Προβλήματα εκχύλισης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προβλήματα εκχύλισης"

Transcript

1 Προβλήματα εκχύλισης Πηγή: Μαρίνου-Κουρή, Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, εκδ. Παπασωτηρίου, Αθήνα, Εκχύλιση ακετόνης από νερό με χλωροβενζόλιο σε μονοβάθμιο εκχυλιστήρα. 100 kg διαλύματος ακετόνης (συστατικό Β) 50% κ.β. σε νερό (συστατικό Α) εκχυλίζονται με χλωροβενζόλιο. Στον παρακάτω πίνακα δίνονται πειραματικά δεδομένα ισορροπίας (% κ.β.) για το σύστημα Ακετόνη-Νερό-Χλωροβενζόλιο. Σε κάθε γραμμή του πίνακα δίνονται οι συστάσεις δύο υγρών φάσεων σε ισορροπία. Η τελευταία γραμμή είναι το «σημείο αναστροφής» όπου οι δύο κλάδοι της καμπύλης ισορροπίας συναντώνται και οι δύο φάσεις έχουν την ίδια σύσταση, δηλ. ουσιαστικά εκεί αρχίζει η μονοφασική περιοχή. Υπόλειμμα (R) Εκχύλισμα (Ε) Β Α S B A S Ζητούνται: α) Να κατασκευαστεί το τριγωνικό διάγραμμα για Ακετόνη (Α) Νερό (Β) Χλωροβενζόλιο (S) β) Η ποσότητα του διαλύτη που απαιτείται αν στο υπόλειμμα θέλουμε να παραμένει όχι πάνω από 10% ακετόνη γ) Ποια η σύσταση και ποσότητα του εκχυλίσματος και του υπολείμματος και ποια η μάζα του Β σε κάθε φάση; Λύση: α) Ας θυμηθούμε πώς γίνεται η τοποθέτηση των σημείων πάνω στο τριγωνικό διάγραμμα. Για παράδειγμα, ας πάρουμε τις συστάσεις από την τελευταία εγγραφή του πίνακα, αυτή του σημείου αναστροφής βλ. Σχήμα 1. Για το συστατικό Β έχουμε 60.58% (ή ), άρα το ζητούμενο σημείο θα είναι πάνω στην ευθεία ΚΛ, παράλληλη προς την πλευρά AS (απέναντι από την κορυφή του συστατικού Β). Το συστατικό Α υπάρχει σε περιεκτικότητα 25.66% (ή ), άρα θα βρίσκεται πάνω στην ευθεία ΜΝ, παράλληλη προς την πλευρά ΒS (απέναντι από την κορυφή Α). Η τομή των δύο ευθειών είναι το σημείο Τ που είναι και το ζητούμενο. Τότε, φέροντας και την ευθεία ΠΡ, παράλληλα προς την πλευρά ΑΒ (απέναντι από την κορυφή S) παρατηρούμε ότι αντιστοιχεί στη σωστή σύσταση για το διαλύτη (περίπου 14%). Γενικά, όπως αρκούν οι δύο από τις τρεις συστάσεις για να βρεθεί η τρίτη (π.χ. x S = 1 x A x B ), έτσι και στο διάγραμμα, αρκεί να φέρουμε δύο ευθείες που προσδιορίζουν το ζητούμενο σημείο ως τομή τους και η τρίτη ευθεία θα αντιστοιχεί στη σωστή σύσταση. Ακολουθώντας την ίδια διαδικασία, τοποθετούμε και τα υπόλοιπα σημεία, όπως φαίνεται στο Σχήμα 2. Κάθε ζεύγος σημείων συνδέεται και με την αντίστοιχη γραμμή σύνδεσης (tie line).

2 Σχ. 1 Εντοπισμός του μείγματος με σύσταση Α = 25.66%, Β = 60.58% και S = 13.76% στο τριγωνικό διάγραμμα (σημείο Τ) Σχ. 2 Απεικόνιση δεδομένων ισορροπίας φάσεων για το σύστημα ακετόνη-νερό-χλωροβενζόλιο. Κάθε μείγμα με σύσταση τέτοια ώστε να βρίσκεται πάνω σε μια γραμμή σύνδεσης (κόκκινες γραμμμές) διαχωρίζεται σε δύο φάσεις με συστάσεις που αντιστοιχούν στα σημεία στα άκρα της γραμμής. Το ποσό κάθε φάσης καθορίζεται από τον κανόνα του μοχλού. β) Το υπόλειιμμα είναι μία από τις δύο φάσεις που δημιουργούνται όταν αναμειγνύουμε την

3 τροφοδοσία με το διαλύτη, άρα θα βρίσκεται πάνω στην καμπύλη ισορροπίας. Αν η σύσταση του υπολείμματος είναι 10% σε ακετόνη τότε το σημείο R που του αντιστοιχεί, θα βρίσκεται στην τομή της καμπύλης ισορροπίας με την ευθεία των σημείων που αντιστοιχούν σε 10% ακετόνη. Αν σχεδιάσουμε τη συνδετική γραμμή (tie line) από το R μέχρι την άλλη άκρη της καμπύλης ισορροπίας θα βρούμε το σημείο Ε που αντιστοιχεί στο εκχύλισμα. Στο σχήμα μας (βλ. Σχ. 3), η συγκεκριμένη tie line υπάρχει γιατί τα πειραματικά δεδομένα περιέχουν και τη σύσταση που προκύπτει για 10% ακετόνη, καθώς και αυτή της άλλης φάσης, άρα ξέρουμε και τη σύσταση του εκχυλίσματος κατευθείαν από τον πίνακα των δεδομένων: Υπόλειμμα (R) Εκχύλισμα (Ε) Β Α S B A S Σχ. 3 Εντοπισμός τριαδικού μείγματος με τη βοήθεια συνδετικής γραμμής και γραμμής αραίωσης Τώρα, για να βρούμε την απαιτούμενη ποσότητα του διαλύτη, πρέπει να βρούμε από ποιο συγκεκριμένο μείγμα προέκυψαν οι δύο παραπάνω φάσεις. Αυτό το μείγμα, πριν διαχωριστεί σε αυτές τις φάσεις ήταν ένα σημείο πάνω στη συνδετική γραμμή RE. Ξέρουμε όμως επίσης, ότι αυτό προήλθε από την ανάμειξη 50% μείγματος ακετόνης-νερού με καθαρό διαλύτη (χλωροβενζόλιο). Το αρχικό μείγμα ήταν επομένως το σημείο F στο μέσο της πλευράς ΑΒ του τριγώνου, ενώ η αραίωσή του με το διαλύτη παριστάνεται, όπως γνωρίζουμε, από την ευθεία FS. Επομένως, το άγνωστο μείγμα είναι πάνω στην ευθεία FS. Από τα παραπάνω προκύπτει ότι το μείγμα είναι το σημείο Μ στην τομή των ευθειών RE και FS. Τώρα, απομένει να εφαρμόσουμε τον κανόνα του μοχλού: S F =FM MS S=FFM FM =100 kg MS MS Από το διάγραμμα βλέπουμε ότι FM/MS 4, άρα η απαιτούμενη ποσότητα διαλύτη θα είναι S = 400 kg. γ) Η σύσταση του υπολείμματος και του εκχυλίσματος δόθηκε στο προηγούμενο ερώτημα

4 σύμφωνα με τα πειραματικά δεδομένα. Το κλάσμα βάρους του Β στο υπόλειιμμα είναι x B, R = m B, R / m R = 0.1 => m B, R = 0.1 m R (1) Η μάζα του μείγματος είναι : m R + m E = m M = F + S = 500 kg (2) Από τον κανόνα του μοχλού έχουμε: m R / m M = ME / RE 0.11 => m R = 0.11 X 500 = 55 kg (3) Μάζα εκχυλίσματος: m E = m M m R = 445 kg (4) Τότε, από την (1) συνεπάγεται ότι η μάζα του Β στο υπόλειμμα είναι: m B, R = 5.5 kg άρα η μάζα του Β στο εκχύλισμα θα είναι: m B, E = = 44.5 kg 2. Επιλογή άριστου διαλύτη για απλό εκχυλιστήρα Ζητείται η παραλαβή ουσίας Β από μείγμα Α + Β με εκχύλιση μιας βαθμίδας. Η παροχή του συστατικού Α στην τροφοδοσία δίνεται ίση με F' = 1 kg A / s. Η σύσταση της τροφοδοσίας δίνεται ως ποσότητα του Β που αντιστοιχεί στη μονάδα του Α: x F = 0.55 kg B / kg A. Παρόμοια η ζητούμενη σύσταση του υπολείμματος είναι x R = 0.05 kg B / kg A. Υπάρχει η δυνατότητα επιλογής μεταξύ δύο διαλυτών S1 και S2, που κοστίζουν C S1 = 3 / kg και C S2 = 5 / kg. Ζητείται να επιλεγεί ο πιο οικονομικός διαλύτης αν τα δεδομένα ισορροπίας είναι τα εξής: Λύση: Τόσο ο S1 όσο και ο S2 είναι τελείως μη αναμίξιμοι με το συστατικό Α. Η ισορροπία στο σύστημα S1-A περιγράφεται από Y = 0.6 X και στο σύστημα S2-Α από Υ = 0.8 Χ, όπου Χ (kg B / kg A) η σύσταση του υπολείμματος και Υ (kg B / kg A) η σύσταση του εκχυλίσματος. Δε μπορούμε να αποφασίσουμε ποιος από τους δύο διαλύτες είναι οικονομικότερος με βάση την τιμή τους ανά kg γιατί δε γνωρίζουμε τι ποσότητα θα χρειαστεί από τον καθένα. Πρέπει να την υπολογίσουμε για να βρούμε το συνολικό κόστος. Οι εξισώσεις που περιγράφουν τη διεργασία είναι: Ισορροπία: Y = m X (1) Ισοζύγιο μάζας: F' (X F X R ) = S' (Y F Y 0 ) (2) Συνολικό κόστος: K = C S' (3) Να σημειωθεί ότι τα τονούμενα σύμβολα αναφέρονται σε «φέροντα» συστατικά, δηλαδή αυτά που μένουν αμετάβλητα στην είσοδο και την έξοδο χωρίς να μεταφερθούν στην άλλη φάση (συστατικό Α και διαλύτης). Διαλύτης S1: Y E1 = m X R = 0.6 X 0.05 = 0.03 kg B / kg S' S 1 = 1 X ( ) / 0.03 = kg S' 1 / s

5 K 1 = 3.00 X = Διαλύτης S2: Y E2 = m X R = 0.8 X 0.05 = 0.04 kg B / kg S' S 1 = 1 X ( ) / 0.04 = kg S' 1 / s K 1 = 5.00 X = K1 < K2, άρα από καθαρά οικονομική άποψη, συμφέρει η χρήση του διαλύτη S1.

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Τριγωνικές

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ ΥΓΡΟΥ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ ΥΓΡΟΥ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ ΥΓΡΟΥ Παράδειγμα 1 Σε μονάδα εκχύλισης μιας μόνο βαθμίδας πραγματοποιείται εκχύλιση οξικού οξέος από νερό με χρήση βουτανόλης. Η τροφοδοσία παροχής F= 100 kg/h περιέχει οξικό

Διαβάστε περισσότερα

Είδη ΙΦΥΥ δυαδικών μιγμάτων

Είδη ΙΦΥΥ δυαδικών μιγμάτων Είδη ΙΦΥΥ δυαδικών μιγμάτων T A X 1 X 1 ΙΦΥΥ τριαδικών μιγμάτων Τριγωνικά διαγράμματα C 0.1 0.2 0.3 0.4 0.5 P 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.6 0.7 0.8 0.9 κλάσμα βάρους του B κλάσμα βάρους του C

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης

ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης ΠΡΟΒΛΗΜΑΤΑ Υ/Υ ΕΚΧΥΛΙΣΗΣ Κ. Μάτης Πρόβληµα 36. Μια υγρή τροφοδοσία 3,5 kg/s, που περιέχει µια διαλυτή ουσία Β διαλυµένη σε συστατικό Α, πρόκειται να διεργαστεί µε ένα διαλύτη S σε µια µονάδα επαφής καθ

Διαβάστε περισσότερα

Απορρόφηση Αερίων (2)

Απορρόφηση Αερίων (2) Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Απορρόφηση Αερίων. 1. Εισαγωγή

Απορρόφηση Αερίων. 1. Εισαγωγή 1. Εισαγωγή Απορρόφηση Αερίων Πρόκειται για διαχωρισμό συστατικών από μείγμα αερίου με τη βοήθεια υγρού διαλύτη. Κινητήρια δύναμη είναι η διαφορά διαλυτότητας στο διαλύτη. Στη συνέχεια θα ασχοληθούμε με

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΡΙΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΡΙΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@hem.auth.gr url:

Διαβάστε περισσότερα

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης

Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Ερωτήσεις Επανάληψης 1 0.8 0.6 x D = 0.95 y 0.4 x F = 0.45 0.2 0 0 0.2 0.4 0.6 0.8 1 x B = 0.05 Σχήμα 1. Δεδομένα ισορροπίας y-x για δυαδικό μίγμα συστατικών Α και Β και οι

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ. Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2

ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ. Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2 ΠΡΟΒΛΗΜΑΤΑ ΕΚΠΛΥΣΗΣ Πρόβληµα 30. Η καυστική σόδα παράγεται µε την επεξεργασία ενός διαλύµατος ανθρακικού νατρίου σε νερό (25 kg/s Na 2 CO 3 ) µε τη θεωρητική απαίτηση σε υδροξείδιο του ασβεστίου. Αφού

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

Κεφάλαιο 5 Εκχύλιση. 5.1 Ισορροπία Υγρού - Υγρού

Κεφάλαιο 5 Εκχύλιση. 5.1 Ισορροπία Υγρού - Υγρού Κεφάλαιο 5 Εκχύλιση Σύνοψη Εκχύλιση υγρού/υγρού ονομάζεται η φυσική διεργασία διαχωρισμού ενός ή περισσοτέρων συστατικών ενός υγρού μίγματος με κατεργασία του με κατάλληλο διαλύτη, στον οποίο το(α) συστατικό(α)

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ

Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Μηχανική και Ανάπτυξη Διεργασιών 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ ΥΓΡΗ ΕΚΧΥΛΙΣΗ Η υγρή εκχύλιση βρίσκει εφαρμογή όταν. Η σχετική πτητικότητα των συστατικών του αρχικού διαλύματος είναι κοντά στη

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Συμβολή κυμάτων Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η αρχή της επαλληλίας των κυμάτων: α. παραβιάζεται μόνον

Διαβάστε περισσότερα

Ε. Παυλάτου, 2017 ΔΙΕΡΓΑΣΙΕΣ

Ε. Παυλάτου, 2017 ΔΙΕΡΓΑΣΙΕΣ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΔΙΕΡΓΑΣΙΕΣ Διεργασία: περιγράφει μετατροπή της ύλης (φυσική ή χημική ή βιολογική) Στις διεργασίες περιγράφονται τα εισερχόμενα ρεύματα (τροφοδοσία) και εξερχόμενα ρεύματα (προϊόντα) Διάγραμμα

Διαβάστε περισσότερα

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί)

Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί) ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυμάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούμε ή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΥΠΟ ΕΙΓΜΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΟ ΥΠΟ ΕΙΓΜΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΑΣΚΗΣΕΙΣ ΣΤΟ ΥΠΟ ΕΙΓΜΑ ΖΗΤΗΣΗΣ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Άσκηση 1: ίνεται ο πίνακας ζήτησης και προσφοράς ενός αγαθού Χ: Τιµή Ζητούµενη Προσφερόµενη ποσότητα ποσότητα 54 10 3 50 1 19 46 14 15 44 15 13 40 17 9 Ζητείται

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Διαγράμματα φάσεων-phase Diagrams

Διαγράμματα φάσεων-phase Diagrams Διαγράμματα φάσεων-phase Diagrams Φωτογραφία ηλεκτρονικού μικροσκοπίου που δείχνει την μικροκρυασταλλική δομή ανθρακούχου χάλυβα με περιεκτικότητα 0,44%C Περλίτης Φερρίτης (φερρίτης+σεμεντίτης) Φάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες 1. Η τάση ατμών ενός υγρού εξαρτάται: i. Από την ποσότητα του υγρού ii. Τη θερμοκρασία iii. Τον όγκο του δοχείου iv. Την εξωτερική

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li

Απρίλιος Λύση: Σύνοψη των δεδομένων: P = 6at, V = 0.6F, L = 0.4F, F = 1 kmol/s. Ζητούμενα: x Fi, x Li Φυσικές Διεργασίες Προβλήματα στην απόσταξη που λύθηκαν στην τάξη Πηγή: Δ. Μαρίνος-Κουρής, Ε. Παρλιάρου-Τσάμη, Ασκήσεις Φυσικών Διεργασιών, Παπασωτηρίου, Αθήνα 1994 Απρίλιος 2008 Πρόβλημα 1 Διαχωριστήρας

Διαβάστε περισσότερα

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας 1 Η θεωρία του μαθήματος με ερωτήσεις. 2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας Ερωτήσεις θεωρίας με απάντηση 3-1. Τι ονομάζεται περιεκτικότητα ενός διαλύματος; Είναι μία έκφραση που δείχνει

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 1. Σε δοχείο σταθερού όγκου και σε σταθερή θερμοκρασία, εισάγονται κάποιες ποσότητες των αερίων Η 2(g) και Ι 2(g) τα οποία αντιδρούν σύμφωνα με

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Θέµα ασκήσεως Προσδιορισµός καµπύλης διαλυτότητας σε διάγραµµα φάσεων συστήµατος τριών υγρών συστατικών που το ένα ζεύγος παρουσιάζει περιορισµένη

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ

ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15/01/2017 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ Π. ΒΑΘΜΟΣ: /100, /20 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Στις προτάσεις α μέχρι και ε να γράψετε στο τετράδιο σας το γράμμα της

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Έννοιες που θα συζητηθούν Ορισμός Φάσης Ορολογία που συνοδεύει τα διαγράμματα και τους μετασχηματισμούς

Διαβάστε περισσότερα

Αλληλεπίδραση ρύπων εδάφους

Αλληλεπίδραση ρύπων εδάφους Αλληλεπίδραση ρύπων εδάφους Παρουσίαση 1 από 4 Περιεχόμενα 1) Kίνητρο μελέτης αλληλεπίδρασης 2) Έννοιες και όροι 3) Προαπαιτούμενα από φυσικοχημεία & εδαφομηχανική Πώς κατανέμεται ο ρύπος στις εδαφικές

Διαβάστε περισσότερα

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ 3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 23.12.2015 ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Ένα τυπικό φυσικό αέριο έχει την ακόλουθη σύσταση σε % mol: 0.5% Ν 2,

Διαβάστε περισσότερα

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Διαγράμματα Φάσεων Δημιουργία κραμάτων: διάχυση στοιχείων που έρχονται σε άμεση επαφή Πως συμπεριφέρονται τα επιμέρους άτομα των

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 6: Ισορροπία φάσεων συστήματος πολλών συστατικών αμοιβαία διαλυτότητα Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 5 3. Επεξεργασία Μετρήσεων...

Διαβάστε περισσότερα

ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ. Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή. K.A. Μάτης

ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ. Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή. K.A. Μάτης ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Σχεδιασµός της Στήλης µε Χρήση ενός Προσοµοιωτή K.A. Μάτης Εισαγωγή Στη διεργασία της απορρόφησης ένα αέριο µίγµα έρχεται σε επαφή µε ένα υγρό (το διαλύτη ή απορροφητικό) ώστε να διαλυθεί

Διαβάστε περισσότερα

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ 2 Ογκομέτρηση προχοϊδα διάλυμα HCl ΕΔΩ ακριβώς μετράμε τον όγκο ( στην εφαπτομένη της καμπύλης

Διαβάστε περισσότερα

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης.

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Ανεξάρτητα συστατικά ή συνιστώσες ενός ετερογενούς συστήµατος σε ισορροπία

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0 ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ 1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Ιωάννης Πούλιος ΝΟΜΟΣ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124 ΘΕΣΣΑΛΟΝΙΚΗ ΝΟΜΟΣ ΤΗΣ ΚΑΤΑΝΟΜΗΣ

Διαβάστε περισσότερα

y x y x+2y=

y x y x+2y= ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Φυσικές Διεργασίες Πέμπτη Διάλεξη

Φυσικές Διεργασίες Πέμπτη Διάλεξη Φυσικές Διεργασίες Πέμπτη Διάλεξη Δευτέρα, 12 Μαΐου 2008 Απορρόφηση αερίων 1. Ορισμός Τι είναι απορρόφηση; Είναι μεταφορά μέσω της διεπιφάνειας αερίου-υγρού ενός συστατικού από αέριο μίγμα σε έναν υγρό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης Πρόβληµα 1. Ένα µίγµα αερίων που περιέχει 65% του Α, 5% Β, 8% C και % D βρίσκεται σε ισορροπία µ' ένα υγρό στους 350 Κ και 300 kn/m. Αν η τάση ατµών των καθαρών συστατικών

Διαβάστε περισσότερα

Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα

Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα Μάθημα 6 6.1. SOS: Τι ονομάζεται διάλυμα, Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων καθαρών ουσιών. Παράδειγμα: Ο ατμοσφαιρικός αέρας

Διαβάστε περισσότερα

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΙΙ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Ιωάννης Πούλιος ΔΥΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΛΕΤΗ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΤΟΥ ΣΗΜΕΙΟΥ ΖΕΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διαβάστε περισσότερα

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος Μεταλλογνωσία Εργασίες μέσα στην τάξη σελίδα 1 ΜΕΤΑΛΛΟΓΝΩΣΙΑ Γ. Δ. ΠΛΑΪΝΑΚΗΣ Εργασία 01 Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου για την κατασκευή του

Διαβάστε περισσότερα

5 ΕΚΧΥΛΙΣΗ. Κ. Α. Μάτης 5.1 ΓΕΝΙΚΕΣ ΑΡΧΕΣ

5 ΕΚΧΥΛΙΣΗ. Κ. Α. Μάτης 5.1 ΓΕΝΙΚΕΣ ΑΡΧΕΣ 5 ΕΚΧΥΛΙΣΗ Κ. Α. Μάτης 5.1 ΓΕΝΙΚΕΣ ΑΡΧΕΣ Ο διαχωρισµός των συστατικων ενός υγρού µίγµατος όταν επεξεργάζεται µε ένα διαλύτη, στον οποίο το ένα (ή περισσότερα) από τα επιθυµητά συστατικά είναι εκλεκτικά

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 5 ο μάθημα ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών 2 Διεργασίες που περιλαμβάνουν μια

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος Εισαγωγή Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 0: Ισορροπίες φάσεων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η παρουσίαση και η εξέταση της ισορροπίας ανάμεσα

Διαβάστε περισσότερα

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής ΖΗΤΗΜΑ Ο Ερωτήσεις ΣΩΣΤΟΥ ΛΑΘΟΥΣ Σωστές διατυπώσεις Η ταχύτητα εκφράζει το ρυθμό μεταβολής της θέσης του κινητού Ο ρυθμός μεταβολής της θέσης ( ταχύτητα ) του κινητού στην Ε.Ο.. είναι σταθερός Η επιτάχυνση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013 1 Ισορροπία Φάσεων Ανάλογα με τη φύση των συστατικών του μίγματος (ή της ολικής πίεσης του συστήματος) οι τάσεις διαφυγής υπολογίζονται - ανάλογα

Διαβάστε περισσότερα

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0} 1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 5: Διαγράμματα σημείων ζέσεως συνθέσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία

Διαβάστε περισσότερα

Διάλυμα, είναι κάθε ομογενές μίγμα δύο ή περισσότερων ουσιών.

Διάλυμα, είναι κάθε ομογενές μίγμα δύο ή περισσότερων ουσιών. Διάλυμα, είναι κάθε ομογενές μίγμα δύο ή περισσότερων ουσιών. Διαλύτης: Είναι το συστατικό του διαλύματος που έχει την ίδια φυσική κατάσταση με το διάλυμα. Όταν περισσότερα από ένα συστατικά έχουν την

Διαβάστε περισσότερα

Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων

Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων Μεθοδολογία ασκήσεων Όταν έχουμε προβλήματα στο οποία ένα σώμα ισορροπεί, η μεθοδολογία που χρησιμοποιούμε έχει ως εξής: 1. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. Το πλήθος των δυνάμεων που σχεδιάζουμε

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 4 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες

Ημερομηνία: Τετάρτη 4 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ημερομηνία: Τετάρτη 4 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΟΜΑΔΑ Α Να γράψετε στο τετράδιό σας το γράμμα κάθε πρότασης και δίπλα σε κάθε γράμμα

Διαβάστε περισσότερα

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή Εργαστήριο Φυσικοχημείας Μάθημα: «Εργαστήριο Ηλεκτροχημείας»

πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή Εργαστήριο Φυσικοχημείας Μάθημα: «Εργαστήριο Ηλεκτροχημείας» πεχαμετρικός προσδιορισμός της σταθεράς οξύτητας οξέων εισαγωγή H ισχύς ενός μονοπρωτικού οξέος κατά τη διάστασή του στο νερό, σύμφωνα με την αντίδραση πρωτόλυσης HA + H O H 3 O + + A - εκφράζεται με βάση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).

Διαβάστε περισσότερα

ΕΚΧΥΛΙΣΗ Πρόβλημα 1. Υδατικό διάλυμα 100 kg, ακετόνης (Β) 60% κ.β., εκχυλίζεται με χλωροβενζόλιο (S) σε εκχυλιστήρα ενός σταδίου.

ΕΚΧΥΛΙΣΗ Πρόβλημα 1. Υδατικό διάλυμα 100 kg, ακετόνης (Β) 60% κ.β., εκχυλίζεται με χλωροβενζόλιο (S) σε εκχυλιστήρα ενός σταδίου. ΕΚΧΥΛΙΣΗ Πρόβλημα 1. Υδατικό διάλυμα 100 kg, ακετόνης (Β) 60% κ.β., εκχυλίζεται με χλωροβενζόλιο (S) σε εκχυλιστήρα ενός σταδίου. Δίνεται επίσης το τριγωνικό διάγραμμα ισορροπίας του συστήματος. Να βρεθεί

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις ερωτήσεις 1 έως 4 και δίπλα το

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2015-2016 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ ΜΟΝΑΔΕΣ ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 3 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 4 ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 5 Επιφάνεια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 1η οµάδα. 2. Έστω ο επόµενος πίνακας παραγωγικών δυνατοτήτων: Χ Υ Κόστος. Κόστος ευκαιρίας Ψ Α /3

ΑΣΚΗΣΕΙΣ. 1η οµάδα. 2. Έστω ο επόµενος πίνακας παραγωγικών δυνατοτήτων: Χ Υ Κόστος. Κόστος ευκαιρίας Ψ Α /3 ΑΣΚΗΣΕΙΣ 1η οµάδα 1. Έστω επιχείρηση που διαθέτει 5 εργάτες. Κάθε εργάτης µπορεί να παράγει 12 µονάδες από το αγαθό Υ. Επιπλέον γνωρίζουµε ότι η ΚΠ είναι γραµµική µε το συνδυασµό X = 45, Y = 24 να είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

Energy resources: Technologies & Management

Energy resources: Technologies & Management Πανεπιστήμιο Δυτικής Μακεδονίας Energ resources: echnologies & Management Τεχνολογίες άνθρακα Σχεδιασμός Στηλών Απορρόφησης Αερίων Δρ. Γεώργιος Σκόδρας Αν. Καθηγητής Περιεχόμενα Η διάλεξη που ακολουθεί

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. = 4 Να λύσετε το σύστηµα + = αλγεβρικά γραφικά = 4 = 4+ + = + = = 4+ 4 + + = = 4+ = = 4+ = = 4 = = = = 4 = 4 παριστάνει ευθεία ε Για = 0

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά)

ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής. Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) ΒΙΟΜΗΧΑΝΙΚΗ ΑΠΟΣΤΑΚΤΙΚΗ ΣΤΗΛΗ : Ερωτήσεις πολλαπλής επιλογής (Σηµείωση: Σκεφθείτε και δικαιολογήσετε τη σωστή απάντηση κάθε φορά) Η απόσταξη στηρίζεται στη διαφορά που υπάρχει στη σύσταση ισορροπίας των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ 1. Τι πρέπει να κατανοήσει ο μαθητής Στον προσδιορισμό των τιμών οι συναρτήσεις ζήτησης και προσφοράς (και οι αντίστοιχες καμπύλες) εκφράζουν τις δυνάμεις της

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα

ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ. Μ. Κροκίδα ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ Μ. Κροκίδα ΚΛΑΣΜΑΤΙΚΗ ΑΠΟΣΤΑΞΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓ. ΣΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διαφορική (batch) Rectifying column Stripping column

Διαβάστε περισσότερα

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο

Διαβάστε περισσότερα

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction Ορισμός Εκχύλισης Υγρού- Υγρού Αποτελεί μια διεργασία

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Στην αγορά ενός αγαθού συμμετέχουν δύο καταναλωτές, των οποίων οι ατομικές συναρτήσεις

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Μίγματα - Διαλύματα:

Μίγματα - Διαλύματα: ΧΗΜΕΙΑ: Εισαγωγή στην Χημεία - από το νερό στο άτομο- από το μακρόκοσμο στον μικρόκοσμο 49 Μίγματα - Διαλύματα: Μίγματα: Τι είναι τα μίγματα; Μίγματα ονομάζονται τα υλικά που αποτελούνται από δύο ή περισσότερες

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΛΑΣΜΑΤΙΚΗΣ ΑΠΟΣΤΑΞΗΣ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΛΑΣΜΑΤΙΚΗΣ ΑΠΟΣΤΑΞΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΛΑΣΜΑΤΙΚΗΣ ΑΠΟΣΤΑΞΗΣ Παράδειγμα 1 Μια αποστακτική στήλη διαχωρίζει μια τροφοδοσία κορεσμένου ατμού με ρυθμό ροής 100 kmol/h και σύσταση 30 mol% αιθανόλη (E), 25 mol% i- προπανόλη (i-p), 35

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα