλαιο 5 Κεφ. 5 Λειτουργικά Συστήματα 1 Διαχείριση Κεντρικής Μνήμης Στην Κεντρική (κύρια) Μνήμη του Η/Υ αποθηκεύονται ανα πάσα στιγμή όλα τα προγράμματα που εκτελούνται στην ΚΜΕ

Διαβάστε περισσότερα

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος Ημερομηνία Παράδοσης: Δευτέρα, 15 Μαΐου 2017, ώρα 23:59. Τρόπος Παράδοσης:

Διαβάστε περισσότερα

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Περιεχόμενα 14.1 Διωνυμικά Δένδρα... 255 14.2 Διωνυμικές Ουρές... 258 14.1.1 Εισαγωγή στοιχείου σε διωνυμική ουρά... 258 14.1.2 Διαγραφή μεγίστου από διωνυμική

Διαβάστε περισσότερα

Προγραμματιστική Εργασία Μέρος Β. Δρακωνάκης Κώστας Παπαϊωάννου Αντώνης

Προγραμματιστική Εργασία Μέρος Β. Δρακωνάκης Κώστας Παπαϊωάννου Αντώνης Προγραμματιστική Εργασία Μέρος Β Δρακωνάκης Κώστας Παπαϊωάννου Αντώνης Διαδικαστικά Παράδοση: Σάββατο, 19 Δεκεμβρίου 2016, ώρα 23:59 Compile & run σε μηχανήματα της σχολής Μέρος της βαθμολογίας Τρόπος

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Πίνακες (Μια παλιά άσκηση) Εισαγωγή. A n

Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Πίνακες (Μια παλιά άσκηση) Εισαγωγή. A n Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς A n O(1) (στην πρώτη ελέυθερη θέση στο τέλος του πίνακα).

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 1. Σε δοχείο σταθερού όγκου και σε σταθερή θερμοκρασία, εισάγονται κάποιες ποσότητες των αερίων Η 2(g) και Ι 2(g) τα οποία αντιδρούν σύμφωνα με

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!).

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). ΑΛΦΑΡΙΘΜΗΤΙΚΑ Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). Αποθηκεύονται σε μεταβλητές ή σε λίστες (όπως ή ). Μπορείτε να ενώσετε δυο αλφαριθμητικά

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες ως εξής P 1 K 1 P

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

Προγραμματισμός με Logo στο MicroWorlds Pro

Προγραμματισμός με Logo στο MicroWorlds Pro 1 Προγραμματισμός με Logo στο MicroWorlds Pro Η Logo είναι μια γλώσσα προγραμματισμού ειδικά σχεδιασμένη για τους μαθητές. Το πιο βασικό ίσως εργαλείο της Logo είναι η χελώνα. Κάποιες βασικές εντολές της

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή,

Φίλη μαθήτρια, φίλε μαθητή, Φίλη μαθήτρια, φίλε μαθητή, Το παρόν τεύχος, εναρμονισμένο πλήρως με το νέο Πρόγραμμα Σπουδών 2015-2016, αποτελεί μια λογική και φυσική συνέχεια του πρώτου τεύχους. Δόθηκε ιδιαίτερη έμφαση στη μεθοδολογία

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Θέση-Μετατόπιση -ταχύτητα

Θέση-Μετατόπιση -ταχύτητα Φυσική έννοια Φυσική έννοια Φαινόμενα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Θέση-Μετατόπιση -ταχύτητα Ένα τρένο που ταξιδεύει αλλάζει διαρκώς θέση, το ίδιο ένα αυτοκίνητο και ένα πλοίο ή αεροπλάνο

Διαβάστε περισσότερα

Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης

Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Περιεχόμενα 8.1 Κατηγορίες ισορροπημένων δένδρων αναζήτησης... 155 8.1.1 Περιστροφές... 156 8.2 Δένδρα AVL... 157 8.2.1 Αποκατάσταση συνθήκης ισορροπίας... 158

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Εργαστήριο «Βάσεις Οικολογικών Δεδομένων και Εφαρμογές»

Εργαστήριο «Βάσεις Οικολογικών Δεδομένων και Εφαρμογές» 2 Ενότητα 5 Φίλτρα & Ερωτήματα 3 4 5.1 Φίλτρα Για να εμφανίσετε επιλεκτικά κάποιες εγγραφές που πληρούν κάποια κριτήρια μπορείτε να χρησιμοποιήσετε το φιλτράρισμα με βάση την επιλογή, φιλτράρισμα εκτός

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,

Διαβάστε περισσότερα

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι:

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: ΑΕσΠΠ 1 / 8 I. ΑΛΓΟΡΙΘΜΟΣ 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: i. Είσοδος : χρήση μιας μεταβλητής που δεν έχει πάρει προηγουμένως τιμή. ii. Έξοδος : ο αλγόριθμος δεν εμφανίζει

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ saltogiann@ceid.upatras.gr ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡOΒΛΗΜΑ ΤΟΥ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟY Θέλουμε τα δεδομένα που διαθέτουμε να μπορούν να αποθηκευτούν σε κάποιο πίνακα ή

Διαβάστε περισσότερα

Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της

Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της Ενότητα 2: Η κρυφή µνήµη και η λειτουργία της Στην ενότητα αυτή θα αναφερθούµε εκτενέστερα στη λειτουργία και την οργάνωση της κρυφής µνήµης. Θα προσδιορίσουµε τις βασικές λειτουργίες που σχετίζονται µε

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες

Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες Δομές δεδομένων Πίνακες Οι πίνακες είναι το πιο απλό «μέσο» αποθήκευσης ομοειδούς πληροφορίας. Χρησιμοποιούν ακριβώς όση μνήμη χρειάζεται για την αποθήκευση της πληροφορίας Επιτρέπουν την προσπέλαση άμεσα

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 4 η Τελεστές Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014 ΔΙΑΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΕΝ ΠΑΙΔΕΙΑΣ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 6/0/04 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτσεις Α-Α4

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος Διανυσματικός χώρος ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Ορισμός Διανυσματικός χώρος V πάνω στο σύνολο πραγματικός διανυσματικός χώρος V λέγεται κάθε σύνολο εφοδιασμένο με τις πράξεις της πρόσθεσης μεταξύ των στοιχείων

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΕΣ ΕΡΓΑΣΙΕΣ. Ενέργειες Ανοίγματος Χρήσης & Μεταφοράς Υπολοίπων

ΠΕΡΙΟΔΙΚΕΣ ΕΡΓΑΣΙΕΣ. Ενέργειες Ανοίγματος Χρήσης & Μεταφοράς Υπολοίπων ΠΕΡΙΟΔΙΚΕΣ ΕΡΓΑΣΙΕΣ Ενέργειες Ανοίγματος Χρήσης & Μεταφοράς Υπολοίπων Περιεχόμενα Εισαγωγή... 3 Άνοιγμα Χρήσης... 3 Άνοιγμα Χρήσης... 3 Μεταφορές Υπολοίπων στη νέα Χρήση... 4 Μεταφορά Υπολοίπων Ειδών...

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΟΜΕΣ Ε ΟΜΕΝΩΝ T. Σελλής ΑΝΟΙΞΗ 2003 ΑΣΚΗΣΗ #3 Ηµερ. Παράδοσης: 09/05/03

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2007-2008 14.02.2008 EΠΙΣΤΡΕΦΕΤΑΙ ΔΙΔΑΣΚΩΝ Ιωάννης Βασιλείου, Καθηγητής,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18 Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ. Ηλεκτρονική Υποβολή Α.Π.Δ.

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ. Ηλεκτρονική Υποβολή Α.Π.Δ. ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ Ηλεκτρονική Υποβολή Α.Π.Δ. ΠΕΡΙΕΧΟΜΕΝΑ 1) Είσοδος στην εφαρμογή 2) Δημιουργία Περιόδου Υποβολής 2.α) Ακύρωση Περιόδου Υποβολής 3) Μέθοδος Υποβολής: Συμπλήρωση Φόρμας 3.α) Συμπλήρωση

Διαβάστε περισσότερα