Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» (Ανάλυση Μονοφασικών Κυκλωμάτων) Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός ΕΜΠ 216

2 Παράσταση Εναλλασσόμενων Μεγεθών Η διέγερση γραμμικών κυκλωμάτων από πηγές τάσης ΕΡ προκαλεί επίσης ρεύματα ΕΡ ημιτονοειδούς μορφής στους κλάδους του κυκλώματος. Το δίκτυο διανομής ηλεκτρικής ενέργειας (ΔΕΗ) παρέχει στους καταναλωτές τάση ΕΡ και οι καταναλωτές με γραμμικά φορτία απορροφούν από το δίκτυο εναλλασσόμενα ημιτονοειδή ρεύματα. Η ανάλυση των ηλεκτρικών κυκλωμάτων ΕΡ πραγματοποιείται είτε στο πεδίο του χρόνου είτε στο πεδίο της συχνότητας. Στο πεδίο του χρόνου, οι αποκρίσεις των κυκλωμάτων είναι ημιτονοειδείς ή εκθετικές συναρτήσεις του χρόνου και αντιπροσωπεύουν τα πραγματικά φυσικά μεγέθη του κυκλώματος. 2

3 Παράσταση Εναλλασσόμενων Μεγεθών Στο πεδίο της συχνότητας, τα μεγέθη του κυκλώματος παριστάνονται, με κατάλληλο μετασχηματισμό, ως σταθερά διανύσματα και δίνονται σε πολική ή μιγαδική μορφή. Με το μετασχηματισμό από το πεδίο του χρόνου στο πεδίο της συχνότητας απλοποιείται η ανάλυση και η επίλυση κυκλωμάτων ΕΡ μόνο στη μόνιμη κατάσταση λειτουργίας. Τα κυκλώματα ΕΡ που εξετάζονται εδώ είναι γραμμικά, δηλαδή οι αντιστάτες, τα πηνία και οι πυκνωτές θεωρείται ότι έχουν σταθερή τιμή αντίστασης R, συντελεστή αυτεπαγωγής L και χωρητικότητας C αντίστοιχα. Υπό τις συνθήκες αυτές, όταν η τάση διέγερσης του κυκλώματος είναι εναλλασσόμενη ημιτονοειδή, τότε και τα ρεύματα και οι τάσεις στους κλάδους του κυκλώματος είναι εναλλασσόμενα ημιτονοειδή μεγέθη. Οι ηλεκτρικές μηχανές που θα εξεταστούν στη συνέχεια θεωρείται ότι αποτελούν γραμμικά φορτία για το δίκτυο της ΔΕΗ. 3

4 Παράσταση Εναλλασσόμενων Μεγεθών Στην περίπτωση που ένα κύκλωμα (φορτίο) τροφοδοτείται (διεγείρεται) από εναλλασσόμενη ημιτονοειδή τάση σταθερής συχνότητας και τα ρεύματα στους κλάδους είναι μεν εναλλασσόμενα περιοδικά μεγέθη όχι όμως ημιτονοειδή, τότε το κύκλωμα αυτό έχει μη γραμμική συμπεριφορά ή το φορτίο είναι μη γραμμικό. Κυκλώματα με μη γραμμική συμπεριφορά έχουν ηλεκτρικά στοιχεία, των οποίων η τιμή των R, L και C δεν έχει σταθερή τιμή ή διαφορετικά η χαρακτηριστική τους δεν είναι ευθεία γραμμή. Διατάξεις ηλεκτρονικών ισχύος που χρησιμοποιούνται στον έλεγχο λειτουργίας των ηλεκτρικών μηχανών (ρύθμιση στροφών, ροπής κ.λπ. κινητήρων) απορροφούν από το δίκτυο της ΔΕΗ εναλλασσόμενο ρεύμα, περιοδικό όχι όμως ημιτονοειδές, δηλαδή συνιστούν για τη ΔΕΗ ένα μη γραμμικό φορτίο. Αυτό οφείλεται στον τρόπο λειτουργίας των διατάξεων αυτών και στο γεγονός ότι διαθέτουν ημιαγωγά στοιχεία με μη γραμμική χαρακτηριστική. 4

5 Παράσταση Εναλλασσόμενων Μεγεθών στο Χρόνο Απόκριση κυκλώματος με ημιτονοειδή διέγερση στο πεδίο του χρόνου Κατά την επίλυση κυκλώματος ΕΡ στο πεδίο του χρόνου επιχειρείται η εύρεση των χρονικών συναρτήσεων των στιγμιαίων τιμών των ρευμάτων και των τάσεων των κλάδων του κυκλώματος. ( ) = sinω v t V t s o 5

6 Παράσταση Εναλλασσόμενων Μεγεθών στο Χρόνο Με εφαρμογή του νόμου των τάσεων του Kirchhoff στο μοναδικό βρόχο του κυκλώματος προκύπτει ( ) ( ) ( ) = ( ) = ( ) + ( ) ( ) v t v t v t v t v t v t s R L s R L di t V sinωt= Ri( t) + L dt Πρόκειται για γραμμική διαφορική εξίσωση με σταθερούς συντελεστές. Θεωρώντας αρχικές συνθήκες: για t = + το ρεύμα του πηνίου είναι i( + ) = (A), η λύση της διαφορικής εξίσωσης δίνει: R V V t L it ( ) = iss ( t) + itr ( t) = sin ( ωt ϕ) + e sinϕ R + L R + L ( ω L) ( ω ) R V t L it ( ) = sin ( ωt ϕ) + e sinϕ 2 2 R + ( ω ) 6

7 Παράσταση Εναλλασσόμενων Μεγεθών στο Χρόνο Το ρεύμα του κυκλώματος περιέχει δύο όρους (συνιστώσες) ρεύματος Τη μόνιμη συνιστώσα (steady state) του ρεύματος, i ss (t), η οποία περιγράφει την τιμή του ρεύματος στη μόνιμη κατάσταση ισορροπίας του κυκλώματος, V i ( ) SS t t I t R + ( ω L) ( ω ϕ) sin ( ω ϕ) = sin = 2 2 Τη μεταβατική συνιστώσα (transient) του ρεύματος, i tr (t), η οποία εκφράζει το μεταβατικό φαινόμενο της απόκρισης, V R t ( ) L itr t = e sinϕ= I 2 sinϕ e 2 R + ω L ( ) R L t 7

8 Παράσταση Εναλλασσόμενων Μεγεθών στο Χρόνο Η μόνιμη συνιστώσα του ρεύματος είναι μια ημιτονοειδής συνάρτηση του χρόνου με αρχική φάση φ. Δηλαδή, η κυματομορφή του ρεύματος i ss (t) καθυστερεί ως προς την τάση της πηγής κατά γωνία φ και αυτό συμβαίνει σε κάθε κύκλωμα με γραμμικά στοιχεία R-L. Η γωνία φ ονομάζεται γωνία φορτίου, 1 ω L ϕ = tan R Η μεταβατική συνιστώσα του ρεύματος είναι μια εκθετικά φθίνουσα συνάρτηση του χρόνου, η τιμή της οποίας θεωρητικά μηδενίζεται στο άπειρο, πρακτικά όμως μετά από χρόνο περίπου 4*(R/L) που αντιστοιχεί σε μερικές περιόδους ρεύματος. Η ποσότητα τ = L/R σε (s) ονομάζεται σταθερά χρόνου του κυκλώματος R-L και είναι ένα μέτρο του κατά πόσο γρήγορα ή αργά μηδενίζεται η μεταβατική συνιστώσα του ρεύματος μέσα στο κύκλωμα. 8

9 Παράσταση Εναλλασσόμενων Μεγεθών στο Χρόνο Η χρονική απόκριση του ρεύματος κυκλώματος με ωμικό-επαγωγική συμπεριφορά, έχει ιδιαίτερη αξία στη μελέτη βιομηχανικών ηλεκτρικών εγκαταστάσεων, αφού τα ηλεκτρικά φορτία των εγκαταστάσεων αυτών έχουν συνήθως ωμικό-επαγωγική συμπεριφορά (π.χ. μετασχηματιστές, ηλεκτρικοί κινητήρες κλπ.). Με το κλείσιμο του διακόπτη S το ρεύμα αποκτά μια μέγιστη στιγμιαία τιμή, η οποία οφείλεται στη συμβολή της μεταβατικής και μόνιμης συνιστώσας του ρεύματος. Η στιγμιαία αυτή τιμή προκαλεί δυναμική και θερμική καταπόνηση στα ηλεκτρικά μέρη της εγκατάστασης (π.χ. ζυγοί ηλεκτρικών πινάκων, τυλίγματα μετασχηματιστών υψηλής τάσης, αυτόματοι διακόπτες ισχύος κλπ.), τα οποία μπορεί και να τα καταστρέψει. Επομένως, κατά τη διαστασιολόγηση βιομηχανικού ηλεκτρικού εξοπλισμού πρέπει να λαμβάνεται υπόψη η δυναμική και η θερμική καταπόνηση που υφίσταται ο εξοπλισμός αυτός κατά τη σύνδεση και αποσύνδεση του φορτίου από το δίκτυο, αλλά και σε συνθήκες σφάλματος. 9

10 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Η ανάλυση σύνθετων κυκλωμάτων ΕΡ στο πεδίο του χρόνου απαιτεί την επίλυση συστήματος ολοκληροδιαφορικών εξισώσεων για την εύρεση των χρονικών αποκρίσεων των ρευμάτων στους κλάδους του κυκλώματος, διαδικασία επίπονη και χρονοβόρα. Στις περισσότερες περιπτώσεις, ενδιαφέρει μόνο η μόνιμη κατάσταση λειτουργίας του κυκλώματος, π.χ. των ηλεκτρικών μηχανών και ηλεκτρικών εγκαταστάσεων, όπου το φορτίο απορροφά τη μόνιμη συνιστώσα ρεύματος, i ss (t). Η εύρεση της απόκρισης της μόνιμης συνιστώσας ενός κυκλώματος ΕΡ με ημιτονοειδή διέγερση απλοποιείται κατά πολύ με τη βοήθεια του μετασχηματισμού από το πεδίο του χρόνου (time domain) στο πεδίο της συχνότητας (frequency domain). Με το μετασχηματισμό αυτό, οι ολοκληροδιαφορικές εξισώσεις, που προκύπτουν με εφαρμογή των κανόνων του Kirchhoff, μετατρέπονται σε απλές αλγεβρικές εξισώσεις. 1

11 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Μετασχηματισμός μεγεθών ΕΡ από το πεδίο του χρόνου στο πεδίο της συχνότητας Είναι γνωστό από τα μαθηματικά ότι ημιτονοειδή σήματα (π.χ. τάσης και ρεύματος) μπορούν να θεωρηθούν ως εκθετικά σήματα με μιγαδικό εκθέτη. Το εκθετικό σήμα που περιγράφει το ημιτονοειδές σήμα έχει τη μορφή: ( ) ± jωt =, = 1 xt Ae j Λαμβάνοντας υπόψη τον τύπο του Euler, το εκθετικό σήμα διατυπώνεται στο μιγαδικό επίπεδο ως, m ± jωt e = cosωt± jsinωt ( ) = cosω ± sin x t A t ja ωt του οποίου οι όροι είναι ημιτονοειδείς συναρτήσεις. m m 11

12 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Αν και η μιγαδική μορφή ενός σήματος δεν έχει φυσική σημασία, εντούτοις οι όροι του μιγαδικού σήματος παριστάνουν φυσικές ποσότητες, δηλαδή πραγματικά μεγέθη τάσεις ή ρεύματα, ± jωt { xt ( )} = { Ae m } = Am ωt ( ) Re Re cos ± jωt { } { m } Im xt = Im Ae =± Asinωt Στη γενικότερη περίπτωση, το εκθετικό σήμα με φανταστικό εκθέτη έχει τη μιγαδική μορφή με μέτρο και όρισμα, ( ) ( ωt ϕ) ( ω ϕ) sin ( ω ϕ) ± j + m m m x t = A e = A cos t+ ± ja t+ ( ) ( ωt ϕ) ( ω ϕ) sin ( ω ϕ) ± j + cos 2 2 m m m xt = Ae = A t+ + t+ = A m { ( )} { xt ( )} xt ( ) ( ωt ϕ) Im ± sin + arg xt = tan = tan = tan ± tan t+ =± t { ( ω ϕ) } ( ω ϕ) Re{ } cos( ωt + ϕ) 12

13 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Κάθε εκθετικό σήμα μπορεί να παρασταθεί στο μιγαδικό επίπεδο ως ένα διάνυσμα με μέτρο A m και όρισμα ±(ωt + φ), Επειδή το όρισμα του διανύσματος αυξάνεται σταθερά με το χρόνο κατά την ποσότητα ωt, αυτό σημαίνει ότι πρόκειται για στρεφόμενο διάνυσμα με σταθερή γωνιακή συχνότητα ω(rad/s). Ως θετική φορά περιστροφής του διανύσματος λαμβάνεται η αντίθετη φορά περιστροφής των δεικτών του ρολογιού. Πολική μορφή του εκθετικού σήματος, X= xt xt = A ± t+ ( ) arg ( ) { } ( ω ϕ) m 13

14 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Τα προηγούμενα συμπεράσματα δίνουν τη δυνατότητα της διατύπωσης ημιτονοειδών μεγεθών τάσης και ρεύματος ως εκθετικά σήματα, j( ω t+ ϕ ) j( ω t+ θ ) V= Ve, I= Ie το πραγματικό μέρος των οποίων εκφράζει τις ημιτονοειδείς κυματομορφές των μεγεθών στο πεδίο του χρόνου, Re Re Re cos sin cos j( ωt+ ϕv ) ( V) = Ve = { V ( ωt+ ϕv ) + j ( ωt+ ϕv ) } = V ( ωt+ ϕv ) = vt ( ) j( ωt+ ϕi ) ( I) = Ie = { I ( ωt+ ϕi) + j ( ωt+ ϕi) } = I ( ωt+ ϕi) = it ( ) Re Re Re cos sin cos Επομένως, τα ημιτονοειδή μεγέθη ΕΡ της τάσης και του ρεύματος μπορούν να παρασταθούν ως διανύσματα με μέτρο και όρισμα, τα οποία στρέφονται με σταθερή γωνιακή ταχύτητα, ω=2πf, και με σταθερή φασική διαφορά μεταξύ τους. 14

15 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Όμως, επειδή τα δύο διανύσματα περιστρέφονται με την ίδια γωνιακή συχνότητα ω, η μεταξύ τους σχετική θέση παραμένει αμετάβλητη. Αυτό σημαίνει ότι, ένας παρατηρητής που κινείται με την ίδια γωνιακή συχνότητα και με την ίδια φορά περιστροφής με αυτή των δύο διανυσμάτων βλέπει τα δύο διανύσματα ακίνητα και μετατοπισμένα το ένα ως προς το άλλο κατά τη γωνία φ θ. 15

16 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Επομένως, η μετάβαση από το πεδίο του χρόνου στο πεδίο της συχνότητας απαλείφει το χρόνο και για την παράσταση στρεφόμενου διανύσματος στο πεδίο της συχνότητας απαιτούνται το μέτρο ή πλάτος, η συχνότητα και η αρχική φάση του σήματος. Παράδειγμα Ημιτονοειδές σήμα τάσης που παρέχει πηγή ΕΡ της μορφής: ( ) = 23cos( 1 + 5) vt t V με γωνιακή ταχύτητα και συχνότητα, ω= 1 rad / s, f = 1 / 2π Hz μπορεί να παρασταθεί με στρεφόμενο διάνυσμα σε πολική μορφή: V = 23 5 ( V) 16

17 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών και σε μιγαδική μορφή: V = 23 cos5 + j sin 5 = 147,84+ j176,19 ( V) ( ) Ο μετασχηματισμός στο πεδίο της συχνότητας (διανυσματική παράσταση) δεν έχει καμία φυσική σημασία, αφού δεν εκφράζει τη στιγμιαία τιμή του σήματος, πραγματοποιείται δε μόνο για την απλοποίηση της επίλυσης κυκλωμάτων ΕΡ στη μόνιμη κατάσταση. Για να βρεθεί η πραγματική λύση, δηλαδή η στιγμιαία τιμή του χρονικά μεταβαλλόμενου σήματος, πρέπει να πραγματοποιηθεί ο αντίστροφος μετασχηματισμός από το πεδίο της συχνότητας στο πεδίο του χρόνου. 17

18 Διανυσματική Παράσταση Εναλλασσόμενων Μεγεθών Παράδειγμα Έστω το σταθερό διάνυσμα ρεύματος στο πεδίο της συχνότητας στην πολική μορφή: I = 45 3 ( A) με πλάτος ρεύματος (ή RMS τιμή) 45 (Α) και αρχική φάση -3. Εάν η συχνότητα του ρεύματος είναι f = 5(Hz) και η γωνιακή συχνότητα ω = 2 π f = 314 (rad/s), τότε το παραπάνω ρεύμα στο πεδίο της συχνότητας αντιστοιχεί στο ημιτονοειδές σήμα στο πεδίο του χρόνου: ( ) ( = ) it 45cos 314t 3 ( A) 18

19 Διαδικασία Επίλυσης Κυκλωμάτων ΕΡ Για την επίλυση ενός κυκλώματος ΕΡ στη μόνιμη κατάσταση λειτουργίας, μετασχηματίζουμε τις τάσεις, τα ρεύματα και τις αντιστάσεις των ηλεκτρικών στοιχείων του κυκλώματος στο πεδίο της συχνότητας και επιλύουμε το κύκλωμα με απλές αλγεβρικές πράξεις (μιγαδικών αριθμών). Από την επίλυση του κυκλώματος, προκύπτουν τα ρεύματα στους κλάδους του κυκλώματος και οι τάσεις στα άκρα των στοιχείων στο πεδίο της συχνότητας. Στη συνέχεια, με εφαρμογή του αντίστροφου μετασχηματισμού, μετατρέπουμε τις ποσότητες αυτές στο πεδίο του χρόνου που εκφράζουν τις πραγματικές κυματομορφές των μεγεθών αυτών. 19

20 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός ωμικής αντίστασης (αντιστάτης) στο πεδίο της συχνότητας Κύκλωμα στο πεδίο του χρόνου ( ) = ( ω + ϕ) v sin ( ) R t V t V ( ) vr t V i ( ) R t = = sin ( ωt+ ϕ) ( A) R R Οι κυματομορφές τάσης και ρεύματος σε αντιστάτη είναι μεγέθη συμφασικά, δηλαδή το ρεύμα και η τάση αποκτούν την ίδια στιγμή τη μέγιστη θετική, ελάχιστη αρνητική και μηδενική τιμή τους. 2

21 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός ωμικής αντίστασης (αντιστάτης) στο πεδίο της συχνότητας Κύκλωμα στο πεδίο της συχνότητας V IR = = I ( A) R ϕ ϕ V R = R I R Από το πολικό διάγραμμα, φαίνεται ότι τα διανύσματα της τάσης και του ρεύματος της αντίστασης στο πεδίο της συχνότητας είναι συμφασικά (έχουν την ίδια φάση), άρα συγγραμμικά. Η αντίσταση R δεν επηρεάζεται από το μετασχηματισμό στο πεδίο της συχνότητας. VR = V ϕ ( V) 21

22 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός αυτεπαγωγής στο πεδίο της συχνότητας Κύκλωμα στο πεδίο του χρόνου Τάση και ρεύμα πηνίου ( ) = ( ω + ϕ) v cos ( ) L t V t V 1 t L ( ) ( ) i t = v t dt L t 1 V V π il( t) = vl( t) dt = ( ωt + ϕ) = ωt ϕ A L Lω Lω + 2 Από τη σύγκριση των v L (t) και i L (t), προκύπτει ότι στο πηνίο η κυματομορφή του ρεύματος καθυστερεί της τάσης κατά -9 ο. sin cos ( ) 22

23 Μετασχηματισμός στο Πεδίο της Συχνότητας Το ρεύμα στο πηνίο στο πεδίο του χρόνου καθυστερεί της τάσης που εφαρμόζεται στα άκρα του κατά π/2 = -9 Ο. 23

24 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός αυτεπαγωγής στο πεδίο της συχνότητας Κύκλωμα στο πεδίο της συχνότητας Τάση και ρεύμα πηνίου VL = V ϕ ( V) I L V π = ϕ ( A) Lω 2 Το διάνυσμα του ρεύματος πηνίου στο πεδίο της συχνότητας καθυστερεί ως προς το διάνυσμα της τάσης κατά γωνία π/2 = - 9 ο. 24

25 Μετασχηματισμός στο Πεδίο της Συχνότητας Ο λόγος της τάσης στα άκρα του πηνίου προς το ρεύμα που το διαρρέει δίνει την αντίσταση του πηνίου στο πεδίο της συχνότητας, X L VL X = L = L 2= L e = jl I L jπ 2 ω π ω ω Το μέγεθος ονομάζεται επαγωγική αντίδραση (inductive reactance) του πηνίου, έχει διαστάσεις (Ω) και είναι το ανάλογο της αυτεπαγωγής για το πεδίο της συχνότητας. Το μέτρο και το όρισμα της επαγωγικής αντίδρασης είναι: π X = Lω, X = Με εφαρμογή του νόμου του Ohm στο πεδίο της συχνότητας, η τάση στα άκρα του πηνίου είναι: V = X I = jlω I L L L L L L 2 25

26 Μετασχηματισμός στο Πεδίο της Συχνότητας Το αντίστροφο της επαγωγικής αντίδρασης I L 1 π 1 jπ 2 1 B = L = = e = j V Lω 2 Lω Lω L ονομάζεται επαγωγική επιδεκτικότητα (inductive susceptance), έχει διαστάσεις αγωγιμότητας, μετράται σε (S) και έχει μέτρο και όρισμα B L 1 π =, BL = Lω 2 Η επαγωγική αντίδραση και η επαγωγική επιδεκτικότητα έχουν νόημα μόνο στο πεδίο της συχνότητας, αφού δεν έχουν αντίστροφο μετασχηματισμό στο πεδίο του χρόνου (είναι λόγοι στρεφόμενων διανυσμάτων), και μάλιστα, ως μιγαδικά μεγέθη, δεν έχουν καμία φυσική σημασία. Φυσική σημασία έχουν μόνο τα μέτρα τους!. 26

27 Μετασχηματισμός στο Πεδίο της Συχνότητας Η επαγωγική αντίδραση του πηνίου είναι ανάλογη της συχνότητα, f, του ρεύματος που το διαρρέει. Στο ΣΡ η συχνότητα είναι f = και το πηνίο συμπεριφέρεται ως βραχυκύκλωμα. Αυτό συμβαίνει σε ιδανικό πηνίο, το οποίο έχει μηδενική ωμική αντίσταση. Στην πράξη, όμως, το πηνίο εμφανίζει μια μικρή ωμική αντίσταση, αφού οι σπείρες του πηνίου διαμορφώνονται από μεταλλικό (χάλκινο) αγωγό, με αποτέλεσμα να περιορίζεται κάπως η τιμή του ρεύματος. Εάν η συχνότητα του ρεύματος είναι πολύ μεγάλη, η επαγωγική αντίδραση αποκτά πολύ υψηλή τιμή, περιορίζοντας έτσι στο ελάχιστο την ένταση ΕΡ μέσα από αυτό. Σε αυτή την κατάσταση λειτουργίας, τα πηνία ονομάζονται αποπνικτικά ή στραγγαλιστικά, επειδή αποκόπτουν τις υψηλές συχνότητες. Στην ιδεατή περίπτωση που είναι f, το πηνίο συμπεριφέρεται ως ανοικτό κύκλωμα. 27

28 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός χωρητικότητας στο πεδίο της συχνότητας Κύκλωμα στο πεδίο του χρόνου Τάση και ρεύμα χωρητικότητας ( ) = ( ω + ϕ ) v cos ( ) C t V t V dvc ic ( t) = C dt ( t) ( t) dvc π ic ( t) = C = VCωsin ( ωt+ ϕ) = VC ωcos ωt+ ϕ + dt 2 Από τη σύγκριση των v C (t) και i C (t), προκύπτει ότι η κυματομορφή του ρεύματος στον πυκνωτή προπορεύεται της τάσης κατά 9 ο. 28

29 Μετασχηματισμός στο Πεδίο της Συχνότητας Το ρεύμα στον πυκνωτή προπορεύεται της τάσης που εφαρμόζεται στα άκρα του κατά π/2 = 9 Ο 29

30 Μετασχηματισμός στο Πεδίο της Συχνότητας Μετασχηματισμός χωρητικότητας στο πεδίο της συχνότητας Κύκλωμα στο πεδίο της συχνότητας Τάση και ρεύμα πυκνωτή VC = V ϕ ( V) π IC = VC ω ϕ+ ( A) 2 Το διάνυσμα του ρεύματος πυκνωτή στο πεδίο της συχνότητας προπορεύεται ως προς το διάνυσμα της τάσης κατά γωνία π/2 = 9 ο. 3

31 Μετασχηματισμός στο Πεδίο της Συχνότητας Ο λόγος της τάσης στα άκρα του πυκνωτή προς το ρεύμα που το διαρρέει δίνει την αντίσταση του πυκνωτή στο πεδίο της συχνότητας, VC 1 1 jπ 2 1 X = C = ( π 2) = e = j I Cω Cω Cω X C C Το μέγεθος ονομάζεται χωρητική αντίδραση (capacitive reactance) του πυκνωτή, έχει διαστάσεις (Ω) και είναι αντιστρόφως ανάλογη της χωρητικότητας στο πεδίο της συχνότητας. Το μέτρο και το όρισμα της χωρητικής αντίδρασης είναι: Με εφαρμογή του νόμου του Ohm στο πεδίο της συχνότητας, η τάση στα άκρα του πηνίου είναι: 1 1 VC = XC IC = IC = j IC jcω Cω X C = 1 π, XC Cω = 2 31

32 Μετασχηματισμός στο Πεδίο της Συχνότητας Το αντίστροφο της χωρητικής αντίδρασης IC π jπ 2 B = C = Cω = Cω e = jcω V 2 C ονομάζεται χωρητική επιδεκτικότητα (capacitive susceptance), έχει διαστάσεις αγωγιμότητας, μετράται σε (S) και έχει μέτρο και όρισμα B = Cω, B = C Η χωρητική αντίδραση και η χωρητική επιδεκτικότητα έχουν νόημα μόνο στο πεδίο της συχνότητας, αφού δεν έχουν αντίστροφο μετασχηματισμό στο πεδίο του χρόνου (είναι λόγοι στρεφόμενων διανυσμάτων), και μάλιστα, ως μιγαδικά μεγέθη, δεν έχουν καμία φυσική σημασία. Φυσική σημασία έχουν μόνο τα μέτρα τους!. π 2 C 32

33 Μετασχηματισμός στο Πεδίο της Συχνότητας Η χωρητική αντίδραση του πυκνωτή είναι αντιστρόφως ανάλογη της συχνότητας, f, του ρεύματος που τον διαρρέει. Στο ΣΡ η συχνότητα είναι f =, η χωρητική αντίδραση είναι άπειρη και ο πυκνωτής συμπεριφέρεται ως ανοιχτό κύκλωμα. Στις υψηλές συχνότητες η χωρητική αντίδραση του πυκνωτή αποκτά πολύ μικρή τιμή και επομένως ο πυκνωτής συμπεριφέρεται ως βραχυκύκλωμα. 33

34 Ανάλυση Κυκλωμάτων ΕΡ στο Πεδίο της Συχνότητας Για το μετασχηματισμό κυκλώματος ΕΡ στο πεδίο της συχνότητας, το οποίο βρίσκεται σε ημιτονοειδή μόνιμη κατάσταση ισορροπίας, ακολουθούνται τα εξής βήματα: Τα σήματα των ανεξάρτητων πηγών τάσης εκφράζονται με τον ίδιο τριγωνομετρικό αριθμό, π.χ. με ημίτονο ή συνημίτονο. Τα σήματα των ανεξάρτητων πηγών τάσης μετασχηματίζονται στο πεδίο της συχνότητας σε διανύσματα. Η τάση και το ρεύμα κάθε κλάδου αντικαθίσταται με διανύσματα στο πεδίο της συχνότητας. Οι αυτεπαγωγές L αντικαθίστανται με επαγωγικές αντιδράσεις jlω ή με επαγωγικές επιδεκτικότητες 1/ jlω. 34

35 Ανάλυση Κυκλωμάτων ΕΡ στο Πεδίο της Συχνότητας Οι χωρητικότητες C αντικαθίστανται με χωρητικές αντιδράσεις 1/jCω ή χωρητικές επιδεκτικότητες jcω. Οι αντιστάσεις R και οι αγωγιμότητες 1/R μένουν αναλλοίωτες. Διατυπώνονται οι εξισώσεις των βρόχων και των κόμβων του κυκλώματος στο πεδίο της συχνότητας (εξισώσεις Kirchhoff). Οι τάσεις και τα ρεύματα των κλάδων του κυκλώματος αντικαθίστανται με τις σχέσεις V I των στοιχείων του κυκλώματος στο πεδίο της συχνότητας. Επιλύονται οι αλγεβρικές εξισώσεις και υπολογίζονται οι τάσεις και τα ρεύματα στους κλάδους του κυκλώματος στο πεδίο της συχνότητας (μιγαδικές ποσότητες). 35

36 Ανάλυση Κυκλωμάτων ΕΡ στο Πεδίο της Συχνότητας Η τελική λύση που προκύπτει στο πεδίο της συχνότητας μετασχηματίζεται αντίστροφα στο πεδίο του χρόνου. Για την επίλυση συστήματος εξισώσεων κυκλώματος ΕΡ, χρησιμοποιούνται απλές αλγεβρικές πράξεις με μιγαδικούς αριθμούς. Τα διανύσματα των τάσεων, των ρευμάτων και των αντιδράσεων των ηλεκτρικών στοιχείων του κυκλώματος εκφράζονται είτε σε πολική ή σε μιγαδική μορφή σε καρτεσιανό επίπεδο. Οι νόμοι του Ohm και του Kirchhoff ισχύουν και στο ΕΡ, με τη διαφορά ότι τα μεγέθη τάσης, ρεύματος και αντίστασης είναι εκφρασμένα στο πεδίο της συχνότητας (σε διανυσματική μορφή). 36

37 Παράσταση με Μιγαδικούς Αριθμούς Ένας μιγαδικός αριθμός μπορεί να διατυπωθεί με τέσσερις διαφορετικούς τρόπους, Τετραγωνική (αλγεβρική) μορφή: z= x+ jy Πολική μορφή: Εκθετική μορφή: z= r θ z= j re θ Τριγωνομετρική μορφή: ( cosθ sinθ) z= r + j 37

38 Πράξεις με Μιγαδικούς Αριθμούς Πρόσθεση και αφαίρεση μιγαδικών αριθμών z = x + jy, z = x + jy = ( + ) + ( + ) z z = ( x x ) + j( y y ) z z x x j y y

39 Πράξεις με Μιγαδικούς Αριθμούς Πολλαπλασιασμός μιγαδικών αριθμών z = x + jy, z = x + jy Εκθετική μορφή: ( jθ )( ) 1 jθ 2 j( 1+ 2) zz = re re = rre θ θ Πολική (ή Steinmetz) μορφή: ( θ )( θ ) ( θ θ ) z z = r r = rr Τετραγωνική μορφή: ( ) ( ) zz= xx yy + j xy+ yx

40 Πράξεις με Μιγαδικούς Αριθμούς Διαίρεση μιγαδικών αριθμών z = x + jy, z = x + jy Εκθετική μορφή: jθ1 z1 re 1 r1 = = jθ 2 e z re r j ( θ θ ) 1 2 Πολική (ή Steinmetz) μορφή: Τετραγωνική μορφή: z1 r1 θ1 r1 = = z r θ r ( θ θ ) 1 2 ( xx+ yy) + j( yx yx) z = z x y

41 Πράξεις με Μιγαδικούς Αριθμούς Συζυγής μιγαδικού αριθμού Εκθετική μορφή: z= re Πολική (ή Steinmetz) μορφή: Τριγωνομετρική μορφή: z jθ = re 1 jθ 1 jθ z x jy re r = + = = θ ( cosθ sinθ) z = r + j z= r θ z = r θ ( cosθ sinθ) ( cosθ sinθ) z= r + j z = r j Τετραγωνική μορφή: z= x+ jy z = x jy 41

42 Παραδείγματα με Μιγαδικούς Αριθμούς Δίνονται οι μιγαδικοί αριθμοί: 1 o V = 5+ j2( V), I = ( A), ZL= j5( Ω ), ZC = ( Ω ), ZR= 1+ j( Ω) j,5 και ζητούνται να υπολογιστούν οι ποσότητες: Λύση V ( ) S= VI, Z=, Zts, = ZL+ ZC+ ZR, Ztp, = + + I Z Z Z L C R V = 5+ j2= tan 538,52 21,8 5 = o cos( o 38 ) sin( o I = = j 38 ) + = 44,13 j34,5 o 1 ZL= j5= 5 9, ZC = = j2, ZR= 1+ j= 1 j,5 o o 42

43 Παραδείγματα με Μιγαδικούς Αριθμούς S= VI = = ( 538,52 56) ( o o 21,8 38 ) o S= VI = + = 3.157,12 59,8 S= VI = 3.157,12 cos59,8 + j sin 59,8 = ,63+ j ( o)( o 538,52 21, ) ( o 538,52 21,8 )( o ) ( o o) Z Z o V 538,52 21,8 o = = = 9,62 21,8 38 I o o = 9,62 59,8 = 4,84+ j8,3 ( o) Zts, = ZL+ ZC+ ZR= j + j + + j o Z = 1+ j3= 31,62 71,57 ts, ( 5) ( 2) ( 1 ) 43

44 Παραδείγματα με Μιγαδικούς Αριθμούς t p = + + = o + + o Z L ZC ZR o Z =,2 9 + j,5+,1= j,2+ j,5+,1=,1+ j,3 ( ) 1 Z, ( j,5) ( ) t, p Z t, p 1 1 = = = 9,58 16,7 = 9,18 j2,75.,1+ j,3,144 16,7 Οι ζητούμενοι μιγαδικοί αριθμοί έχουν εκφραστεί σε τετραγωνική και πολική μορφή. Για πρόσθεση και αφαίρεση μιγαδικών αριθμών προτιμάται η τετραγωνική μορφή και για πολλαπλασιασμό ή διαίρεση προτιμάται η πολική μορφή. 44

45 Παραδείγματα Επίλυσης Κυκλωμάτων ΕΡ στη Μόνιμη Κατάσταση Παράδειγμα 1 vs( t) = Vosin ( ω t), Vo= 325V Δεδομένα: f = 5 Hz, R = 1 Ω, L = 1mH Ζητείται: Το ρεύμα του κυκλώματος στο πεδίο του χρόνου και στο πεδίο της συχνότητας στη μόνιμη κατάσταση. Λύση: Μετατροπή των στοιχείων του κυκλώματος στο πεδίο της συχνότητας: VS = V = 325 ( V) XL = jlω= j2π f L 3 X = j2 π = j31,4 ( Ω) L 45

46 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 1 Με εφαρμογή των νόμων των τάσεων και ρευμάτων του Kirchhoff: V V V = V = V + V I = I = I = I S R L S R L S R L Τάσεις του κυκλώματος στο πεδίο της συχνότητας: VL= XL IL= jlωi= j31, 4 I ( V) V = RI = RI = 1 I ( V) R R Ρεύμα κυκλώματος στο πεδίο της συχνότητας: V = RI+ jlωi= I R+ jl I= S ( ω) V S ( R+ jlω) 46

47 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 1 VS V I = = ( R+ jlω) Lω R + ( Lω) tan R I = = = 9,86 72, , 4 32,95 72, , 4 tan 1 Η ποσότητα, Z R jl R L ( ω) 2 2 = + ω= + tan 1 ( ) ονομάζεται σύνθετη αντίσταση κυκλώματος με ωμικό-επαγωγική συμπεριφορά. Lω R 47

48 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 1 Αντίστροφος μετασχηματισμός του ρεύματος στο πεδίο του χρόνου: ( ) it ( ) 1 = sin ω tan 2 2 t R V + ( Lω) it= t A 9,86 sin (314 72,33 ) ( ). Lω R Στη διανυσματική απεικόνιση (στο πεδίο της συχνότητας), εάν ληφθεί το διάνυσμα της τάσης της πηγής ως διάνυσμα αναφοράς, τότε το διάνυσμα του ρεύματος καθυστερεί ως προς το διάνυσμα της τάσης κατά γωνία -72,33 (επαγωγική συμπεριφορά του κυκλώματος). 48

49 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 1 Τάση και ρεύμα στο πεδίο του χρόνου Τάση και ρεύμα στο πεδίο της συχνότητας 49

50 Παράδειγμα 2 Δεδομένα: π vs( t) = Vosin ω t+, Vo= 23V 6 f = 5 Hz, R = 8 Ω, C = 15µ F Ζητείται: Το ρεύμα του κυκλώματος στο πεδίο του χρόνου και στο πεδίο της συχνότητας στη μόνιμη κατάσταση. Λύση: Μετατροπή των στοιχείων του κυκλώματος στο πεδίο της συχνότητας: ( ) V 6 rad S = V π = 23 3 ( V) 5

51 Επίλυση Κυκλώματος ΕΡ Παράδειγμα XC = j = j = j = Ω Cω π Τάσεις του κυκλώματος στο πεδίο της συχνότητας: 1 VC = XC IC = j I = j2,12 I ( V) Cω V = RI = RI = 8 I ( V) R R 2,12 2,12 9 ( ) Με εφαρμογή των νόμων των τάσεων και ρευμάτων του Kirchhoff: V V V = V = V + V I = I = I = I S R C S R C S R C 51

52 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 2 Ρεύμα κυκλώματος στο πεδίο της συχνότητας: 1 1 VS VS = RI j I = I R j I = Cω Cω 1 R j C ( ) ω rad V S V ( π 6) I = = 1 2 R j Cω R + tan Cω CRω I = = 8, 28 14, ,12 tan I = 27, ,86 = 27,78 44,86 ( A) 52

53 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 2 Η ποσότητα, Z= R j = R + tan Cω Cω CRω ονομάζεται σύνθετη αντίσταση κυκλώματος με ωμικό-χωρητική συμπεριφορά. Αντίστροφος μετασχηματισμός του ρεύματος στο πεδίο του χρόνου: Το ρεύμα V 1 1 προπορεύεται της it ( ) = sin ω t+ tan CRω τάσης κατά τη R + ω γωνία: 44,86 C 3 = 14,86 λόγω it ( ) = 27,78 sin (314t+ 44,86 ) ( A). της χωρητικής του συμπεριφοράς. 53

54 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 2 Τάση και ρεύμα στο πεδίο του χρόνου Τάση και ρεύμα στο πεδίο της συχνότητας 54

55 Παράδειγμα 3 Δεδομένα: ( ω ) v ( t) = V sin t, V = 325V s o o f = 5 Hz, R = 5 Ω, C = 8 µ F, L = 15mH Ζητείται: Το ρεύμα του κυκλώματος στο πεδίο του χρόνου και στο πεδίο της συχνότητας στη μόνιμη κατάσταση. Λύση: Μετατροπή των στοιχείων του κυκλώματος στο πεδίο της συχνότητας: 55

56 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 3 V = V = V S 325 ( ) 1 1 XC = j = j = j = Ω 6 Cω π 5 X = jlω= j = j = Ω L 3,98 3,98 9 ( ) ,1 47,1 9 ( ) 1 VC = XC IC = j I = j3,98 I ( V) Cω VL= XL IL= j47,1 I ( V) VR= RIR= RI = 5 I ( V) VS VR VC VL = VS = VR+ VC + VL I = I = I = I = I S R C L 56

57 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 3 Ρεύμα κυκλώματος στο πεδίο της συχνότητας: 1 1 VS = RI + jlωi j I= I R+ jlω j Cω Cω 1 VS VS = I R+ j Lω I = Cω R+ j Lω I = 7, 48 ( 83,94 ) = 7, 48 ( 83 ) 1 Cω VS V I = = ω ω 1 R + j L LC ω + ω tan C R L ω C CRω I = = , 41 83, ( 47,1 3,98) tan ,94 ( A) 57

58 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 3 Η ποσότητα, LCω 1 Z= R + j Lω = R + Lω tan Cω Cω CRω ονομάζεται σύνθετη αντίσταση κυκλώματος με στοιχεία R-L-C συνδεδεμένα σε σειρά. Εάν ισχύει: Lω > 1/ωC επικρατεί η επαγωγική συμπεριφορά, ενώ εάν είναι: Lω < 1/ωC επικρατεί η χωρητική συμπεριφορά στο κύκλωμα. 58

59 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 3 Αντίστροφος μετασχηματισμός του ρεύματος στο πεδίο του χρόνου: ( ) it ( ) sin ω = t R V + Lω ω C 7,48 sin (314 83,94 ) ( ). it= t A tan 1 2 LCω 1 CRω Το ρεύμα καθυστερεί της τάσης κατά τη γωνία: -83,94 και επομένως το κύκλωμα εμφανίζει έντονη επαγωγική συμπεριφορά. 59

60 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 3 Τάση και ρεύμα στο πεδίο του χρόνου Τάση και ρεύμα στο πεδίο της συχνότητας 6

61 Παράδειγμα 4 61

62 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Δεδομένα: π vs( t) = Vosin ω t +, Vo= 325 V, f = 5 Hz, 4 R= 1,2 Ω, R= 3 Ω, C= 1 µ FL, =,15H 1 2 Ζητούνται: (α) Τα ρεύματα στους κλάδους και οι τάσεις στα άκρα κάθε στοιχείου του κυκλώματος στο πεδίο της συχνότητας και στο πεδίο του χρόνου στη μόνιμη κατάσταση λειτουργίας. (β) Η διαφορά φάσης μεταξύ των διανυσμάτων της τάσης και του ρεύματος της πηγής στο πεδίο της συχνότητας. Λύση: (α) Υπολογισμός των ρευμάτων και των τάσεων στους κλάδους του κυκλώματος στο πεδίο του χρόνου και στο πεδίο της συχνότητας: 62

63 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Εξισώσεις κυκλώματος: Κόμβος Α: Βρόχος m 1 : Βρόχος m 2 : IC + IL= IS + = IS R1 XCIC VS X I X I I R = C C L L L 2 Μετασχηματισμός των στοιχείων στο πεδίο της συχνότητας: 1 1 XC = j = j = j3,1831 Ω, 6 Cω π 5 XL = jlω= j,15 2 π 5= j47,1239 Ω, V = V = + j = + j V S ( ) cos 45 sin ,81 229,81. 63

64 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Αναδιατύπωση των εξισώσεων στη μορφή: Z I = V IS IC IL= IS R1 + IC XC + IL = VS I + I X I X + R = S C C L L ( ) I S 1 R1 j I C V S Cω = I L 1 j ( jlω+ R2 ) Cω 64

65 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Όπου: I S 1 Z R1 j, I IC, V V = S Cω = = I L 1 j ( jlω+ R2 ) Cω 65

66 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Επίλυση του συστήματος κατά τα γνωστά με αναστροφή του πίνακα 1 των αντιστάσεων Z. Ο πίνακας των ρευμάτων είναι: I S 1 IC R1 j V = S Cω I L 1 j ( jlω+ R2 ) Cω 1 I S IC 1, 2 j3, ,81 j229,81 = + I L j3,1831 ( j47, ) I S 4,1 I 15+ j 92, , , 28 = C 37,1392 j87, = 94, ,5 I L 2,8723+ j 5,7127 6, ,69 1 I = Z V 66

67 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Με εφαρμογή του νόμου του Ohm, οι πτώσεις τάσης στα στοιχεία των κλάδων του κυκλώματος στο πεδίο της συχνότητας είναι: ( 11, , 28 ) ( 1, 2) V R1 IS R 1 ( V 6, ,69 ) ( 3) R2 IL R 2 = = ( ) ( V 94, ,5 3, ) Xc IC X C VXL IL XL ( (6, ,69 ) 47, ) V R1 48,14+ j111,59 121, , 28 V 8,6169 j17,1381 R2 19, ,69 + = = V 277,82+ j118, 22 Xc 31, ,5 V XL 269, 2 j135,35 31, ,31 67

68 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Τα ρεύματα στους κλάδους και οι τάσεις στα στοιχεία του κυκλώματος προκύπτουν με τον αντίστροφο μετασχηματισμό από το πεδίο της συχνότητας στο πεδίο του χρόνου. Είναι: ( ) ( ) I 11, 24sin 113, 28 S 11, , 28 is t ω t + ( ) ( I 94, ,5 94,85sin 113,5 ) C ic t ω t = = + I 6, ,69 ( ) ( 6,35sin 116,69 ) L il t ω t + ( t) ( t) ( t) ( t) ( ω t + ) ( ω t ) ( ω t ) ( ω t ) 121, 48sin 113, 28 V R1 121, , 28 vr 1 19,18sin 116,69 R2 19, ,69 v V + R2 = = V Xc 31, ,5 v Xc 31,93sin + 23,5 VXL 31, ,31 vxl 31,92sin 153,31 68

69 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 (β) Η διαφορά φάσης μεταξύ των διανυσμάτων της τάσης και του ρεύματος της πηγής, είναι η διαφορά των αρχικών φάσεων των διανυσμάτων στο πεδίο της συχνότητας, V S I S ϕis Vs = ϕis ϕvs = 113, = 68, 28 Επομένως, το ρεύμα που παρέχει στο κύκλωμα η πηγή προηγείται ως προς την τάση της πηγής, δηλαδή η συμπεριφορά του κυκλώματος είναι χωρητική. 69

70 Επίλυση Κυκλώματος ΕΡ Παράδειγμα 4 Τάση και ρεύμα στο πεδίο του χρόνου Τάση και ρεύμα στο πεδίο της συχνότητας 7

71 Ισχύς σε Κυκλώματα ΕΡ με Ημιτονοειδή Διέγερση Ισχύς στο πεδίο του χρόνου Ημιτονοειδή σήματα τάσης και ρεύματος και στιγμιαία ισχύς: ( ) = cos( ω + ϕ ) = 2 cos( ω + ϕ ) vt V t V t V ( ) = cos( ω + ϕ ) = 2 cos( ω + ϕ ) it I t I t I pt () = vtit () () V I 71

72 Ισχύς στο Πεδίο του Χρόνου Λαμβάνοντας υπόψη τις συζευγμένες φορές αναφοράς, η p(t), που μεταφέρεται από το ένα κύκλωμα στο άλλο μπορεί να είναι θετική ( ) = vtit ( ) ( ) > pt που σημαίνει ότι η ισχύς ρέει από το κύκλωμα Κ 1 προς το κύκλωμα Κ 2 ή αρνητική pt= vtit< ( ) ( ) ( ) που σημαίνει ότι η ισχύς ρέει από το κύκλωμα Κ 2 προς το κύκλωμα Κ 1. Στιγμιαία ισχύς: pt= vtit= Vcos ωt+ φ Icos ωt+ φ ( ) ( ) ( ) ( V ) ( I) ( ) = cos( ω + φ ) cos( ω + φ ) pt VI t t V I και λαμβάνοντας υπόψη την τριγωνομετρική ταυτότητα, 1 cos Acos B = cos( ) cos( ) 2 A + B + A B 72

73 Ο πρώτος όρος, Ισχύς στο Πεδίο του Χρόνου ( ) = cos( ω + φ ) cos( ω + φ ) pt VI t t 1 1 p t V I V I t 2 2 p t VI VI t ( ) = cos( φ φ ) + cos( 2ω + φ + φ ) ( ) = cos( φ φ ) + cos( 2ω + φ + φ ) είναι μία σταθερά, ανεξάρτητη από το χρόνο και ονομάζεται μέση ισχύς (average power) ή πραγματική ισχύς (real power) ή ενεργός ή δρώσα ισχύς (active power) και ο δεύτερος όρος V V I V I V I V I ( ) VI cos φv φi είναι μια εναλλασσόμενη ημιτονοειδή ισχύς με διπλάσια συχνότητα από αυτή που επιβάλλεται από τις πηγές του κυκλώματος (Κ 1 ) και ονομάζεται άεργη ισχύς (reactive power). I ( ωt+ φ + φ ) VI cos 2 V I 73

74 Ισχύς στο Πεδίο του Χρόνου Το παθητικό κύκλωμα Κ 1 έχει επαγωγική συμπεριφορά (το ρεύμα καθυστερεί της τάσης ακροδεκτών). Η στιγμιαία ισχύς μηδενίζεται στα σημεία που μηδενίζεται η τάση ή το ρεύμα. 74

75 Ισχύς στο Πεδίο του Χρόνου Η μέση ισχύς που μεταφέρεται από το ένα κύκλωμα στο άλλο εντός μιας περιόδου Τ είναι η μέση τιμή της ποσότητας p(t), T < p( t) >= p( t) dt V Icos( φv φi) V Icos( 2ωt φv φi) dt T = T T 1 1 < p( t) >= V Icos( φv φi) dt T 2 1 < p t >= P= V I = VI 2 T ( ) cos( φ φ ) cos( φ φ ) V I V I Η πραγματική ισχύς, Ρ, είναι πάντοτε θετική, αφού για ένα παθητικό κύκλωμα ισχύει: π π ( φ φ ) V I 2 2 ( ) Ο όρος cos φv φi ονομάζεται συντελεστής ισχύος (ΣΙ, power factor, PF) και παρουσιάζει ιδιαίτερο πρακτικό και οικονομικό ενδιαφέρον στη μεταφορά και διανομή ηλεκτρικής ενέργειας. 75

76 Ισχύς στο Πεδίο του Χρόνου Η εναλλασσόμενη ισχύς που μεταβάλλεται ημιτονοειδώς με διπλάσια συχνότητα γύρω από τη μέση ισχύ, δεν εκφράζει μια πραγματικά καταναλισκόμενη ισχύ, αφού η μέση τιμή της εντός μιας περιόδου είναι μηδενική, και για το λόγο αυτό ονομάζεται άεργη ισχύς. Η άεργη ισχύς αλλάζει πρόσημο και συνεπώς εκφράζει μια ανταλλαγή ισχύος μεταξύ των κυκλωμάτων Κ 1 και Κ 2. Κατά την αρνητική ημιπερίοδος είναι p(t) < και η ισχύς ρέει από το κύκλωμα Κ 2 προς το κύκλωμα Κ 1, ενώ κατά τη θετική ημιπερίοδο είναι p(t)> και η ισχύς ρέει από το κύκλωμα Κ 1 προς το κύκλωμα Κ 2. Στη θετική ημιπερίοδο προσφέρεται άεργη και πραγματική ισχύς από την πηγή προς το φορτίο και στην αρνητική ημιπερίοδο επιστρέφεται άεργη ισχύς από το φορτίο προς την πηγή. Κατά μέσο όρο, υπάρχει μια καθαρή ροή ισχύος (η πραγματική ισχύς) που ρέει σταθερά από το κύκλωμα Κ 1 προς το κύκλωμα Κ 2. 76

77 Ισχύς Αντιστάτη στο Πεδίο του Χρόνου Είναι: ( φ φ ) ( φ φ ) = cos = 1 V I V I και υπάρχει μόνο η μέση, πραγματική ισχύς (η άεργη ισχύς είναι μηδέν): 2 1 V PR = V I= VI= = RI 2 R 2 77

78 Ισχύς Πηνίου στο Πεδίο του Χρόνου Είναι ( φ φ ) ( φ φ ) = 9 cos = V I V I και υπάρχει μόνο άεργη ισχύς (η πραγματική, μέση ισχύς είναι μηδέν): P = L 78

79 Ισχύς Πυκνωτή στο Πεδίο του Χρόνου Είναι ( ) ( ) φ φ = 9 cos φ φ και = V I V I υπάρχει μόνο άεργη ισχύς (η πραγματική, μέση ισχύς είναι μηδέν): P = C 79

80 Ισχύς Παθητικών Στοιχείων στο Πεδίο του Χρόνου Η στιγμιαία ισχύς στα παθητικά στοιχεία αποθήκευσης ενέργειας είναι ημιτονοειδούς μορφής με συχνότητα διπλάσια της συχνότητας της πηγής και επομένως αντιπροσωπεύει μόνο άεργη ισχύ. Κατά τη θετική ημιπερίοδο της στιγμιαίας ισχύος, όπου η τάση και το ρεύμα παίρνουν θετικές τιμές, η ισχύς ρέει από την πηγή προς το στοιχείο για τη δημιουργία μαγνητικού ή ηλεκτρικού πεδίου στην περίπτωση πηνίου ή πυκνωτή αντίστοιχα. Κατά την αρνητική ημιπερίοδο της στιγμιαίας ισχύος, όπου η τάση και το ρεύμα έχουν αντίθετα πρόσημα, η ισχύς ρέει από το στοιχείο προς την πηγή. Δηλαδή, η άεργη ισχύς ανταλλάσσεται διαρκώς ανάμεσα στο στοιχείο και την πηγή. 8

81 Ισχύς Παθητικών Στοιχείων στο Πεδίο του Χρόνου Στα κυκλώματα ΕΡ, θεωρείται η σύμβαση ότι η άεργη ισχύς που αναφέρεται στις επαγωγές λαμβάνεται ως θετική, ενώ η άεργη ισχύς που αναφέρεται στις χωρητικότητες λαμβάνεται ως αρνητική. Οι επαγωγές (τα πηνία) θεωρούνται καταναλώσεις άεργης ισχύος, ενώ οι χωρητικότητες (πυκνωτές) θεωρούνται πηγές άεργης ισχύος. Οι ηλεκτρικοί κινητήρες είναι ισχυρά επαγωγικά φορτία, τα οποία απορροφούν από το δίκτυο ΕΡ μεγάλη άεργη ισχύ, υπό χαμηλό συντελεστή ισχύος (cosφ). Εντούτοις, η ΔΕΗ επιθυμεί να παρέχει στους καταναλωτές ηλεκτρική ενέργεια με το μεγαλύτερο δυνατό συντελεστή ισχύος, δηλαδή με την ελάχιστη δυνατή άεργη ισχύ. Βελτίωση του συντελεστή ισχύος επαγωγικού φορτίου επιτυγχάνεται με την τοποθέτηση πυκνωτών κοντά στο φορτίο, οι οποίοι παράγουν την άεργη ισχύ που χρειάζεται το φορτίο. Η διαδικασία αυτή ονομάζεται αντιστάθμιση άεργης ισχύος. 81

82 Ισχύς στο Πεδίο της Συχνότητας Μιγαδική ισχύς στο ΕΡ I K V A V V = V = V ϕ ϕv 2 I = I = I ϕ ϕi 2 V I Η ποσότητα: S= VI = V I = V I = VI ( φ )( ϕ ) ( φ ϕ ) ( φ ϕ ) V I V I V I ονομάζεται μιγαδική ισχύς. Η μιγαδική ισχύς στο πεδίο της συχνότητας είναι ένα διάνυσμα με μέτρο και όρισμα: S V I VI S = ϕ ϕ 1 = = 2 V I 82

83 Ισχύς στο Πεδίο της Συχνότητας Το μέτρο της μιγαδικής ισχύος ονομάζεται φαινόμενη ισχύς (apparent power) και υπολογίζεται εύκολα από το γινόμενο των ενεργών τιμών της τάσης και του ρεύματος ακροδεκτών του κυκλώματος. Η ενεργός τιμή του ρεύματος και της τάσης ακροδεκτών λαμβάνεται εύκολα από τις ενδείξεις ενός αμπερομέτρου (Α), το οποίο συνδέεται σε σειρά με το φορτίο και ενός βολτομέτρου (V), το οποίο συνδέεται παράλληλα προς το φορτίο. Το πραγματικό μέρος της μιγαδικής ισχύος αντιπροσωπεύει την πραγματική ισχύ και το φανταστικό μέρος την άεργη (επαγωγική ή χωρητική) ισχύ. Η μιγαδική ισχύς ως διανυσματικό μέγεθος εκφράζεται συνήθως σε τετραγωνική ή πολική μορφή. 83

84 Ισχύς στο Πεδίο της Συχνότητας I I I I I Iˆ o max rms = = = = = = peak I 1 1 S= VIcos φv ϕi + j VIsin φv ϕi 2 2 S= VIcos φ ϕ + jvisin φ ϕ ( ) ( ) ( ) ( ) V I V I 84

85 Ισχύς στο Πεδίο της Συχνότητας Πραγματική ισχύς: Re 1 2 cos cos Άεργη ισχύς: Im 1 S = Q= V Isin 2 = VIsin ( S) = P= V I ( φv ϕi) = VI ( φv ϕi) ( ) ( φv ϕi) ( φv ϕi) S= P+ jq= S P Q Q P = + tan 85

86 Συντελεστής ισχύος: Ισχύς στο Πεδίο της Συχνότητας P P ΣΙ = PF = cos ϕ = = S P + Q ( V ϕi) 2 2 Είναι το συνημίτονο της διαφοράς φάσης μεταξύ τάσης και ρεύματος ακροδεκτών. Ισχύει για γραμμικά φορτία και είναι αυτά που εξετάζονται εδώ. Στα μη γραμμικά φορτία, το ρεύμα φορτίου είναι μεν περιοδικό εναλλασσόμενο, όχι όμως ημιτονοειδές και αναλύεται κατά Fourier στο ρεύμα θεμελιώδους αρμονικής (fundamental frequency current) και στα ρεύματα ανώτερων αρμονικών (higher order current harmonics). Πραγματική ισχύς μεταφέρεται στο φορτίο μόνο από το ρεύμα θεμελιώδους αρμονικής!. Ο πραγματικός συντελεστής ισχύος υπολογίζεται από τη συμβολή όλων των αρμονικών ρεύματος. 86

87 Ισχύς στο Πεδίο της Συχνότητας Στο ΕΡ υπάρχουν τρεις ποσότητες ισχύος: η φαινόμενη ισχύς, η πραγματική ισχύς και η άεργη ισχύς. Και οι τρεις ποσότητες ισχύος πρέπει να εκφράζονται κανονικά με τη φυσική μονάδα μέτρησης της ισχύος, η οποία είναι το Watt (W). Εντούτοις, για να είναι δυνατή η διάκριση μεταξύ τους, χρησιμοποιούνται διαφορετικές μονάδες μέτρησης για κάθε μία από αυτές. Βέβαια, η διαφοροποίηση αυτή στις μονάδες μέτρησης είναι μόνο λεκτική, αφού και οι τρεις ποσότητες εκφράζουν πάντοτε ισχύ. Έτσι, η μονάδα μέτρησης της πραγματικής (μέσης, ενεργού) ισχύος είναι το Watt (W), η μονάδα μέτρησης της άεργης (φανταστικής) ισχύος είναι το Volt Ampere Reactive (VAr) και η μονάδα μέτρησης της φαινόμενης ισχύος είναι το Volt Ampere (VA). 87

88 Ισχύς στο Πεδίο της Συχνότητας Στη γενική περίπτωση λειτουργίας ενός στοιχείου στο ΕΡ, το οποίο απορροφά ενεργό ένταση Ι και εφαρμόζεται στα άκρα του ενεργός τάση V, παρουσιάζει μια σύνθετη (μιγαδική) αντίσταση, η οποία, σύμφωνα με το νόμο του Ohm, είναι: V V ϕ V V V Z j R jx Ωμική αντίσταση στοιχείου: ( ϕ ϕ ) cos( ϕ ϕ ) sin ( ϕ ϕ ) V = = = V I = V I + V I = + I I ϕi I I I V V ϕv V V V Z= = = ( ϕv ϕi) = cos( ϕv ϕi) + j sin ( ϕv ϕi) = R+ jx I I ϕ I I I I V V Re Z R cos cos I I ( ) = = ( ϕv ϕi) = ( ϕv ϕi) 88

89 Ισχύς στο Πεδίο της Συχνότητας Επαγωγική ή χωρητική αντίσταση στοιχείου: V V Im Z X sin sin I I ( ) = = ( ϕv ϕi) = ( ϕv ϕi) Λαμβάνοντας υπόψη τη σύνθετη αντίσταση στοιχείου, η μιγαδική ισχύς που προσφέρεται σε αυτό είναι: 1 1 S= P+ jq= RI + j X I = RI + j X I Η ενεργός ισχύς που καταναλώνεται στο στοιχείο σχετίζεται αποκλειστικά και μόνο με τις ωμικές αντιστάσεις και η άεργη ισχύς σχετίζεται αποκλειστικά και μόνο με το φανταστικό μέρος της σύνθετης αντίστασης του στοιχείου, οφείλεται δε μόνο σε στοιχεία που αποθηκεύουν ενέργεια (πηνία ή πυκνωτές). 89

90 Ισχύς στο Πεδίο της Συχνότητας Μέτρο πραγματικής ισχύος: Μέτρο άεργης ισχύος: 1 P = RI = RI Q= XI = XI Εάν το στοιχείο έχει επαγωγική συμπεριφορά, ισχύει: X= ω L, QL = XI = XI > 2 Κατανάλωση άεργης ισχύος Εάν το στοιχείο έχει χωρητική συμπεριφορά, ισχύει: X =, QC I I ωc = 2 ωc = ωc < Παραγωγή άεργης ισχύος 9

91 Αντιστάθμιση Άεργης Ισχύος Βελτίωση του συντελεστή ισχύος: Με τη διαδικασία αυτή επιτυγχάνεται αύξηση της τιμής του ΣΙ, με στόχο ο ΣΙ να πλησιάζει τη μονάδα. Ο ΣΙ είναι ένα ιδιαίτερα σημαντικό μέγεθος από οικονομικής σκοπιάς και αφορά τόσο στον καταναλωτή (φορτίο) όσο και την εταιρία παραγωγής και διανομής ηλεκτρικής ενέργειας (ΔΕΗ). Διόρθωση του ΣΙ γίνεται σε (ισχυρά) επαγωγικά φορτία, όπως είναι, για παράδειγμα, οι κινητήρες ΕΡ. Το μέτρο της έντασης του ρεύματος που απορροφά μονοφασικό φορτίο από το δίκτυο είναι: P P I = I= = Vcos φ ϕ Vcosϕ ( ) V I 91

92 Αντιστάθμιση Άεργης Ισχύος Η ένταση του ρεύματος μειώνεται με την αύξηση του συντελεστή ισχύος και αυξάνεται με τη μείωσή του. Μείωση του συντελεστή ισχύος σημαίνει ότι η διαφορά φάσης μεταξύ της τάσης και της έντασης μεγαλώνει και επομένως ο καταναλωτής απορροφά περισσότερη άεργη ισχύ από το δίκτυο. Αντίθετα, αύξηση του συντελεστή ισχύος σημαίνει ότι η διαφορά φάσης μεταξύ της τάσης και της έντασης μειώνεται και επομένως ο καταναλωτής απορροφά λιγότερη άεργη ισχύ από το δίκτυο. Ο συντελεστής ισχύος είναι ένα μέτρο της άεργης ισχύος που ανταλλάσσεται μεταξύ καταναλωτή και δικτύου ηλεκτρικής ενέργειας. 92

93 Αντιστάθμιση Άεργης Ισχύος Αναγκαιότητα βελτίωσης του συντελεστή ισχύος φορτίου Φορτίο με χαμηλό συντελεστή ισχύος απορροφά μεγάλη ένταση ρεύματος από το δίκτυο, με αποτέλεσμα να εμφανίζονται υψηλές απώλειες ισχύος (απώλειες Joule, RI 2 ) επάνω στη γραμμή μεταφοράς ηλεκτρικής ενέργειας (υψηλό λειτουργικό κόστος). Χαμηλός συντελεστής ισχύος σημαίνει ότι ο καταναλωτής απορροφά μεγάλη άεργη ισχύ από το δίκτυο, την οποία βεβαίως πρέπει να παράγουν οι γεννήτριες (πηγές) του δικτύου και να μεταφέρουν οι γραμμές διανομής ηλεκτρικής ενέργειας (υψηλό λειτουργικό κόστος). Μείωση του συντελεστή ισχύος σημαίνει αύξηση του κόστους διάθεσης ηλεκτρικής ισχύος στο φορτίο που επιβαρύνει την εταιρία διανομής ηλεκτρικής ενέργειας (ΔΕΗ). Απαιτείται, επομένως, απορρόφηση πραγματικής ισχύος από τους καταναλωτές με υψηλό συντελεστή ισχύος. 93

94 Αντιστάθμιση Άεργης Ισχύος Βελτίωση του ΣΙ επαγωγικών φορτίων επιτυγχάνεται με την προσθήκη πυκνωτών συνδεδεμένων παράλληλα προς το φορτίο, η διαδικασία δε αυτή ονομάζεται αντιστάθμιση άεργης ισχύος. Με την τοποθέτηση των πυκνωτών αντιστάθμισης, οι οποίοι πυκνωτές είναι πηγές άεργης ισχύος, ένα μέρος ή ολόκληρο το ποσό της άεργης ισχύος που καταναλώνει το επαγωγικό φορτίο παράγεται τοπικά από τους πυκνωτές και προσφέρεται στο φορτίο, ενώ το υπόλοιπο ποσό άεργης ισχύος του φορτίου παρέχεται από το δίκτυο ηλεκτρικής ενέργειας. Το αποτέλεσμα είναι η αύξηση (βελτίωση) του συντελεστή ισχύος του επαγωγικού καταναλωτή, αφού τώρα το δίκτυο (πηγή) παρέχει στο φορτίο μόνο ένα τμήμα ή καθόλου από το συνολικό ποσό άεργης ισχύος που απαιτείται. 94

95 Υπολογισμός αναγκαίας χωρητικότητας πυκνωτών αντιστάθμισης Πριν την αντιστάθμιση Αντιστάθμιση Άεργης Ισχύος Το διάνυσμα της τάσης λαμβάνεται ως διάνυσμα αναφοράς. Η συνιστώσα του ρεύματος: I = I p cosϕ 1 ονομάζεται βαττική συνιστώσα και είναι υπεύθυνη για τη μεταφορά της πραγματικής ισχύος (W) στο φορτίο. L 95

96 Υπολογισμός αναγκαίας χωρητικότητα πυκνωτών αντιστάθμισης Η συνιστώσα του ρεύματος: I = I sinϕ ονομάζεται άεργη ή αβαττική συνιστώσα και είναι υπεύθυνη για τη μεταφορά της άεργης ισχύος (VAr) στο φορτίο. Πραγματική ισχύς που προσφέρεται στο φορτίο: Άεργη ισχύς που προσφέρεται στο φορτίο: Ρεύμα γραμμής: Αντιστάθμιση Άεργης Ισχύος q L 1 ( ) cos 1 P= VI cos φ ϕ = VI ϕ = VI L V I L p ( ) sin 1 Q = VI sin φ ϕ = VI ϕ = VI L L V I L q I = I + I 2 2 L p q 96

97 Αντιστάθμιση Άεργης Ισχύος Υπολογισμός αναγκαίας χωρητικότητας πυκνωτών αντιστάθμισης Βελτίωση του συντελεστή ισχύος από την τιμή cosφ 1 στην τιμή cosφ 2 (cosφ 2 > cosφ 1 ) Το ρεύμα του πυκνωτή προπορεύεται της τάσης κατά 9 και αφαιρείται από το άεργο ρεύμα του επαγωγικού φορτίου. 97

98 Αντιστάθμιση Άεργης Ισχύος Υπολογισμός αναγκαίας χωρητικότητας πυκνωτών αντιστάθμισης Χωρίς αντιστάθμιση το άεργο ρεύμα που απορροφά το φορτίο είναι I q, ενώ με την αντιστάθμιση το φορτίο απορροφά από το δίκτυο μικρότερο άεργο ρεύμα κατά το ρεύμα του πυκνωτή: I = I I ' q q C Μείωση όμως του άεργου ρεύματος σημαίνει και μείωση του ρεύματος που απορροφά το φορτίο από το δίκτυο για την ίδια πραγματική ισχύ. Με την αντιστάθμιση μειώνεται η άεργη ισχύς που απορροφά το φορτίο από το δίκτυο, κατά το ποσόν της άεργης ισχύος του πυκνωτή (Q L Q C ). Τελικώς, με τη μείωση της άεργης ισχύος, μειώνεται και η φαινόμενη ισχύς που απορροφά το φορτίο από το δίκτυο: S < S

99 Αντιστάθμιση Άεργης Ισχύος Το ζητούμενο σε διατάξεις αντιστάθμισης είναι να επιλεγεί ο κατάλληλος πυκνωτής, δηλαδή να προσδιοριστεί η αναγκαία χωρητικότητα του πυκνωτή ή των πυκνωτών, σε περίπτωση εγκατάστασης ομάδας πυκνωτών. Είναι: Q tanϕ 1 = L P tanϕ 2 Q Q = L C P QC ( tanϕ tanϕ ) = P 1 2 V Q X I CV C = C C = =ω X C C P = tan tan 2 ωv ( ϕ ϕ )

100 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος Παράδειγμα βελτίωσης συντελεστή ισχύος Επαγωγικό φορτίο (π.χ. κινητήρας) συνδέεται μέσω διπολικού καλωδίου (γραμμή τροφοδότησης) με πηγή ΕΡ (δίκτυο ΔΕΗ). Επειδή το φορτίο έχει επαγωγική συμπεριφορά πρέπει να βελτιωθεί ο συντελεστής ισχύος της πηγής με τοπική αντιστάθμιση άεργης ισχύος. Δεδομένα: Σύνθετη αντίσταση φορτίου: Τάση πηγής ΕΡ: Σύνθετη αντίσταση γραμμής: S Z load = 15+ j3( Ω) ( ) = 23 2 sin( ω )( ) v t t V Z line = + Ω 1,5 j4 ( ) 1

101 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος Ζητούνται: 1. Το ρεύμα και η τάση στο φορτίο. 2. Η πραγματική και η άεργη ισχύς που απορροφά το φορτίο. 3. Η πραγματική και η άεργη ισχύς που καταναλώνεται στο καλώδιο παροχής του φορτίου. 4. Η πραγματική και η άεργη ισχύς που παράγεται από την πηγή ΕΡ (γεννήτρια ή δίκτυο ΔΕΗ). 5. Οι συντελεστές ισχύος στο φορτίο και στην πηγή. 6. Η χωρητικότητα του πυκνωτή που πρέπει να συνδεθεί παράλληλα προς την πηγή, ώστε ο συντελεστής ισχύος της πηγής να γίνει ίσος με τη μονάδα. Να αποδειχθεί το ισοζύγιο ισχύων στο κύκλωμα. 11

102 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος Λύση 1. Ρεύμα και τάση στο φορτίο L 2,66 5, 48 6,9 64,11 ( ) Με εφαρμογή του νόμου των τάσεων του Kirchhoff στο βρόχο του κυκλώματος, προκύπτει το ρεύμα βρόχου: VS IL ( Rl + RL) + j( Xl + XL) = VS I = L ( R + R ) + j( X + X ) l L l L I L = = = ( 1,5 + 15) + j( 4+ 3) 16,5+ j34 37,79 64,11 I = j = A 12

103 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος Για τον υπολογισμό της έντασης του ρεύματος χρησιμοποιήθηκε η ενεργός τιμή της τάσης της πηγής (23 V) και όχι το πλάτος της τάσης. Επομένως, η ένταση του ρεύματος φορτίου που υπολογίστηκε, καθώς και η τάση φορτίου που θα υπολογιστεί στη συνέχεια θα αφορά στην ενεργό τιμή των μεγεθών αυτών. Η τάση στο φορτίο υπολογίζεται με εφαρμογή του νόμου του Ohm, V = I Z = I R + jx ( ) L L L L L L V ( ) L = 6,9 64, tan ( )( V 6,9 64,11 33,54 63, 43 ) L = V = j = V L ,11 2, 42 24,13,68 ( )

104 2. Μιγαδική ισχύς που απορροφά το φορτίο από το δίκτυο: και η φαινόμενη, η πραγματική και η άεργη ισχύς που απορροφά το φορτίο: Παράδειγμα Αντιστάθμισης Άεργης Ισχύος 1 1 S ( ) L= VL IL = Vo Io = VL IL φv φi 2 2 o 24,13 6,9,68 ( o S 64,11 ) L = o S = 1243,15 63, 43 = 556,5+ j1.111,86 VA. L S = S = 1243,15 VA P L Q L L L = 556,5( W) = 1.111,86 ( VAr) ( ) ( ) 14

105 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος 3. Η μιγαδική ισχύς που καταναλώνεται στη γραμμή: Sl = Pl + jql = Rl IL + j Xl IL = IL( Rl + jxl) 2 o S = 6,9 1,5 + j4 = 55,63+ j148,35 = 158, 44 69, 44 ( VA) l και η φαινόμενη, η πραγματική και η άεργη ισχύς που καταναλώνεται στη γραμμή: ( ) S = S = 158, 44 VA P l Q l l l = 55,63( W) = 148,35 ( VAr) ( ) 15

106 4. Λαμβάνοντας υπόψη τις συζευγμένες φορές αναφοράς, η μιγαδική ισχύς που παρέχει η πηγή στη γραμμή και το φορτίο είναι: και η φαινόμενη ισχύς, η πραγματική ισχύς και η άεργη ισχύς της πηγής: Παράδειγμα Αντιστάθμισης Άεργης Ισχύος 1 SS = VS IL = VS IL ( φv ϕi) 2 S = = = j VA S 23 6,9 64,11 1.4,7 64,11 611, ,12( ) S = S = 1.4,7 VA P S Q S S S = 611,61( W) = 1.26,12 ( VAr) ( ) 16

107 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος Έλεγχος ισοζυγίου ισχύων: P + P + P = 611,61+ 55, ,5= S L l Q + Q + Q = 1.26, , ,86= S L l 2 ( ) 2 ( ) 2 2 ( ) 2 ( ) 2 S L l L l S L l L l S = P + P + Q + Q S P + P Q + Q = ( 1.4,7) ( 556,5 55,63) ( 1.111,86 148,35) ( ) = = 1.4,7 611,61 126,12 = 17

108 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος 5. Ο συντελεστής ισχύος της πηγής, (pf) S, είναι το συνημίτονο της διαφοράς φάσης μεταξύ των διανυσμάτων τάσης στα άκρα της πηγής (διάνυσμα αναφοράς) και της έντασης ρεύματος. Είναι: = V I = ( 64,11 ) = 64,11 ( pf ) ( ϕv ϕi) ( ) ϕ ϕ ϕ S = cos = cos 64,11 =, 4366 Αντίστοιχα, ο συντελεστής ισχύος στο φορτίο (pf) L είναι: ( ) ϕ= ϕ ϕ =,68 64,11 = 63, 43 V I ( ) ( ) ( pf ϕ ) V ϕi L = cos = cos 63, 43 =,

109 Παράδειγμα Αντιστάθμισης Άεργης Ισχύος 6. Υπολογισμός χωρητικότητας πυκνωτή Για να παρουσιάζει η πηγή συντελεστή ισχύος ίσο με τη μονάδα, πρέπει να προσφέρει μόνο πραγματική ισχύ ή διαφορετικά την άεργη ισχύ της πηγής να την προσφέρει τώρα εξολοκλήρου ο πυκνωτής!. Δηλαδή, ο πυκνωτής πρέπει να παράγει άεργη ισχύ: 1.26,12 (VAr). Η αναγκαία χωρητικότητα του πυκνωτή αντιστάθμισης είναι: Q Q 1.26,12 C= = = F = µ F ωv π π C C S 2 fvs ,82 1 ( ) 75,82( ) 19

Κυκλώματα με Ημιτονοειδή Διέγερση

Κυκλώματα με Ημιτονοειδή Διέγερση Ανάλυση Κυκλωμάτων Κυκλώματα με Ημιτονοειδή Διέγερση Φώτης Πλέσσας fplessas@e-ce.uth.gr Εισαγωγή Πολλά πραγματικά συστήματα, όπως οι μονάδες παραγωγής και τα δίκτυα μεταφοράς ηλεκτρικής ενέργειας, οι τηλεπικοινωνίες

Διαβάστε περισσότερα

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt) Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (

Διαβάστε περισσότερα

C (3) (4) R 3 R 4 (2)

C (3) (4) R 3 R 4 (2) Πανεπιστήμιο Θεσσαλίας Βόλος, 29/03/2016 Τμήμα: Μηχανολόγων Μηχανικών Συντελεστής Βαρύτητας: 40%/ Χρόνος Εξέτασης: 3 Ώρες Γραπτή Ενδιάμεση Εξέταση στο Μάθημα: «ΜΜ604, Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»

Διαβάστε περισσότερα

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς)

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) - 1 - Ενότητα 3 η (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) Στην παρούσα ενότητα παρουσιάζεται το θέμα της ισχύος σε μονοφασικά και τριφασικά συμμετρικά

Διαβάστε περισσότερα

N 1 :N 2. i i 1 v 1 L 1 - L 2 -

N 1 :N 2. i i 1 v 1 L 1 - L 2 - ΕΝΟΤΗΤΑ V ΙΣΧΥΣ - ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ 34 Μετασχηµατιστής Ο µετασχηµατιστής είναι µια διάταξη που αποτελείται από δύο πηνία τυλιγµένα σε έναν κοινό πυρήνα από σιδηροµαγνητικό υλικό. Το πηνίο εισόδου λέγεται

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρθρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

() { ( ) ( )} ( ) () ( )

() { ( ) ( )} ( ) () ( ) Ηλεκτρική Ισχύς σε Μονοφασικά και Τριφασικά Συστήματα. Μονοφασικά Συστήματα Έστω ότι σε ένα μονοφασικό καταναλωτή η τάση και το ρεύμα περιγράφονται από τις παρακάτω δύο χρονικές συναρτήσεις: ( t cos( ω

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 5: Εναλλασσόμενα κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη

ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη Προτεινόµενες Ασκήσεις στα Κυκλώµατα µε Ηµιτονοειδή ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη Πρόβληµα Το κύκλωµα δύο ακροδεκτών του Σχ. διεγείρεται από ηµιτονοειδή πηγή τάσης µε

Διαβάστε περισσότερα

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης - - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα

Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα ΠΑΡΑΡΤΗΜΑ Ηµιτονοειδές Ρεύµα και Τάση Τριφασικά Εναλλασσόµενα ρεύµατα Ισχύς και Ενέργεια Ενεργός τιµή περιοδικών µη ηµιτονικών κυµατοµορφών 1. Ηµιτονοειδές Ρεύµα και Τάση Οταν οι νόµοι του Kirchoff εφαρµόζονται

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

m e j ω t } ja m sinωt A m cosωt

m e j ω t } ja m sinωt A m cosωt ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΤΡΙΦΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ

ΤΡΙΦΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Εργαστήριο Ηλεκτρικών Μηχανών Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήμιο Θεσσαλίας ΤΡΙΦΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Εισαγωγή Τα τριφασικά κυκλώματα Ε.Ρ. αποτελούν τη σπουδαιότερη

Διαβάστε περισσότερα

Μ ά θ η μ α. «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ. (Ανάλυση Τριφασικών Κυκλωμάτων)

Μ ά θ η μ α. «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ. (Ανάλυση Τριφασικών Κυκλωμάτων) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» (Ανάλυση Τριφασικών Κυκλωμάτων) Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός ΕΜΠ 216

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Μέτρηση πραγματικής ηλεκτρικής ισχύος

ΑΣΚΗΣΗ 6 Μέτρηση πραγματικής ηλεκτρικής ισχύος Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 6 Μέτρηση πραγματικής ηλεκτρικής ισχύος 61 Απαραίτητα όργανα και υλικά 1 Βολτόμετρο 2 Αμπερόμετρο 3 Τροφοδοτικό συνεχόμενου και εναλλασσόμενου ηλεκτρικού σήματος 4 Πλακέτα

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Εναλλασσόμενο και μιγαδικοί

Εναλλασσόμενο και μιγαδικοί (olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 4: Άεργη Ισχύς και Αντιστάθμιση Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Στοιχεία R, L, C στο AC

Στοιχεία R, L, C στο AC Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Βόλος, 8/04/05 Τμήμα: Μηχανολόγων Μηχανικών Συντελεστής Βαρύτητας: 40%/ Χρόνος Εξέτασης:,5 Ώρες Γραπτή Ενδιάμεση Εξέταση στο Μάθημα: «ΜΜ604, Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Θέμα

Διαβάστε περισσότερα

3. Κύκλωμα R-L σειράς έχει R=10Ω, L=10mH και διαρρέεται από ρεύμα i = 10 2ηµ

3. Κύκλωμα R-L σειράς έχει R=10Ω, L=10mH και διαρρέεται από ρεύμα i = 10 2ηµ 1. *Εάν η επαγωγική αντίσταση ενός πηνίου είναι X L =50Ω σε συχνότητα f = 200Hz, να υπολογιστεί η τιμή αυτής σε συχνότητα f=100 Hz. 2. Εάν η χωρητική αντίσταση ενός πυκνωτή είναι X C =50Ω σε συχνότητα

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνετη Αντίσταση 4. Ανάλυση

Διαβάστε περισσότερα

Μετρήσεις µε βαττόµετρο

Μετρήσεις µε βαττόµετρο Η3 Μετρήσεις µε βαττόµετρο 1. Σκοπός Στην άσκηση χρησιµοποιούµε το βαττόµετρο ως µετρητικό όργανο της καταναλισκόµης ισχύος σε κυκλώµατα αλλασσόµου ρεύµατος που περιλαµβάνουν διαδοχικά ωµική αντίσταση,

Διαβάστε περισσότερα

2012 : (307) : , 29 2012 : 11.00 13.30

2012  : (307) : , 29 2012 : 11.00 13.30 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρµοσµένη Ηλεκτρολογία

Διαβάστε περισσότερα

Κυκλώµατα εναλλασσόµενης τάσης

Κυκλώµατα εναλλασσόµενης τάσης Κυκλώµατα εναλλασσόµενης τάσης Στόχος αυτής της ενότητας του µαθήµατος είναι η µελέτη των ηλεκτρικών κυκλωµάτων στα οποία η ηλεκτροκινητήρια δύναµη παρέχεται από πηγή εναλλασσόµενης τάσης Σε αυτή την ενότητα

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ :

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ : ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 5 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΕ ΑΜΕΣΕΣ ΚΑΙ ΕΜΜΕΣΕΣ ΜΕΘΟΔΟΥΣ Θεωρητική Ανάλυση Πυκνωτής

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Μέρος Α Ωμικά Κυκλώματα (Διαλέξεις 6 Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Gree Park, Γραφείο Τηλ. 899 Διάλεξη Εισαγωγή στην ημιτονοειδή ανάλυση στην σταθερή κατάσταση

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι

Διαβάστε περισσότερα

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Το κύριο χαρακτηριστικό των κυκλωµάτων αυτών είναι ότι ο χρόνος στον οποίο η τάση, ή η ένταση παίρνει ορισµένη

Διαβάστε περισσότερα

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ).

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ). ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙI) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΕΦΑΡΜΟΣΜΕΝΗ ΗΛΕΚΤΡΟΛΟΓΙΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Συντονισμός RLC σε σειρά

ΑΣΚΗΣΗ 2 Συντονισμός RLC σε σειρά ΑΣΚΗΣΗ Συντονισμός RC σε σειρά Απαραίτητα όργανα και υλικά. Απαραίτητα όργανα και υλικά. Γεννήτρια ημιτονικών σημάτων.. Πολύμετρο. 3. Παλμογράφος. 4. Ηλεκτρικά στοιχεία όπως: Πυκνωτής C, π.χ. μf (μη ηλεκτρολυτικός,

Διαβάστε περισσότερα

AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ

AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Απόκριση Συχνότητας. Φώτης Πλέσσας

Ανάλυση Κυκλωμάτων. Απόκριση Συχνότητας. Φώτης Πλέσσας Ανάλυση Κυκλωμάτων Απόκριση Συχνότητας Φώτης Πλέσσας fplessas@inf.uth.gr Εισαγωγή Η συμπεριφορά του κυκλώματος στην ημιτονοειδή μόνιμη κατάσταση ισορροπίας, καθώς μεταβάλλεται η γωνιακή συχνότητα ω, ονομάζεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Κακαζιάνης Πέτρος 1. Να γράψετε τη γενική εξίσωση μιας εναλλασσόμενης τάσης και μιας εναλλασσόμενης έντασης και να εξηγήσετε κάθε στοιχείο αυτών. 2. Τι ονομάζεται στιγμιαία

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 9: Μέθοδοι Εκκίνησης Μονοφασικών Κινητήρων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών Ενότητα: Χωρητική Αντιστάθμιση Ισχύος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ

Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αco(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ημιτονοειδής συνάρτηση δίνεται από τον τύπο f(t) = Αco(ωt + φ) όπου Α είναι το πλάτος, φ είναι η φάση και ω είναι η γωνιακή συχνότητα.

Διαβάστε περισσότερα

β. Ο συντελεστής ποιότητας Q π δείχνει ότι η τάση U L =U C είναι Q π φορές µεγαλύτερη από την τάση τροφοδοσίας. Σ

β. Ο συντελεστής ποιότητας Q π δείχνει ότι η τάση U L =U C είναι Q π φορές µεγαλύτερη από την τάση τροφοδοσίας. Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑ Α Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 6/04/06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε

Διαβάστε περισσότερα

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη ΠΥΚΝΩΤΗΣ ΣΥΝΔΕΔΕΜΕΝΟΣ ΠΑΡΑΛΛΗΛΑ ΜΕ ΠΗΓΗ. Στο διπλανό κύκλωμα η πηγή έχει ΗΕΔ = V και ο διακόπτης είναι αρχικά στη θέση. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση στη θέση και αρχίζουν οι

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ»

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ» ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ» ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας

Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας Ανάλυση Κυκλωμάτων Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας Φώτης Πλέσσας fplea@inf.uth.gr Εισαγωγή (/2) Ένα κύκλωμα δύο ακροδεκτών διαθέτει μια θύρα, που είναι ταυτόχρονα είσοδος και έξοδος.

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 4 18 Σεπτεμβρίου, 2012 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματα μας σήμερα Επανάληψη

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας

Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου 2.3.26.3 Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας Εξέταση 3 ου Eξαμήνου (20 Φεβρουαρίου

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 24/06/2014

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 24/06/2014 Θέμα ο Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 03/04, Ημερομηνία: 4/06/04 Σε μονοφασικό Μ/Σ ονομαστικής ισχύος 60kA, 300/30, 50Hz, ελήφθησαν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ Α.1 ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΟΝΟΦΑΣΙΚΟ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗ Ο μετασχηματιστής είναι μια ηλεκτρική διάταξη που μετατρέπει εναλλασσόμενη ηλεκτρική ενέργεια ενός επιπέδου τάσης

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 16/09/2014

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 16/09/2014 Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 3/4, Ημερομηνία: 6/9/4 Θέμα ο Δίνονται οι εξής παράμετροι για το κύκλωμα ΕΡ του παρακάτω

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ ΟΜΑ Α Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) : ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Ειδικός σε ένα θέμα είναι εκείνο το άτομο που έχει κάνει σε αυτό το θέμα όλα τα λάθη που είναι δυνατόν να γίνουν. Niels Bohr ΕΠΙΜΕΛΕΙΑ

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 5 21 Σεπτεμβρίου, 2012 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματα μας σήμερα Επανάληψη

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Παράρτημα Α Μιγαδικοί Αριμοί Οι μιγαδικοί αριμοί είναι μια από τις πιο σημαντικές έννοιες στον τομέα της ηλεκτρολογίας. Τι είναι οι μιγαδικοί αριμοί (compl numbrs; Ξέρουμε

Διαβάστε περισσότερα

Προστασία Σ.Η.Ε. Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές

Προστασία Σ.Η.Ε. Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές Προστασία Σ.Η.Ε Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος κανόνας

Διαβάστε περισσότερα

1. Μεταβατικά φαινόμενα Κύκλωμα RC

1. Μεταβατικά φαινόμενα Κύκλωμα RC . Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

7 ΑΝΤΙΣΤΑΘΜΙΣΗ ΒΕΛΤΙΩΣΗ ΤΟΥ ΣΥΝΗΜΙΤΟΝΟΥ φ

7 ΑΝΤΙΣΤΑΘΜΙΣΗ ΒΕΛΤΙΩΣΗ ΤΟΥ ΣΥΝΗΜΙΤΟΝΟΥ φ 7 ΑΝΤΙΣΤΑΘΜΙΣΗ ΒΕΛΤΙΩΣΗ ΤΟΥ ΣΥΝΗΜΙΤΟΝΟΥ φ Το µεγαλύτερο µέρος των ηλεκτρικών κινητήρων που χρησιµοποιούνται στην βιοµηχανία, αποτελείται από επαγωγικούς κινητήρες βραχυκυκλωµένου κλωβού. Ο κινητήρας αυτός

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Ευέλικτα Συστήµατα Μεταφοράς» του 7 ου εξαµήνου

Ασκήσεις στο µάθηµα «Ευέλικτα Συστήµατα Μεταφοράς» του 7 ου εξαµήνου EΘΝΙΚΟ MΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΏΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Αναπλ. Καθηγητής Γ. Κορρές Άσκηση 1 Ασκήσεις στο µάθηµα «Ευέλικτα Συστήµατα Μεταφοράς» του 7

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 9 Ανάλυση και σχεδιασμός εναλλασσόμενων κυκλωμάτων Εξάσκηση στην Κασσιτεροκόλληση

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Βασικές Αρχές Ηλεκτρικών Μηχανών Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων»

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων» Η ΠΡΑΞΗ ΥΛΟΠΟΙΕΙΤΑΙ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «Εκπαίδευση και Δια Βίου Μάθηση» ΚΑΙ ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΚΤ) ΚΑΙ ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 9: ΔΙΟΡΘΩΣΗ ΣΥΝΤΕΛΕΣΤΗ ΙΣΧΥΟΣ Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ 5Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 17.03 ΗΛΕΚΤΡΟΛΟΓΩΝ, ΤΕΧΝΟΛΟΓΩΝ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΙΚΗΣ (κατεύθυνσης:

Διαβάστε περισσότερα

1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb.

1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb. 1_2. Δυνάμεις μεταξύ φορτίων Νόμος του Coulomb. Η δύναμη που ασκείται μεταξύ δυο σημειακών ηλεκτρικών φορτίων είναι ανάλογη των φορτίων και αντιστρόφως ανάλογη του τετραγώνου της απόστασης τους (νόμος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς ΑΣΚΗΣΗ 6 Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς Σκοπός : Να μελετήσουμε το φαινόμενο του συντονισμού σε ένα κύκλωμα που περιλαμβάνει αντιστάτη (R), πηνίο (L) και πυκνωτή (C) συνδεδεμένα σε σειρά (κύκλωμα

Διαβάστε περισσότερα