Προσομοίωση του Μοντέλου Ising με τη γλώσσα Fortran και τη γλώσσα Java με τη χρήση περιοδικών και αντιπεριοδικών συνοριακών συνθηκών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσομοίωση του Μοντέλου Ising με τη γλώσσα Fortran και τη γλώσσα Java με τη χρήση περιοδικών και αντιπεριοδικών συνοριακών συνθηκών"

Transcript

1 ΔΙΔΑΚΤΙΚΗ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕΔΡΙΟΥ, ΤΕΥΧΟΣ Γ Διδασκαλία της Φυσικής με Νέες Τεχνολογίες Προσομοίωση του Μοντέλου Ising με τη γλώσσα Fortran και τη γλώσσα Java με τη χρήση περιοδικών και αντιπεριοδικών συνοριακών συνθηκών Σαράντος Ψυχάρης 1, Ηρακλής Χρηστάκης 2 1 Πανεπιστήμιο Αιγαίου, Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, psycharis@rhodes.aegean.gr 2 Πανεπιστήμιο ΑΘηνών, Τμήμα Φυσικής Περίληψη. Στην παρούσα εργασία, εφαρμόζουμε τη μέθοδο προσομοίωσης Monte Carlo και τον αλγόριθμο Metropolis για τη μελέτη του Διδιάστατου Ising μοντέλου. Συγκεκριμένα μελετούμε τη μακροσκοπική ενέργεια, τη μαγνήτιση, την ειδική θερμότητα και τη μαγνητική επιδεκτικότητα του υλικού ως συνάρτηση της θερμοκρασίας απουσία ή όχι μαγνητικού πεδίου. Μελετάμε επίσης τις διαφορές που εμφανίζονται όταν συμπεριλάβουμε στους υπολογισμούς μας και τους δεύτερους γείτονες. Η μελέτη πραγματοποιείται για περιοδικές αλλά και αντιπεριοδικές συνοριακές συνθήκες. Τέλος οπτικοποιούμε τη διαδικασία με τη δημιουργία μιας εφαρμογής Java για την επιλογή της θερμοκρασίας από το χρήστη και την εμφάνιση σε γραφικό περιβάλλον των σχηματισμών από τα spin που δημιουργούνται. Η μέθοδος μπορεί να εφαρμοσθεί στην τριτοβάθμια εκπαίδευση για τη διδασκαλία του φαινομένου αλλά και για τη διδασκαλία της μεθόδου Monte Carlo και του αλγόριθμου Metropolis. Εισαγωγή Η Μέθοδος MONTE CARLO Αλγόριθμος METROPOLIS Έστω ένα σύστημα ατόμων, με πεπερασμένο αριθμό καταστάσεων(σχηματισμών) και Ε n η ενέργεια του n-οστού σχηματισμού. Η πιθανότητα το σύστημα να βρίσκεται στο n-οστό σχηματισμό είναι, σύμφωνα με το τύπο του Boltzmann: P= n En kt e Z Η μέθοδος Monte Carlo χρησιμοποιείται για να κάνει υπολογισμούς κατά προσέγγιση- πάνω σε επιλεγμένα σημεία του χώρου ολοκλήρωσης. Ειδικότερα στις θεωρίες πεδίου εφαρμόζεται για τον υπολογισμό μέσων τιμών όπως π.χ. < f >= b ( b du f U )exp( bs( U ) όπου ο τελεστής f ( U b) είναι συνάρτηση συναρτήσεων (functional) του σχηματισμού U στο πλέγμα. Η μέθοδος ουσιαστικά είναι να δημιουργηθούν από τον υπολογιστή σχηματισμοί (configurations) ο ένας μετά τον άλλον στο χρονικό διάστημα τ(τ ο διακριτός «χρόνος» του υπολογιστή).η κανονικοποιημένη πιθανότητα p ij για να περάσουμε από τον ένα σχηματισμό U b (i) στον επόμενο U b (j) σε χρόνο τ (τ ο χρόνος του υπολογιστή) συνδέεται με την πιθανότητα π j κάθε exp( β SU ( ) σχηματισμού, όταν αυτός βρίσκεται σε θερμική ισορροπία. H π j = και με τη Z μέθοδο Monte Carlo επιχειρούμε να υπολογίσουμε μέσες τιμές <f> με αθροίσματα της μορφής τ 1 Y( τ ) = f( U i). Η παραπάνω προσέγγιση δικαιολογείται θεωρητικά εξαιτίας της σχέσης: τ i = 1

2 ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ Y( τ )~ O( ). Επομένως πρέπει να δημιουργηθούν μέσα σε χρόνο τ κατάλληλοι σχηματισμοί τ και στη συνέχεια να υπολογισθούν τα f(u(τ)) και Y(τ) όπου για μεγάλες τιμές του τ η Y(τ) θα συγκλίνει στην αναμενόμενη μέση τιμή < f(u)>. Πρακτικά η μέθοδος δίνει αποτελέσματα όταν έχουμε τη δυνατότητα να δημιουργήσουμε σχηματισμούς με τη πιθανότητα exp( β SU ( ) π j =. Η διαδικασία αυτή καλείται δειγματοληψία σημαντικότητας (importance Z sampling) και πραγματοποιείται με τον αλγόριθμο Metropolis (Metropolis & Ulam 1949, McCracken 1955). Με τον αλγόριθμο αυτό δημιουργούνται καταστάσεις με μια αρχική πιθανότητα μετάβασης p* ij και μας αφήνει την ελευθερία όταν διαθέτουμε έναν αρχικό σχηματισμό U(i) να δημιουργήσουμε τον επόμενο U(j) σχεδόν αυθαίρετα. Στη συνέχεια ορίζουμε τη πιθανότητα π * j π j pij = pij αν 1 πι π < ή pij = pij * αν π j 1 i π i Το Μοντέλο ISING Η Στατιστική Φυσική έχει ως σκοπό μεταξύ των άλλων να προβλέψει τις ιδιότητες πολύπλοκων συστημάτων που αποτελούνται από πολλά αλληλεπιδρώντα σωματίδια που κινούνται με τυχαίες θερμικές κινήσεις. Τα σωματίδια μπορεί να είναι τα μόρια ενός αερίου, τα άτομα ενός μαγνήτη κλπ. Ένας τρόπος με τον οποίο οι Φυσικοί εμβαθύνθουν σε αυτά τα συστήματα είναι με τη δημιουργία μοντέλων τα οποία παρουσιάζουν μερικά από τα ενδιαφέροντα χαρακτηριστικά του συστήματος αλλά επιπλέον λύνονται αριθμητικά και με απλούστερο τρόπο. Ίσως το πιο φημισμένο από αυτά τα μοντέλα είναι το μοντέλο Ising το οποίο χρησιμοποιείται για να μοντελοποιήσει τη συμπεριφορά μαγνητών ( Στο μοντέλο αυτό ένα σύνολο από μαγνητικά spin τοποθετούνται σε ένα κανονικό πλέγμα. Κάθε spin υπάρχει σε δύο καταστάσεις «πάνω» και «κάτω» ενώ η ενέργεια του συστήματος προσδιορίζεται από το άθροισμα των αλληλεπιδράσεων του spin με τους γείτονές του στο πλέγμα(lattice). Εικόνα 1: Spin σε σημεία διδιάστατου πλέγματος. Εικόνα 2: Το spin με κόκκινο χρώμα αλληλεπιδρά με τα κίτρινα spin (στην προσέγγιση του πλησιέστερου γείτονα H τιμή του spin, σε κάθε σημείο r=(x,y), θα είναι S(r)=±1, spin πάνω ή spin κάτω αντίστοιχα, ενώ τα x,y, παίρνουν τιμές από 1 έως L (L το μέγεθος του πλέγματος). Το σύνολο

3 1124 Ι. ΣΥΝΕΡΓΑΤΗ, Π. ΣΥΓΓΡΑΦΕΑΣ των τιμών του spin στα σημεία του τετραγωνικού πλέγματος αποτελεί ένα σχηματισμό spin, ο οποίος συμβολίζεται με C. Η ενέργεια κάθε σχηματισμού spin δίνεται από τη σχέση: ( ) = ( r) ( r) ( r ) ( ) ( ) E C H S J S S J S r S r r NN SN Ο πρώτος όρος μας δίνει την ενέργεια αλληλεπίδρασης της μαγνητικής ροπής μ του κάθε ατόμου με το εξωτερικό μαγνητικό πεδίο ενώ ο δεύτερος όρος μας δίνει την ενέργεια αλληλεπίδρασης μεταξύ των spin (στη προσέγγιση του πλησιέστερου γείτονα, όπου κάθε spin αλληλεπιδρά μόνο με τα γειτονικά του spin που απέχουν από αυτό απόσταση ίση με τη σταθερά του πλέγματος) και J η σταθερά αλληλεπίδρασης πρώτων γειτόνων. Έστω ότι η J είναι θετική(δηλαδή πρόκειται για σιδηρομαγνητικό υλικό).αν τα spin είναι ομόρροπα (όλα πάνω ή όλα κάτω) τότε η ενέργεια αλληλεπίδρασης είναι αρνητική, ενώ όταν είναι αντιπαράλληλα τότε είναι θετική. Ο τρίτος όρος μας δίνει την ενέργεια αλληλεπίδρασης spin-spin των δεύτερων γειτόνων. (η άθροιση γίνεται πάνω στα ζευγάρια των δευτέρων γειτόνων και J η αντίστοιχη σταθερά αλληλεπίδρασης). Χρησιμοποιώντας την έκφραση Ε(C), για την ενέργεια ενός σχηματισμού αναζητάμε μία λύση που να ικανοποιεί τη σχέση: e-βε(c) P(C C )= e- βε(c ) P(C C). Η δημιουργία μιας τυχαίας διαδικασίας, πραγματοποιείται με τον εξής αλγόριθμο: i) Eπιλέγουμε ως αρχική κατάσταση τον σχηματισμό C0. ii) Θεωρούμε δύο τυχαίους ακεραίους τους x, y, με τιμές από 1 έως L. Η επιλογή αυτή μπορεί να γίνει με τη βοήθεια ενός γεννήτορα τυχαίων αριθμών. Έστω ότι ο σχηματισμός C προκύπτει από το σχηματισμό Cn, αλλάζοντας την τιμή του spin στο σημείο (x,y). Στη συνέχεια υπολογίζουμε την ΔΕ=E(C)-E(Cn). iii) Αυξάνουμε το n κατά 1 και διακρίνουμε περιπτώσεις : a) Αν ΔΕ 0, τότε θέτουμε Cn=C και επιστρέφουμε στο βήμα ii). b) Αν ΔΕ>0, τότε θέτουμε Cn=C, με πιθανότητα e-βδε, και επιστρέφουμε στο βήμα ii), αλλιώς θέτουμε Cn=Cn-1 και επιστρέφουμε πάλι στο βήμα ii). Το Αυθόρμητο σπάσιμο της συμμετρίας Ο Coleman (1975), εισάγοντας την έννοια του αυθόρμητου σπασίματος της συμμετρίας (ΑΣΤΣ) γράφει χαρακτηριστικά : «δεν υπάρχει κανένας λόγος γιατί το αναλλοίωτο της Χαμιλτονιανής ενός Κβαντομηχανικού συστήματος θα πρέπει να είναι και αναλλοίωτο της θεμελιώδους κατάστασης».το αυθόρμητο σπάσιμο της συμμετρίας εμφανίζεται όταν η συμμετρία της Χαμιλτονιανής του συστήματος δεν είναι και συμμετρία των θεμελιωδών καταστάσεων του συστήματος(johnson 1997, Greenberger 1978). Όταν η συμμετρία που σπάει αυθόρμητα είναι συνεχής(π.χ. αλλαγή φάσης στο πεδίο Schrodinger) τότε υπάρχουν άπειρες θεμελιώδεις καταστάσεις. Αντίθετα όταν η συμμετρία είναι διακριτή (όπως η αντιστροφή των spin στο μοντέλο Ising ) ο αριθμός των (εκφυλισμένων θεμελιωδών καταστάσεων είναι πεπερασμένος ενώ όλες συνδέονται με μετασχηματισμούς Συμμετρίας(προκύπτουν η μία από την άλλη). Το αυθόρμητο σπάσιμο της συμμετρίας εμφανίζεται σε πολλά φαινόμενα (υπαραγωγιμότητα, συμπύκνωση Bose- Εinstein,Σιδηρομαγνητισμό κ.λ.π) αλλά ακόμα και σε ολόκληρο το Σύμπαν σύμφωνα με το καθιερωμένο μοντέλο(standard model). Κατά τη θεμελίωση μιας θεωρίας σε πλέγμα, αν π.χ. για κάθε σημείο του πλέγματος υπάρχει ένα μη ζευγαρωμένο ηλεκτρόνιο, εξαιτίας της άπωσης Coulomb θα έχει ως αποτέλεσμα το χωρικό κομμάτι της κυματοσυνάρτησης να είναι Αντισυμμετρικό. Αυτό θα έχει ως αποτέλεσμα το spin κομμάτι της κυματοσυνάρτησης να είναι συμμετρικό και επομένως τα μη «ζευγαρωμένα» spin των ηλεκτρονίων θα έχουν τη

4 ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ 1125 τάση να έχουν τον ίδιο προσανατολισμό και η Χαμιλτονιανή του συστήματος είναι συμμετρική. Αν περιστρέψουμε όλα τα spin με την ίδια γωνία τότε η Χαμιλτονιανή δεν αλλάζει. Εφαρμόζοντας το θεώρημα της Noether η συμμετρία αυτή έχει ως αποτέλεσμα μια διατηρήσιμη ποσότητα που στη περίπτωσή μας είναι το ολικό spin. Για παράδειγμα η Χαμιλτονιανή H = j s s μετατίθενται ενώ καταστάσεις i j και το ολικό σπιν S = si < i, j> i με όλα π.χ τα σπιν πάνω είναι ιδιοκαταστάσεις της Η. is θ / iσ θ /2 θ θ θ Επειδή e = e = cos + iσ sin και 2 θ 2 θ θ i /2 z x i σθ θ θ + θ y e = cos + isin + προκύπτει ότι 2 2 θ θ N θ θ θ z U( θ ) = lim cos + i sin.ο όρος στην παρένθεση έχει μέτρο N 2 θ 2 is / μικρότερο του 1 και όριο είναι μηδέν, επομένως οι στροφές του τύπου U( θ) = e θ όταν δρουν στις θεμελιώδεις καταστάσεις δίνουν άλλες καταστάσεις ορθογώνιες με τις προηγούμενες. Αντιπεριοδικές Συνθήκες Για τη θεμελίωση θεωριών σε πλέγμα εφαρμόζουμε συνήθως περιοδικές συνοριακές συνθήκες. Παρά το γεγονός ότι οι περιοδικές συνθήκες ταυτίζονται συνήθως με το να μεταφέρουμε τη τελική πλευρά του πλέγματος στην αρχική (π.χ. τα σημεία με συντεταγμένες (L,j ) μεταφέρονται στα (1,j), η γενικότερη μορφή των περιοδικών συνθηκών (Barbour & Psycharis 1990, G. t-hooft 1981) είναι η εξής: A μ (L, x 2 )=Ω 1 (x 2)Α μ (0, x 2)Ω -1 1 (x 2)- i μ(ω 1(x 2)) Ω -1 1 (x 2 ) (1) όπου A μ η ποσότητα που θεωρούμε ορισμένη στο πλέγμα. Η ύπαρξη μονότιμων συναρτήσεων οδηγεί στην παρακάτω σχέση που πρέπει να ικανοποιείται από τις συναρτήσεις Ω που εκφράζουν τον τρόπο συσχέτισης της ποσότητας Aμ στα σύνορα του πλέγματος Ω 1 (L)Ω 2 (0)= Ω 2 (L)Ω 1 (0)Z 12 (2), όπου Z 12 (οι δείκτες 12 αντιστοιχούν στην επιλογή του διδιάστατου πλέγματος) στοιχείο της κυκλικής ομάδας Ζ(2). Η σχέση 2 περιορίζει την επιλογή να είναι ταυτόχρονα οι Ω 1, Ω 2 ίσες με 1. Για την παρούσα εργασία θεωρήσαμε τις συναρτήσεις Ω σταθερές και ίσες με εκθετικές συναρτήσεις των γνωστών πινάκων του Pauli. Η συνάρτηση Ω 1 (x 2) αντιστοιχεί σε μεταφορά των σημείων όπου x=l ενώ το y μεταβάλλεται και αντίστοιχα η Ω 2 (x 1) σε μεταφορά των σημείων όπου y=l και το x μεταβάλλεται. Ο σκοπός της εισαγωγής αυτών των συνοριακών συνθηκών ήταν να διαπιστώσουμε αν στο πλέγμα οι αντιπεριοδικές συνθήκες δίνουν αναλλοίωτα μεγέθη και τροποποιούν τα αποτελέσματα με περιοδικές συνθήκες εξαιτίας ακριβώς της ύπαρξης διαφορετικής τοπολογίας.

5 1126 Ι. ΣΥΝΕΡΓΑΤΗ, Π. ΣΥΓΓΡΑΦΕΑΣ Η οπτικοποίηση με Java Δημιουργήσαμε μια εφαρμογή με χρήση της γλώσσας Java ώστε να οπτικοποιηθεί η μεταβολή της θερμοκρασίας και οι μετασχηματισμοί των spin. Στο περιβάλλον της διεπαφής υπήρχε η δυνατότητα να λαμβάνονται τα δεδομένα της προσομοίωσης σε Fortran και να μπορεί ο χρήστης να «βλέπει» τους σχηματισμούς. Οι σχηματισμοί αυτοί μπορεί να δημιουργηθούν ακόμα και με χρήση βασικών εργαλείων όπως το Excel. Υπολογισμοί Με τον κώδικα σε γλώσσα προγραμματισμού Fortran υπολογίζουμε την ενέργεια, την ειδική θερμότητα C, τη μαγνήτιση Μ και τη μαγνητική επιδεκτικότητα χ ενός σιδηρομαγνητικού υλικού. Η ειδική θερμότητα υπολογίζεται από τη σχέση C = β Ε Ε L, όπου τις <Ε 2 > και τα <Ε> 2 μπορούμε εύκολα να τις υπολογίσουμε με τη βοήθεια του αλγορίθμου Metropolis. Η μαγνήτιση Μ υπολογίζεται από τη σχέση: L 2 M = Sr ( ), και η μαγνητική επιδεκτικότητα ανά πλεγματικό σημείο, υπολογίζεται από i= 1 2 τη σχέση: χ = β 2 ( Μ ) ( Μ) 2 L 2. Οι υπολογισμοί γίνονται με περιοδικές και αντιπεριοδικές συνθήκες. Για κάθε περίπτωση επίσης εφαρμόζουμε είτε «cold start», (αρχικά όλα τα spin, είτε όλα «πάνω» είτε όλα «κάτω») είτε «hot start» δηλαδή αρχικά τα spin έχουν τυχαίο προσανατολισμό. Αποτελέσματα Παρουσιάζουμε μερικά από τα αποτελέσματα που προέρχονται από την προσομοίωση για cold ή hot start και με παρουσία ή όχι μαγνητικού πεδίου καθώς και για προσέγγιση πρώτων ή δεύτερων γειτόνων. 1,0 H=0.0 H=0.4 H=0.8 H=0.0 H=0.4 H=0.8 0,8 AVE(M) 0,6 0,4 0,2 AVE(M) 0,0-0, Temperature Temperature Εικόνα 3: Περιοδικές συνθήκες μέση μαγνήτιση θερμοκρασία-πρώτοι γείτονες-cold-start για τιμές του ΔΙΔΑΚΤΙΚΗ μαγνητικού ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ πεδίου (0, 0.4, ΚΑΙ 0.8). Εικόνα 4: Αντιπεριοδικές συνθήκες μέση μαγνήτιση θερμοκρασία-πρώτοι γείτονες-cold-start για τιμές του μαγνητικού πεδίου (0, 0.4, 0.8).

6 ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ 1127 H=0.0 H=0.4 H=0.8 H=0.0 H=0.4 H=0.8 AVE(E) AVE(E) Temperature Temperature Εικόνα 5: Περιοδικές συνθήκες μέση ενέργεια θερμοκρασία-πρώτοι γείτονες- Cold-Start για τιμές του μαγνητικού πεδίο (0, 0.4, 0.8). Εικόνα 6: Αντιπεριοδικές συνθήκες μέση ενέργεια θερμοκρασία-πρώτοι γείτονες- Cold-Start για τιμές του μαγνητικού πεδίο (0, 0.4, 0.8). Η=0 ΚΑΙ Α=1 Η=0 ΚΑΙ Α=2 AVE(E) AVE(E) TEMPERATURE TEMPERATURE Εικόνα 7: Περιοδικές συνθήκες μέση ενέργεια-πρώτοι γείτονες-hot-start απουσία μαγνητικού πεδίου. Εικόνα 8: Περιοδικές συνθήκες μέση ενέργεια-δεύτεροι γείτονες-hot-start.

7 1128 Ι. ΣΥΝΕΡΓΑΤΗ, Π. ΣΥΓΓΡΑΦΕΑΣ Εικόνα 9: Σχηματισμοί σε θερμοκρασία μικρότερη της κρίσιμης με cold start και hot start. Στην προσομοίωση με τα χρήση της java κάθε μικρό κουτάκι αντιπροσωπεύει τις δυο καταστάσεις του spin S i =-1, 1 που αντιστοιχούν στα χρώματα λευκό και μπλέ αντίστοιχα. Από την προσομοίωση παρατηρήθηκαν σε γραφικό περιβάλλον τα εξής: Όταν η θερμοκρασία είναι μεγαλύτερη από τη κρίσιμη θερμοκρασία (η T κρισιμη για το δισδιάστατο μοντέλο Ising ισούται με 2/ln(1+ 2 ) = 2.269) τότε οι σχηματισμοί συγκλίνουν σε μια τυχαία μορφή ανεξάρτητα από την συνθήκη έναρξης της προσομοίωσης (cold start ή hot start ) και ανεξάρτητα από τη μορφή των συνοριακών συνθηκών. Αυτό είναι συνέπεια του γεγονότος ότι πάνω από τη κρίσιμη θερμοκρασία υπάρχει μόνο μια θερμοδυναμική κατάσταση (με μηδενική μαγνήτιση)και δεν έχει συμβεί αυτόματο σπάσιμο της συμμετρίας. Αν η θερμοκρασία είναι μικρότερη της κρίσιμης τότε διακρίναμε δυο περιπτώσεις: 1. Αν η προσομοίωση ξεκινά από cold start με π.χ. S i =1, τότε η μεγάλη πλειοψηφία των κουτιών θα είναι μπλέ και μόνο μερικά θα είναι λευκά ενώ το σύστημα θα εμφανίζει μη μηδενική μαγνήτιση. Το γεγονός αυτό επιβεβαιώνει και οπτικά το αυτόματο σπάσιμο της συμμετρίας κάτω από τη κρίσιμη θερμοκρασία και την ύπαρξη δυο «εκφυλισμένων» θεμελιωδών καταστάσεων όπου το σύστημα διαλέγει μια από τις δύο. 2. Aν η προσομοίωση ξεκινήσει με hot start σε θερμοκρασία μικρότερη της κρίσιμης, τότε το σύστημα επιλέγει δύσκολα τη κατάσταση που θα καταλήξει και σχηματίζονται μεγάλα «μπαλώματα» από spins ενώ το που θα καταλήξει το σύστημα είναι τυχαίο γεγονός. Είναι προφανές ότι η οπτικοποίηση του φαινομένου μπορεί να έχει θετική επίδραση στη διδασκαλία του ενώ μπορούν εύκολα οι φοιτητές και χωρίς τη χρήση της Java- να δημιουργήσουν από τα αποτελέσματα της Fortran κουτάκια με τα χρώματα με απλές ενέργειες στο Excel. Ο χρήστης μπορεί να αλλάζει τη μορφή της αλληλεπίδρασης, τη θερμοκρασία και ακόμα να δημιουργήσει μόνος του τα clusters των spin, γεγονός που μπορεί να βοηθήσει την εκπαιδευτική διαδικασία καθώς ο έλεγχος των παραμέτρων περνά στο επίπεδο του χρήστη. Έτσι η δυνατότητα του υπολογιστικού μοντέλου μπορεί να βοηθήσει το χρήστη να εκφράσει το δικό του νοητικό μοντέλο για το φαινόμενο και να αναγνωρίσει τις αντιλήψεις που έχει για αυτό. Συμπεράσματα Δημιουργήσαμε σε κώδικα Fortran την προσομοίωση Monte Carlo για το μοντέλο Ising σε δυο διαστάσεις. Ο σκοπός του άρθρου ήταν να παράγουμε γνωστά αποτελέσματα για το μοντέλο

8 ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ 1129 όταν χρησιμοποιούνται οι συνήθεις περιοδικές συνθήκες που δεν περιέχουν τη κυκλική ομάδα Ζ και να μελετήσουμε για τη περίπτωση αυτή αν τα αποτελέσματα εξακολουθούν να είναι τα ίδια ή υπάρχουν αποκλίσεις. Με την εισαγωγή των συνοριακών συνθηκών με χρήση των συναρτήσεων Ω τα αποτελέσματα δεν διαφέρουν από αυτά χωρίς τη χρήση των Ω για όλα τα μεγέθη (μαγνήτιση, ενέργεια, μαγνητική επιδεκτικότητα, ειδική θερμότητα).από το αποτέλεσμα αυτό φαίνεται ότι η διαφορετική τοπολογία δεν επηρεάζει τις τιμές των μεγεθών και δεν προκύπτουν τοπολογικά νέα μεγέθη πέραν αυτών που προέρχονται από συμμετρίες τύπου Noether. Μια σημαντική διαφοροποίηση που αφορά τον υπολογισμό είναι ότι στη περίπτωση των αντιπεριοδικών συνθηκών ο αριθμός των επαναλήψεων πρέπει να είναι μεγάλος όταν χρησιμοποιούμε hot start. Παρατηρήσαμε επίσης ότι καλύτερα αποτελέσματα παράγονται στη προσέγγιση των δεύτερων γειτόνων ενώ τα αποτελέσματά μας είναι πάρα πολύ κοντά στη συμπεριφορά στη κρίσιμη περιοχή. Τέλος η δημιουργία της διεπαφής με Java μπορεί να βοηθήσει τη διδασκαλία εξαιτίας της οπτικοποίησης των σχηματισμών spin. Παραπομπές Coleman, S. (1975). An introduction to spontaneous symmetry breakdown and gauge fields. Laws of Hadronic Matter Ed. A. Zichini. New York, Academic Barbour, I. & Psycharis, S. (1990): SU(2) and SU(3) Gauge Theories on a Lattice with Twisted Boundary Conditions. Nuclear Physics B334 (1990) , G. t-hooft, Comm. Math. Phys. 81 (1981) 267 ) Greenberger, D. M. (1978). Esoteric elementary particle phenomena in undergraduate physics -- spontaneous symmetry breaking and scale invariance. American Journal of Physics 46: Johnson, R. C. (1997). Floating shells: The breaking and restoration of symmetry. American Journal of Physics 65: Metropolis, N. & Ulam, S. (1949). The Monte Carlo method, J. Amer. Statistical Assoc, 44, 335 McCracken, D. D. (1955). The Monte Carlo method. Scientific American, 192,

ιδιάστατο Πρότυπο Potts µε Αριθµητικές Προσοµοιώσεις Monte Carlo

ιδιάστατο Πρότυπο Potts µε Αριθµητικές Προσοµοιώσεις Monte Carlo ιδιάστατο Πρότυπο Potts µε Αριθµητικές Monte Carlo Φίλιος Κωνσταντίνος Σχολή Εφαρµοσµένων Μαθηµατικών & Φυσικών Επιστηµών ΕΜΠ 10 Νοεµβρίου 2010 Φίλιος Κωνσταντίνος ιδιάστατο Πρότυπο Potts µε Αριθµητικές

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2019 14/3/2019 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2019 Οι λύσεις των προβλημάτων 27 και 28 * να παραδοθούν μέχρι τις 28/3/2019 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2018 8/3/2018 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2018 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 29/3/2018 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη

Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB 1 Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη 2 Στατιστική Μηχανική Μέγεθος συστημάτων Στοχαστική αντιμετώπιση Σύστημα Χαμιλτονιανή

Διαβάστε περισσότερα

Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo

Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo Κουτσιούµπας Αλέξανδρος εκέµβριος 00 Το µοντέλο Ising εισήχθη από τους Lenz (190) και Ising (195) για την περιγραφή της

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 2

Ασκήσεις Κεφαλαίου 2 Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: 016-017 Ε. Βιτωράτος Υπολογισμός της ενέργειας αλληλεπίδρασης σπιν-τροχιάς στην περίπτωση του υδρογόνου Η τιμή της ενέργειας αλληλεπίδρασης σπιν-τροχιάς

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1 Αλγόριθμος Metropols Γ. Θεοδώρου Γ. Θεοδώρου 1 Δειγματοληψία Οι δύο βασικές μέθοδοι δειγματοληψίας είναι, Κλασική δειγματοληψία (καλείται και: Monte Carlo), και Δειγματοληψία Metropols. Η βασική διαφορά

Διαβάστε περισσότερα

Διπλωματική Εργασία στην Υπολογιστική Φυσική

Διπλωματική Εργασία στην Υπολογιστική Φυσική Διπλωματική Εργασία στην Υπολογιστική Φυσική Μελέτη του Δισδιάστατου Πρότυπου Heisenberg με Μεθόδους Monte Carlo Καλλιστής Νικόλαος Επιβλέπων καθηγητής: Αναγνωστόπουλος Κωνσταντίνος Σκοπός της Διπλωματικής

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ Για ένα φυσικό σύστηµα που περιγράφεται από τις συντεταγµένες όπου συνεχής συµµετρία είναι ένας συνεχής µετασχηµατισµός των συντεταγµένων που αφήνει αναλλοίωτη

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις : Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο

Διαβάστε περισσότερα

μαγνητικό πεδίο τυχαίας κατεύθυνσης

μαγνητικό πεδίο τυχαίας κατεύθυνσης Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Σύστημα με δύο ηλεκτρόνια Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Θεωρημα 1 Εστω s S μια οποιαδήποτε κατάσταση μιας αδιαχώριστης Μαρκοβιανής αλυσίδας.

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Υπολογιστική Στατιστική Φυσική και Εφαρμογές. Γ. Θεοδώρου 1

Υπολογιστική Στατιστική Φυσική και Εφαρμογές. Γ. Θεοδώρου 1 Υπολογιστική Στατιστική Φυσική και Εφαρμογές Γ. Θεοδώρου 1 Περιεχόμενο 1. Γενικά Εισαγωγή στα MATLAB και Octave. 2. Προσομοιώσεις Monte Carlo, Τυχαίες μεταβλητές, κατανομές, πυκνότητα πιθανότητας, Τυχαίοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσεις a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον

Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον Η Ηλεκτρασθενής Ενοποίηση Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον γνωστό μας Ηλεκτρομαγνητισμό. Οι Glashow, einberg και Salam απέδειξαν ότι οι Ηλεκτρομαγνητικές αλληλεπιδράσεις

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ ΦΟΛΗ ΕΥΑΡΜΟΜΕΝΩΝ ΜΑΘΗΜΑΣΙΚΩΝ ΚΑΙ ΥΤΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΟΜΕΑ ΥΤΙΚΗ Μελέτη του Προτύπου 2D-Potts σε Υπολογιστικό Περιβάλλον MATLAB ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ ΣΟΤ Γιάννη Ασσιώτη Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Θεωρία Προσεγγίσεων Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

All rights reserved

All rights reserved Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Φυσικής Ανάλυση Δεδομένων Monte Carlo του 2D-Ising προτύπου με τη μέθοδο Μultiple Ηistogram Διπλωματική Εργασία ΔΗΜΗΤΡΙΟΣ

Διαβάστε περισσότερα

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο 1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

4.2 Finite-size scaling Binder Cumulant... 40

4.2 Finite-size scaling Binder Cumulant... 40 Αριθμητικές Προσομοιώσεις του Πρότυπου Ising στις τρεις Διαστάσεις ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ιούλιος 2013 Περιεχόμενα 1 Βασικές

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος. Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και

Διαβάστε περισσότερα

Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης

Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης Δομή του Πρωτονίου με νετρίνο 411 Η Ηλεκτρασθενής Ενοποίηση Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον γνωστό μας Ηλεκτρομαγνητισμό. Οι Glashow, Weinberg και Salam απέδειξαν ότι

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης

(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

3. ΚΛΑΣΣΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ

3. ΚΛΑΣΣΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ . ΚΛΑΣΣΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ Οι πρώτες συστηματικές μετρήσεις της επιδεκτικότητας σε μεγάλο αριθμό ουσιών και σε μεγάλη περιοή θερμοκρασιών έγιναν από τον Curie το 895. Τα αποτελέσματά του έδειξαν

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Μέθοδοι Μηχανικής Μάθησης & Βελτιστοποίησης μέσω Εννοιών Στατιστικής Φυσικής 1. Αλγόριθμοι Simulated Annealing 2. Gibbs Sampling

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ

ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ Η πιθανότητα μετάπτωσης: Δεύτερος Χρυσός κανόνα του Feri, οι κυματοσυναρτήσεις της αρχικής τελικής κατάστασης ο τελεστής της μετάπτωσης γ (Ηλεκτρομαγνητικός τελεστής). Κυματική

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L] c Σειρές Fourier-Μετασχηματισμός Fourier Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( ) [ ] για την οποία ξέρουμε ότι f() = f( ) =. Μια τέτοια συνάρτηση μπορούμε πάντα να τη γράψουμε : π f( ) = A

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d

Διαβάστε περισσότερα

ιέγερση πυρήνων να εφαρµόζεται κάθετα προς το Β 0 B 1 = C * cos (ω o

ιέγερση πυρήνων να εφαρµόζεται κάθετα προς το Β 0 B 1 = C * cos (ω o ιέγερση πυρήνων Όταν η µαγνήτιση βρίσκεται στον άξονα, τότε λέµε ότι το σύστηµα των σπιν βρίσκεται στην κατάσταση θερµικής ισορροπίας Για να διεγερθούν οι πυρήνες πρέπει να απορροφήσουν ενέργεια από κάποια

Διαβάστε περισσότερα