ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ (ΑΛΓΕΒΡΑ) ΚΕΦΑΛΑΙΟ 1ο Αλγεβρικές Παραστάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ (ΑΛΓΕΒΡΑ) ΚΕΦΑΛΑΙΟ 1ο Αλγεβρικές Παραστάσεις"

Transcript

1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΤΞΗΣ (ΛΕΡ) ΚΕΦΛΙΟ 1ο λγεικές Πστάσεις Τι ονομάζετε δύνμη ν με άση τον πγμτικό κι εκθέτη το φυσικό ν1; Ονομάζετι δύνμη ν με άση τον ιθμό κι εκθέτη το φυσικό ν 1, το γινόμενο πό ν πάγοντες ίσους με. ηλδή, ν ν πάγοντες Οίζουμε κόμη: με 0 ν 1 με 0 κι ν 1,, 3,.. ν. Ποιες είνι οι ιδιότητές των δυνάμεων με άση πγμτικό κι εκθέτη κέιο ; ι δυνάμεις, με εκθέτες γενικά κέιους ιθμούς, ισχύουν οι επόμενες ιδιότητες:. δ. μ ν μ+ν. ν ν ν ε. μ ν μ ν ν ν γ. ν ν () ν μ στ. ν μν Οι ιδιότητες υτές ισχύουν με την ποϋπόθεση ότι κάθε φοά οίζοντι οι δυνάμεις κι οι πάξεις που σημειώνοντι. 3. Τι ονομάζετι τετγωνική ίζ θετικού ιθμού ; Ονομάζετι τετγωνική ίζ ενός θετικού ιθμού κι συμολίζετι με ο θετικός ιθμός x που, ότν υψωθεί στο τετάγωνο, μς δίνει τον ιθμό. Επομένως : x ν κι μόνο ν x x, 0 4. Ποιες είνι οι ιδιότητές των ιζών; Οίζουμε κόμη 0 0 πό τον οισμό τις τετγωνικής ίζς ενός ιθμού 0 έχουμε ι κάθε πγμτικό ιθμό ισχύει Aν 0 κι 0, τότε Aν 0 κι 0, τότε Επιμέλει: σίλης Κάνις Σελίδ 1

2 5. Aν 0 κι 0 ν ποδείξετε ότι, πόδειξη Είνι γνωστό ότι ν οι κι είνι μη νητικοί ιθμοί τότε. Έτσι: που ισχύει. 6. Aν 0 κι > 0 ν ποδείξετε ότι, πόδειξη Είνι γνωστό ότι ν οι κι είνι μη νητικοί ιθμοί τότε, Έτσι:, που ισχύει Τι ονομάζετι λγεική πάστση; Ονομάζετι λγεική πάστση κάθε έκφση που συνδυάζει πάξεις μετξύ ιθμών κι μετλητών. 8. Τι ονομάζετι ιθμητική τιμή λγεικής πάστσης; Ονομάζετι ιθμητική τιμή λγεικής πάστσης ο ιθμός που θ ποκύψει ν ντικτστήσουμε τις μετλητές της με ιθμούς κι εκτελέσουμε τις πάξεις. 9. Πότε μι λγεική πάστση ονομάζετι κέι; Μι λγεική πάστση ονομάζετι κέι, ότν μετξύ των μετλητών της σημειώνοντι μόνο οι πάξεις της πόσθεσης κι του πολλπλσισμού κι οι εκθέτες των μετλητών της είνι φυσικοί ιθμοί. 10. Τι ονομάζετι μονώνυμο κι ποι τ μέη πό τ οποί ποτελείτι; Ονομάζετι μονώνυμο μι λγεική πάστση στην οποί σημειώνετι μόνο η πάξη του πολλπλσισμού μετξύ ιθμού κι μις ή πεισσοτέων μετλητών. Σε έν μονώνυμο ο ιθμητικός πάγοντς που γάφετι πώτος ονομάζετι συντελεστής του μονωνύμου, ενώ το γινόμενο όλων των μετλητών ονομάζετι κύιο μέος του μονωνύμου. Επιμέλει: σίλης Κάνις Σελίδ

3 11. Ποι μονώνυμ ονομάζοντι όμοι; Ονομάζοντι όμοι δύο ή πεισσότε μονώνυμ που έχουν το ίδιο κύιο μέος. 1. Ποι μονώνυμ ονομάζοντι ίσ κι ποι ντίθετ; Ονομάζοντι ίσ δύο μονώνυμ που έχουν τον ίδιο συντελεστή κι το ίδιο κύιο μέος. Ονομάζοντι ντίθετ δύο μονώνυμ που έχουν ντίθετο συντελεστή κι το ίδιο κύιο μέος. 13. Τι ονομάζετι θμός μονωνύμου ως πος μί μετλητή του; Ονομάζετι θμός μονωνύμου ως πος μί μετλητή του ο εκθέτης της μετλητής υτής. 14. Τι ονομάζουμε στθεό κι τι μηδενικό μονώνυμο κι ποιος ο θμός τους; Ονομάζουμε στθεό μονωνύμο κάθε ιθμό κι μηδενικό μονώνυμο τον ιθμό 0. Το μηδενικό μονώνυμο δεν έχει θμό ενώ όλ τ άλλ στθεά μονώνυμ είνι μηδενικού θμού. 15. Πως οίζετι το άθοισμ ομοίων μονωνύμων; Το άθοισμ ομοίων μονωνύμων είνι έν μονώνυμο όμοιο με υτά που έχει συντελεστή το άθοισμ των συντελεστών τους. 16. Τι ονομάζετι νγωγή ομοίων όων; Ονομάζετι νγωγή ομοίων όων η πόσθεση ομοίων μονωνύμων. 17. Πως οίζετι το γινόμενο μονωνύμων; Το γινόμενο μονωνύμων είνι έν μονώνυμο με συντελεστή το γινόμενο των συντελεστών τους κι κύιο μέος γινόμενο όλων των μετλητών τους με εκθέτη κάθε μετλητής το άθοισμ των εκθετών της Τι ονομάζετι πολυώνυμο; Ονομάζετι πολυώνυμο έν άθοισμ μονωνύμων που δεν είνι όμοι. 19. Τι ονομάζετι θμός ενός πολυωνύμου ως πος μί μετλητή του; Ονομάζετι θμός ενός πολυωνύμου ως πος μί μετλητή του ο μεγλύτεος πό τους θμούς των όων του ως πος την μετλητή υτή. 0. Τι ονομάζουμε στθεό κι τι μηδενικό πολυώνυμο κι ποιος ο θμός τους; Ονομάζουμε στθεό πολυώνυμο κάθε ιθμό κι μηδενικό πολυώνυμο τον ιθμό 0. Το μηδενικό πολυώνυμο δεν έχει θμό ενώ όλ τ άλλ στθεά πολυώνυμ είνι μηδενικού θμού. Επιμέλει: σίλης Κάνις Σελίδ 3

4 Πως πολλπλσιάζουμε:. Μονώνυμο με πολυώνυμο ;. Πολυώνυμο με πολυώνυμο ; ι ν πολλπλσιάσουμε:. Μονώνυμο με πολυώνυμο πολλπλσιάζουμε το μονώνυμο με κάθε όο του πολυωνύμου κι στη συνέχει κάνουμε νγωγή ομοίων όων.. Πολυώνυμο με πολυώνυμο πολλπλσιάζουμε κάθε όο του ενός πολυωνύμου με κάθε όο του άλλου κι στη συνέχει κάνουμε νγωγή ομοίων όων Τι ονομάζετι τυτότητ; Ονομάζετι τυτότητ κάθε ισότητ που πειέχει μετλητές κι επληθεύετι γι κάθε τιμή των μετλητών υτών. 3. Ν ποδείξετε τις τυτότητες: i. ( +) + + ii. ( ) + iii. ( + ) iv. ( ) v. ( )( + ) vi. 3 3 ( )( + + ) vii ( + )( + ) πόδειξη i. ( + ) ( + ) ( + ) ii. ( ) ( )( ) + + iii. ( + ) 3 ( + ) ( + ) ( + + )( + ) iv. ( ) 3 ( ) ( ) ( + )( ) v. ( )( + ) + vi. ( )( + + ) vii. ( + )( + ) Επιμέλει: σίλης Κάνις Σελίδ 4

5 Τι ονομάζετι πγοντοποίηση; Ονομάζετι πγοντοποίηση ενός πολυωνύμου ή γενικότε μις λγεικής πάστσης η διδικσί μεττοπής της πάστσης σε γινόμενο. 5. Ποιες είνι οι χκτηιστικές πειπτώσεις πγοντοποίησης; κοινός πάγοντς Ότν όλοι οι όοι μις πάστσης έχουν κοινό πάγοντ, τότε η πάστση μεττέπετι σε γινόμενο πγόντων σύμφων με την επιμειστική ιδιότητ. ομδοποίηση Ότν όλοι οι όοι του πολυωνύμου δεν έχουν κοινό πάγοντ, τους χωίζουμε σε ομάδες έτσι ώστε: Κάθε ομάδ που δημιουγούμε ν έχει κοινό πάγοντ, Οι πστάσεις που μένουν μετά την εξγωγή του κοινού πάγοντ ν είνι ίδιες διφοά τετγώνων Η μέθοδος υτή πγοντοποίησης στηίζετι στην τυτότητ ( )( + ), στην οποί ν ενλλάξουμε τ μέλη μεττέπουμε μι διφοά δύο τελείων τετγώνων σε γινόμενο. άθοισμ ή διφοά κύων Η πγοντοποίηση του θοίσμτος ή της διφοάς δύο κύων σίζετι στις δύο γνωστές μς τυτότητες: ( )( + + ) 3 3 ( + )( + ) Σε κάθε μι πό τις οποίες ν ενλλάξουμε τ μέλη μεττέπουμε τη διφοά ή το άθοισμ δύο κύων σε γινόμενο. + γ δ ( + γ δ) + γ δ δγ ( + γ) δ( + γ) ( + γ )( δ ) ( )( + ) 3 3 ( )( + + ) ( + )( + ) Επιμέλει: σίλης Κάνις Σελίδ 5

6 νάπτυγμ τετγώνου ν το πολυώνυμο είνι τιώνυμο κι έχει ή μποεί ν πάει τη μοφή: + + ή +, + + ( + ) τότε θ γίνει ντίστοιχ ( + ) ή ( ), + ( ) που είνι γινόμεν πγόντων φού : ( + ) ( + )( + ) κι ( ) ( )( ) Πγοντοποιήση τιωνύμου της μοφής x + ( + )x + ν το πολυώνυμο είνι τιώνυμο κι έχει τη μοφή x + ( + )x + έχουμε: x + ( + )x + x + x + x + Ομδοποίηση x + ( + )x + (x + )(x + ) x(x + ) + (x + ) Κοινός πάγοντς (x + )(x + ) Πως οίζετι η διίεση δύο Πολυωνύμων; (εκτός ύλης) Η διίεση δύο Πολυωνύμων είνι η διδικσί εκείνη κτά την οποί μς δίνοντι δύο πολυώνυμ (x) (διιετέος) κι δ(x) (διιέτης) με δ(x)0 κι ίσκουμε έν μονδικό ζεύγος πολυωνύμων π(x) (πηλίκο) κι υ(x) (υπόλοιπο), γι τ οποί ισχύει: (x) δ(x) π(x) + υ(x) (Τυτότητ Ευκλείδεις διίεσης) Το υ (x) είνι ίσο με μηδέν οπότε η διίεση λέγετι τέλει κι το δ(x) είνι πάγοντς του (x) ή έχει θμό μικότεο πό το θμό του δ(x) Τι ονομάζετι Ελάχιστο Κοινό Πολλπλάσιο (Ε.Κ.Π.) κι τι Μέγιστος Κοινός ιιέτης (Μ.Κ..) δύο ή πεισσοτέων λγεικών πστάσεων που έχουν νλυθεί σε γινόμενο πώτων πγόντων; Ελάχιστο Κοινό Πολλπλάσιο (Ε.Κ.Π.) δύο ή πεισσοτέων λγεικών πστάσεων που έχουν νλυθεί σε γινόμενο πώτων πγόντων ονομάζετι, το γινόμενο των κοινών κι μη κοινών πγόντων τους με εκθέτη κθενός το μεγλύτεο πό τους εκθέτες του. Μέγιστος Κοινός ιιέτης (Μ.Κ..) δύο ή πεισσοτέων λγεικών πστάσεων που έχουν νλυθεί σε γινόμενο πώτων πγόντων ονομάζετι, το γινόμενο των κοινών πγόντων τους με εκθέτη κθενός το μικότεο πό τους εκθέτες του. Επιμέλει: σίλης Κάνις Σελίδ 6

7 Πότε μι λγεική πάστση ονομάζετι ητή; Μι λγεική πάστση ονομάζετι ητή ότν είνι κλάσμ με όους πολυώνυμ. 9. Πότε μι λγεική πάστση οίζετι; Μι λγεική πάστση οίζετι γι όλες τις τιμές των μετλητών που πειέχει εκτός π υτές που μηδενίζουν τον πνομστή φού όπως γνωίζουμε δεν οίζετι κλάσμ με πονομστή μηδέν. 30. Πότε μι ητή λγεική πάστση μποεί ν πλοποιηθεί; Όπως μι ιθμητική πάστση, έτσι κι μι ητή πάστση, μποεί ν πλοποιηθεί, ν ο ιθμητής κι ο πονομστής της είνι γινόμεν κι έχουν κοινό πάγοντ Πως κάνουμε πάξεις με ητές λγεικές πστάσεις; ι ν κάνουμε πάξεις με ητές λγεικές πστάσεις κολουθούμε τους κνόνες που ισχύουν γι τις πάξεις των κλσμάτων. ηλδή: + γ + γ κι γ - γ + γ δ δ + γ δ κι γ δ δ - γ δ δ0 γ δ γ δ κι : γ δ δ γ δ γ γδ0 γ δ : γ δ δ γ δ γ γδ0 ΚΕΦΛΙΟ ο Εξισώσεις νισώσεις Τι ονομάζετι εξίσωση 1 ου θμού με ένν άγνωστο; Ονομάζετι εξίσωση 1 ου θμού με ένν άγνωστο κάθε ισότητ της μοφής x + 0 με 0. Ο λέγετι συντελεστής του γνώστου κι ο στθεός ( ή γνωστός ) όος. Ρίζ της εξίσωσης ονομάζετι ο ιθμός που ν ντικτστήσει τον χ στην εξίσωση ποκύπτει ισότητ που ληθεύει. Επίλυση μις εξίσωσης πώτου θμού λέγετι η διδικσί εκείνη με την οποί ίσκουμε τη λύση της. Επιμέλει: σίλης Κάνις Σελίδ 7

8 33. Πότε η εξίσωση x + 0 έχει μί λύση πότε είνι δύντη κι πότε όιστη; ν 0, η εξίσωση x + Ο έχει μονδική λύση την x ν 0, κι 0 η εξίσωση x + 0 γάφετι 0x κι δεν έχει λύση (δύντη), ν 0, κι 0, η εξίσωση x + 0 γάφετι 0x 0 οπότε κάθε ιθμός είνι λύση.. της (τυτότητ ή όιστη). 34. Τι ονομάζετι εξίσωση ου θμού, με ένν άγνωστο ; Ονομάζετι εξίσωση δευτέου θμού με ένν άγνωστο κάθε ισότητ της μοφής x + x + γ 0 με,, γ πγμτικούς ιθμούς κι 0. Οι ιθμοί κι ονομάζοντι συντελεστές του δευτεοθμίου κι πωτοθμίου όου ντίστοιχ κι ο ιθμός γ στθεός όος. Επίλυση μις εξίσωσης δευτέου θμού λέγετι η διδικσί εκείνη με την οποί ίσκουμε τις τιμές του x που την επληθεύουν. 35. Ν ποδείξετε τον τύπο που δίνει την λύση της δευτεοάθμις εξίσωσης x + x +γ 0 με,, γ πγμτικούς ιθμούς κι 0. πόδειξη (εκτός ύλης) ι την πόδειξη του τύπου υτού θ εφμόσουμε την μέθοδο «συμπλήωσης τετγώνου» ι την εξίσωση λοιπόν x + x + γ 0 με,, γ πγμτικούς ιθμούς κι 0 έχουμε διδοχικά: x + x + γ 0 4 x + 4x + 4γ 0 [Πολλπλσιάζουμε κι τ δύο μέλη της ισότητς με 4] 4 x + 4x 4γ [Μετφέουμε το στθεό όο στο μέλος] 4 x + 4x + 4γ [Ποσθέτουμε κι στ δύο μέλη της ισότητς το ] (x) + x + 4γ [Στο μέλος έχουμε το νάπτυγμ του (χ + ) ] (χ + ) 4γ Την πάστση 4γ ονομάζουμε δικίνουσ κι την συμολίζουμε με οπότε η εξίσωση (χ + ) 4γ γάφετι (χ + ) (i) ν 0 πό την (i) έχουμε: (χ + ) x + x ± x Επιμέλει: σίλης Κάνις Σελίδ 8

9 ν 0 ή εξίσωση είνι δύντη φού είνι δύντον ν ισχύει η εξίσωση ( I ) Επομένως οι λύσεις της εξίσωσης x + x + γ 0 με,, γ πγμτικούς ιθμούς ± κι 0 δίδοντι πό τον τύπο x κι υπάχουν μόνο εφ όσον Πότε μί εξίσωση δευτέου θμού:. έχει δύο άνισες ίζες;. έχει μι διπλή ίζ ; γ. δεν έχει ίζες; Η εξίσωση χ + χ + γ 0 με,, γ πγμτικούς ιθμούς, 0 κι δικίνουσ 4γ:. έχει δύο ίζες άνισες που δίνοντι πό τον τύπο x ±, ότν 0. έχει δύο ίζες ίσες που δίνοντι πό τον τύπο x γ. δεν έχει ίζες, ότν 0, ότν Πως πγοντοποιείτι το τιώνυμο x + x + γ ότν η εξίσωση x + x + γ 0 με 0 έχει λύσεις τις 1, ; ν 1, είνι λύσεις της εξίσωσης x + x + γ 0 με 0 το τιώνυμο x + x + γ πγοντοποιείτι σύμφων με τον τύπο: x + x + γ (x 1 )( x ) Τι ονομάζετι κλσμτική εξίσωση κι πότε οίζετι υτή; Ονομάζετι κλσμτική εξίσωση, κάθε εξίσωση που πειέχει άγνωστο στον πνομστή. ι ν οίζετι μι κλσμτική εξίσωση, πέπει οι πνομστές των κλσμάτων της ν είνι διάφοοι του μηδενός Πως συγκίνουμε (διτάσουμε) δύο πγμτικούς ιθμούς; ν οι κι είνι δύο πγμτικοί ιθμοί τότε: Λέμε ότι ο είνι μεγλύτεος του κι το συμολίζουμε, ότν 0. Λέμε ότι ο είνι μικότεος του κι το συμολίζουμε, ότν 0. Λέμε ότι ο είνι ίσος με τον κι το συμολίζουμε, ότν 0. ντίστοφ ν 0, τότε ο είνι μεγλύτεος του. ν 0, τότε ο είνι μικότεο του. ν 0, τότε ο είνι ίσος με τον. Επιμέλει: σίλης Κάνις Σελίδ 9

10 40. Τι ονομάζετι νισότητ κι ποι τ χκτηιστικά της; Η σχέση της μοφής ( ή ) ονομάζετι νισότητ με μέλη, πώτο κι δεύτεο, τ κι ( ή τ κι ) ντίστοιχ. Οι νισότητες κι γ δ ( ή κι γ δ ) λέγοντι ομοιόστοφες ( έχουν την ίδι φοά ) Οι νισότητες κι γ δ ( ή κι γ δ ) λέγοντι ετεόστοφες ( έχουν ντίθετη φοά ) ι ν δηλώσουμε ότι ένς ιθμός είνι τυτόχον μεγλύτεος του x κι μικότεος του, γάφουμε τη «διπλή» νισότητ x. ι ν δηλώσουμε ότι ένς ιθμός x είνι μεγλύτεος ή ίσος με τον ιθμό, γάφουμε x. 41. Ποιες είνι οι ιδιότητες της διάτξης; ν ποσθέσουμε κι στ δύο μέλη μις νισότητς τον ίδιο ιθμό, ποκύπτει νισότητ της ίδις φοάς. ηλδή ν, τότε + γ + γ. ν ποσθέσουμε κτά μέλη δύο ή πεισσότεες νισότητες της ίδις φοάς, ποκύπτει νισότητ της ίδις φοάς. ηλδή ν κι γ δ, τότε + γ + δ. ν πολλπλσιάσουμε ή διιέσουμε κι τ δύο μέλη μις νισότητς με τον ίδιο θετικό ιθμό, ποκύπτει νισότητ της ίδις φοάς. ηλδή ν κι γ 0, τότε γ γ κι γ γ. ν πολλπλσιάσουμε ή διιέσουμε κι τ δύο μέλη μις νισότητς με τον ίδιο νητικό ιθμό, ποκύπτει νισότητ ντίθετης φοάς. ηλδή ν κι γ 0, τότε γ γ κι γ γ. ν πολλπλσιάσουμε κτά μέλη δύο νισότητες που έχουν την ίδι φοά κι θετικά μέλη ποκύπτει νισότητ με την ίδι φοά. ηλδή ν,, γ, δ θετικοί πγμτικοί ιθμοί με κι γ δ τότε γ δ Επιμέλει: σίλης Κάνις Σελίδ 10

11 ΚΕΦΛΙΟ 3ο Συστήμτ μμικών Εξισώσεων Τι ονομάζετι γμμική εξίσωση με δύο γνώστους κι τι λύση της; Ονομάζετι γμμική εξίσωση με δύο γνώστους κάθε εξίσωση της μοφής x + γ. Λύση της γμμική εξίσωση x + γ ονομάζετι κάθε ζεύγος ιθμών (x, ) που την επληθεύει. 43. Πως πιστάνετι γφικά κάθε εξίσωση της μοφής x + γ με 0 ή 0 κι τι ισχύει γι υτή; Κάθε εξίσωση της μοφής x + γ με 0 ή 0 πιστάνετι γφικά με μι ευθεί ε έτσι ώστε: ν έν σημείο νήκει στην ευθεί, ε οι συντετγμένες του επληθεύουν την εξίσωση x + γ. ν οι συντετγμένες ενός σημείου επληθεύουν την εξίσωση x + γ το σημείο - νήκει στην ευθεί ε. 44. Τι πιστάνουν οι εξισώσεις;. k με k 0. 0 γ. x k με k 0 δ. x 0. Η εξίσωση k με k 0 πιστάνει μι ευθεί που είνι πάλληλη στον άξον x x κι τέμνει τον άξον στο σημείο (0, k ). Η εξίσωση 0 πιστάνει τον άξον x x. γ. Η εξίσωση x k με k 0 πιστάνει μι ευθεί που είνι πάλληλη στον άξον κι τέμνει τον άξον x x στο σημείο (k, 0) δ. Η εξίσωση x 0 πιστάνει τον άξον. 45. Πως ίσκουμε τις τομές μις ευθείς x + γ με 0 κι 0 με τους άξονες x x κι ; Κάθε σημείο του x x έχει τετγμένη 0, οπότε κι το, σημείο τομής της x + γ με τον x x, θ έχει τετγμένη 0 κι τετμημένη x με x + 0 γ ή x γ ή x γ. Ά ( γ, 0) Κάθε σημείο του έχει τετμημένη 0, οπότε κι το B, σημείο τομής της x + γ με τον Επιμέλει: σίλης Κάνις Σελίδ 11

12 , θ έχει τετμημένη x 0 κι τετγμένη με 0 + γ ή γ ή γ. Ά B(0, γ ) Τι ονομάζετι;. μμικό σύστημ δύο εξισώσεων με δύο γνώστους x κι ;. Λύση γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι ; γ. Επίλυση γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι ;. Ονομάζετι γμμικό σύστημ δύο εξισώσεων με δύο γνώστους έν σύστημ της x + γ μοφής, με έν τουλάχιστον πό τ,,, 0. x + γ. Ονομάζετι λύση του γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι κάθε ζεύγος (x 0, 0 ) που επληθεύει τις εξισώσεις του. γ. Ονομάζετι επίλυση του γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι η διδικσί που κολουθούμε γι ν ούμε κάθε ζεύγος (x 0, 0 ) που επληθεύει τις εξισώσεις του. 47. Πως γίνετι η γφική επίλυση γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι κι πότε υτό έχει μί λύση, είνι δύντο, είνι όιστο; ι τη γφική επίλυση ενός γμμικού συστήμτος δύο εξισώσεων με δύο γνώστους x κι σχεδιάζουμε στο ίδιο σύστημ ξόνων τις ευθείες που πιστάνουν τις εξισώσεις του συστήμτος κι: ν τέμνοντι το σύστημ έχει μί λύση τις συντετγμένες του κοινού τους σημείου. ν είνι πάλληλες δεν έχουν κοινό σημείο, οπότε το σύστημ δεν έχει λύση κι λέμε ότι είνι δύντο. ν συμπίπτουν (τυτίζοντι) έχουν όλ τ σημεί τους κοινά κι επομένως το σύστημ έχει άπειες λύσεις κι λέμε ότι είνι όιστο. ΚΕΦΛΙΟ 4ο Συντήσεις Τι γνωίζετι γι την συνάτηση x με 0; Η γφική πάστση της συνάτησης x με 0 είνι μι κμπύλη που ονομάζετι πολή. Η πολή που είνι γφική πάστση της συνάτησης x με 0 έχει κουφή το σημείο Ο(0, 0) κι ίσκετι πό τον άξον x x κι πάνω, που σημίνει ότι γι οποιδήποτε τιμή του x ισχύει 0. Επιμέλει: σίλης Κάνις Σελίδ 1

13 Η συνάτηση x με 0 πίνει ελάχιστη τιμή 0, ότν x 0, ι ντίθετες τιμές του x ντιστοιχεί η ίδι τιμή του, που σημίνει ότι η πολή x με 0 έχει άξον συμμετίς τον άξον. Ότν η τιμή του υξάνετι, τότε το «άνοιγμ» της πολή «κλείνει» Τι γνωίζετι γι την συνάτηση x με 0; Η γφική πάστση της συνάτησης x με 0 είνι μι κμπύλη που ονομάζετι πολή. Η πολή που είνι γφική πάστση της συνάτησης x με 0 έχει κουφή το σημείο Ο(0, 0) κι ίσκετι πό τον άξον x x κι κάτω, που σημίνει ότι γι οποιδήποτε τιμή του x ισχύει 0. Η συνάτηση x με 0 πίνει μέγιστη τιμή 0, ότν x 0, ι ντίθετες τιμές του x ντιστοιχεί η ίδι τιμή του, που σημίνει ότι η πολή x με 0 έχει άξον συμμετίς τον άξον. Ότν η πόλυτη τιμή του υξάνετι, τότε το «άνοιγμ» της πολή «κλείνει» Ποι συνάτηση ονομάζετι τετγωνική; Ονομάζετι τετγωνική κάθε συνάτηση της μοφής x + x + γ με Τι γνωίζετι γι τη συνάτησης x + x + γ με 0; Η γφική πάστση της συνάτησης γ x + x + γ με 0 είνι πολή με: Κουφή το σημείο Κ(, 4 ) όπου 4γ Άξον συμμετίς την κτκόυφη ευθεί που διέχετι πό την κουφή Κ κι έχει εξίσωση x ν 0, η συνάτηση x + x + γ πίνει ελάχιστη τιμή 4 ότν x ν 0, η συνάτηση x + x + γ πίνει μέγιστη τιμή 4 ότν x Επιμέλει: σίλης Κάνις Σελίδ 13

14 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΤΞΗΣ (ΕΩΜΕΤΡΙ -ΤΡΙΩΝΟΜΕΤΡΙ) ΚΕΦΛΙΟ 1ο εωμετί 5. Τι ονομάζετι Τίγωνο κι ποι τ κύι στοιχεί του; Ονομάζετι τίγωνο το επίπεδο σχήμ που οίζετι πό τί μη συνευθεικά σημεί τ οποί συνδέοντι με ευθύγμμ τμήμτ. Τ κύι στοιχεί ενός τιγώνου είνι, οι πλευές του κι οι γωνίες του Πλευές του τιγώνου ονομάζοντι τ ευθύγμμ τμήμτ που συνδέουν τις κουφές του. ωνίες του τιγώνου ονομάζοντι οι γωνίες που οίζοντι πό τις πλευές του. 53. Ποι είνι τ είδη των τιγώνων ως πος τις πλευές, κι ως πος τις γωνίες τους; Έν τίγωνο που εξετάζετι ως πος τις πλευές του λέγετι: σκληνό, ν οι πλευές του είνι άνισες, ισοσκελές, ν δύο πλευές του είνι ίσες, ισόπλευο, ν κι οι τεις πλευές του είνι ίσες. Έν τίγωνο που εξετάζετι ως πος τις γωνίες του λέγετι: οξυγώνιο, ν όλες του οι γωνίες είνι οξείες, οθογώνιο, ν μί γωνί του είνι οθή, μλυγώνιο, ν μί γωνί του είνι μλεί. A σκληνό οξυγώνιο γ A ισοσκελές A ισόπλευο οθογώνιο > Τι ονομάζετι διάμεσος, διχοτόμος, ύψος, τιγώνου. ιάμεσος ενός τιγώνου ονομάζετι το ευθύγμμο τμή- μλυγώνιο μ που συνδέει μι κουφή του με το μέσο της πένντι πλευάς.κάθε τίγωνο έχει τεις διάμεσους που συμολίζοντι μ, μ, μ γ ντίστοιχ κι διέχοντι το ίδιο μ μ Κ μ γ Μ σημείο. ιχοτόμος μις γωνίς ενός τιγώνου ονομάζετι το ευθύγμμο τμήμ που συνδέει την κουφή της γωνίς με την πένντι πλευά κι διχοτομεί τη γωνί υτή. Ζ δ δ Ε Ο δ γ Επιμέλει: σίλης Κάνις Σελίδ 14

15 Κάθε τίγωνο έχει τεις διχοτόμους που συμολίζοντι δ, δ, δ γ ντίστοιχ κι διέχοντι πό το ίδιο σημείο. Ύψος ενός τιγώνου ονομάζετι το ευθύγμμο τμήμ που φένουμε πό μι κουφή του κάθετο πος την ευθεί της πένντι πλευάς. Κάθε τίγωνο έχει τί ύψη που συμολίζοντι υ, υ, υ γ ντίστοιχ κι διέχοντι το ίδιο σημείο. 55. Πότε δύο τίγων λέγοντι ίσ ; ύο τίγων λέγοντι ίσ, ότν έχουν τις γωνίες τους ίσες κι τις ομόλογες πλευές τους ( πλευές πένντι πό ίσες γωνίες ) ίσες μί πος μί. Έτσι ν τ τίγων κι ΕΖ είνι ίσ τότε: υ υ Ζ Η A Ε Ζ Ε υ γ Ε Ζ ωνίες AΕ ΕΖ Ζ Ομόλογες πλευές 56. Πότε δύο τίγων είνι ίσ; ( Κιτήι ισότητς τιγώνων) Κιτήιο (Π. Π. Π.) ύο τίγων είνι ίσ, ότν οι τεις πλευές του A ενός είνι ίσες με τις τεις πλευές του άλλου μί πος μί. Τ τίγων κι ΕΖ έχουν: Ε Ζ A Ε ΕΖ Ζ οπότε είνι ΕΖ Κιτήιο ( Π.. Π. ) ύο τίγων είνι ίσ ότν οι δύο πλευές κι η πειεχόμενη σ υτές γωνί του ενός είνι ίσες με A τις δύο πλευές κι την πειεχόμενη σ υτές γωνί του άλλου ντίστοιχ. Ε Ζ Τ τίγων κι ΕΖ έχουν: A Ε Ζ οπότε είνι ΕΖ Επιμέλει: σίλης Κάνις Σελίδ 15

16 Κιτήιο (. Π..) ύο τίγων είνι ίσ, ότν η μί πλευά κι οι ποσκείμενες σ υτήν γωνίες του ενός είνι ίσες A με την μί πλευά κι τις ποσκείμενες σ υτήν γωνίες του άλλου ντίστοιχ. Ε Ζ Τ τίγων κι ΕΖ έχουν: ΕΖ Ε οπότε είνι Ζ ΕΖ 57. Πότε δύο οθογώνι τίγων είνι ίσ; ( Κιτήι ισότητς οθογωνίων τιγώνων ) ύο οθογώνι τίγων είνι ίσ, ότν οι δύο κάθετες πλευές του ενός είνι ίσες με τις δύο κάθετες πλευές του άλλου. Τ τίγων κι έχουν : o A A 90 οπότε είνι ύο οθογώνι τίγων είνι ίσ, ότν η υποτείνουσ κι μί κάθετη πλευά του ενός εί- νι ίσες με την υποτείνουσ κι μι κάθετη πλευά του άλλου. Τ τίγων κι έχουν : o A A 90 οπότε είνι ύο οθογώνι τίγων είνι ίσ, ότν η μί κάθετη πλευά κι η ποσκείμενη της οξεί γωνί του ενός είνι ίσες με τη μί κάθετη πλευά κι την ποσκείμενη της οξεί γωνί του άλλου. Τ τίγων κι έχουν: 1 o A A 90 οπότε είνι Επιμέλει: σίλης Κάνις Σελίδ 16

17 ύο οθογώνι τίγων είνι ίσ, ότν η μί κάθετη πλευά κι η πένντι της οξεί γωνί του ενός είνι ίσες με την μί κάθετη πλευά κι την πένντι της οξεί γωνί του άλλου. Τ τίγων κι έχουν: o A A 90 οπότε είνι ύο οθογώνι τίγων είνι ίσ, ότν η υποτείνουσ κι μί οξεί γωνί του ενός είνι ίσες με την υποτείνουσ κι μί οξεί γωνί του άλλου. Τ τίγων κι έχουν: o A A 90 οπότε είνι Συμπέσμ: ύο οθογώνι τίγων είνι ίσ, ότν έχουν ύο ντίστοιχες πλευές ίσες μί πος μί ή Μί ντίστοιχη πλευά ίση κι μί ντίστοιχη οξεί γωνί ίση. 58. Ποι είνι η χκτηιστική ιδιότητ των σημείων της μεσοκθέτου ευθυγάμμου τμήμτος ; Κάθε σημείο της μεσοκθέτου ευθυγάμμου τμήμτος ισπέχει πό τ άκ του. Κάθε σημείο που ισπέχει πό τ άκ ενός ευθυγάμμου τμήμτος είνι σημείο της μεσοκθέτου του ευθυγάμμου τμήμτος. 59. Ποι είνι η χκτηιστική ιδιότητ των σημείων της διχοτόμου μις γωνίς; Κάθε σημείο της διχοτόμου μις γωνίς ισπέχει πό τις πλευές της γωνίς. Κάθε σημείο που ισπέχει πό τις πλευές μις γωνίς είνι σημείο της διχοτόμου της. 60. Ν ποδείξετε ότι ν πό το μέσο μις πλευάς ενός τιγώνου φέουμε πάλληλη πος μί άλλη πλευά του, υτή διέχετι κι πό το μέσο της τίτης πλευάς. πόδειξη Επιμέλει: σίλης Κάνις Σελίδ 17

18 Θεωούμε τίγωνο κι το σημείο Μ μέσο της πλευάς του. πό το Μ φέουμε πάλληλη πος την που τέμνει την στο σημείο Ν. Θ δείξουμε ότι Ν Ν. πό το σημείο φένουμε μι οηθητική ευθεί ε //. Οι πάλληλες ευθείες ε, ΜΝ κι οίζουν ίσ τμήμτ στην, ά θ οίζουν ίσ τμήμτ κι στην. Επομένως Ν Ν Τι ονομάζετι λόγος δύο ευθυγάμμων τμημάτων κι με τι ισούτι; Λόγος ενός ευθύγμμου τμήμτος πος το ευθύγμμο τμήμ, που συμολίζετι, ονομάζετι ο ιθμός λ γι τον οποίο ισχύει λ. Ο λόγος δύο ευθυγάμμων τμημάτων ισούτι με το λόγο των μηκών τους εφόσον έχουν μετηθεί με την ίδι μονάδ μέτησης. 6. Πότε τ ευθύγμμ τμήμτ, γ είνι νάλογ πος τ ευθύγμμ τμήμτ, δ; Τ ευθύγμμ τμήμτ, γ είνι νάλογ πος τ ευθύγμμ τμήμτ κι δ ότν ισχύει γ δ ε B M A N Η ισότητ γ δ ονομάζετι νλογί με όους τ ευθύγμμ τμήμτ,, γ, δ. Τ ευθύγμμ τμήμτ, δ ονομάζοντι άκοι όοι, ενώ τ ευθύγμμ τμήμτ, γ ο- νομάζοντι μέσοι όοι της νλογίς. 63. Ποιες είνι οι σημντικότεες ιδιότητες των νλογιών ; Σε μι νλογί με όους τ ευθύγμμ τμήμτ,, γ, δ εφμόζουμε τις ιδιότητες των νλογιών που ισχύουν κι στους ιθμούς χησιμοποιώντς τ μήκη των ευθυγάμμων τμημάτων. Οι σημντικότεες πό τις ιδιότητες υτές είνι: Σε κάθε νλογί το γινόμενο των ά- κων όων είνι ίσο με το γινόμενο των μέσων όων. Σε κάθε νλογί μποούμε ν ενλλάξουμε τους μέσους ή τους άκους όους κι ν ποκύψει πάλι νλογί. Λόγοι ίσοι μετξύ τους είνι κι ίσοι με το λόγο που έχει ιθμητή το άθοισμ των ιθμητών κι πονομστή το ά- θοισμ των πονομστών. ν ν ν γ δ τότε δ γ γ δ τότε γ δ γ δ ή δ γ τότε γ δ + γ + δ Επιμέλει: σίλης Κάνις Σελίδ 18

19 Τι ονομάζετι ομοιόθετο ενός σημείου με κέντο ομοιοθεσίς δοσμένο σημείο Ο κι λόγο ομοιοθεσίς τον ιθμό λ ; Ονομάζετι ομοιόθετο ενός σημείου με κέντο ομοιοθεσίς δοσμένο σημείο Ο κι λόγο ομοιοθεσίς τον ιθμό λ το σημείο της ημιευθείς Ο γι το οποίο ισχύει Ο λο. 65. Ποιες είνι οι ιδιότητες δύο ομοιόθετων πολυγώνων Π κι Π ; ύο ομοιόθετ πολύγων έχουν τις πλευές τους νάλογες κι τις ντίστοιχες γωνίες τους ίσες. Οι νάλογες πλευές δύο ομοιόθετων πολυγώνων που δε ίσκοντι στην ίδι ευθεί είνι πάλληλες. ν το πολύγωνο Π είνι ομοιόθετο του Π με λόγο λ τότε το Π είνι: μεγέθυνση του Π, ότν λ > 1 σμίκυνση του Π, ότν 0 < λ < 1 κι ίσο με το Π, ότν λ Πότε δύο πολύγων λέγοντι όμοι; ύο πολύγων λέγοντι όμοι, ότν το έν είνι μεγέθυνση ή σμίκυνση του άλλου. υτό σημίνει ότι έχουν τις γωνίες τους ίσες μί πος μί κι τις ομόλογες(ντίστοιχες ) πλευές τους νάλογες. Έτσι τ πολύγων Ε κι ΟΚΛΜΝ που έχουν, Ο, Κ, Λ, Μ, Ε Ν κι Ε Ε λ ΟΚ ΚΛ ΛΜ ΜΝ ΝΟ Το λ ονομάζετι λόγος ομοιότητς. είνι όμοι. 67. Ποιες ποτάσεις ποκύπτουν πό τον οισμό της ομοιότητ δύο πολυγώνων; πό τον οισμό της ομοιότητς δύο πολυγώνων ποκύπτουν οι επόμενες ποτάσεις. ύο κνονικά πολύγων με τον ίδιο ιθμό πλευών είνι όμοι μετξύ τους. ύο ίσ πολύγων είνι κι όμοι, με λόγο ομοιότητς 1. Κάθε πολύγωνο είνι όμοιο με τον ευτό του. ύο πολύγων όμοι πος τίτο είνι κι όμοι μετξύ τους. A B Ο Κ Ε Λ Ν Μ Επιμέλει: σίλης Κάνις Σελίδ 19

20 68. Πότε δύο τίγων λέγοντι όμοι; ύο τίγων λέγοντι όμοι ότν έχουν τις γωνίες τους ίσες μί πος μί κι τις ομόλογες (ντίστοιχες) πλευές τους νάλογες. ηλδή ν ΕΖ, τότε, Ε, Ζ A κι Ε ΕΖ Ζ Ο λόγος των ντιστοίχων (ομολόγων) πλευών τους B ονομάζετι λόγος ομοιότητς κι συμολίζετι με λ. 69. Πότε δύο τίγων είνι όμοι; (Κιτήιο ομοιότητς τιγώνων) Ε Ζ ύο τίγων είνι όμοι, ότν δύο γωνίες του ενός είνι ίσες με δύο γωνίες του άλλου μί πος μί. Aν δηλδή τ τίγων κι ΕΖ έχουν A, Ε, τότε ΕΖ κι επομένως Ζ κι Ε ΕΖ Ζ Ε Ζ B Με τι ισούτι ο λόγος των εμδών δύο ομοίων σχημάτων; Ο λόγος των εμδών δύο ομοίων σχημάτων είνι ίσος με το τετάγωνο του λόγου ομοιότητς τους. ΚΕΦΛΙΟ ο Τιγωνομετί Πως οίζοντι οι τιγωνομετικοί ιθμοί μις οποισδήποτε γωνίς; Έστω ω (0 ω 180 )η γωνί που πάγετι πό τον ημιάξον Οx, ότν υτός στφεί κτά τη θετική φοά. Aν πάουμε έν οποιοδήποτε σημείο Μ( x, ) με xom ω κι ΟΜ x + τότε οίζουμε: ημω M(x, ) x συνω x Ο ω x Επιμέλει: σίλης Κάνις Σελίδ 0

21 εφω x Το ημω κι συνω πίνουν τιμές πό το 1 έως το +1. Είνι δηλδή 1 ημω 1 κι 1 συνω 1 Η εφω πίνει οποιδήποτε τιμή. Aν το Μ(x, ) ίσκετι στο 1 ο τεττημόιο, τότε ημω 0, συνω0, εφω0 Aν το Μ(x, ) ίσκετι στο ο τεττημόιο, τότε ημω 0, συνω0, εφω0 7. Ποιοι οι τιγωνομετικοί ιθμοί μις γωνίς ω 0 ή ω 90 ή ω 180; ν το Μ είνι σημείο του ημιάξον Οx π.χ. το Μ(1,0), τότε ω xom 0 κι ΟΜ1 οπότε έχουμε: ημ συν0 x εφ0 x x O M(1,0) x ν το Μ είνι σημείο του ημιάξον Ο π.χ. το Μ(0, 1), τότε ω xom 90 κι ΟΜ1 οπότε έχουμε: ημ M(0,1) συν90 x εφ90 δεν οίζετι, φού x 0 x O ω x ν το Μ είνι σημείο του ημιάξον Οx π.χ. το σημείο Μ( 1, 0), τότε ω xom 180 κι ΟΜ 1 οπότε έχουμε: ημ συν180 x εφ180 x x M(-1, 0) O v x Επιμέλει: σίλης Κάνις Σελίδ 1

22 73. Ποιες σχέσεις συνδέουν τους τιγωνομετικούς ιθμούς δύο ππληωμτικών γωνιών; ι δύο ππληωμτικές γωνίες ω κι ω ιοχύουν: ημ(180 ω) ημω συν(180 ω) συνω εφ(180 ω) εφω 74. Ν ποδείξετε ότι γι μι οποιδήποτε γωνί ω ισχύουν οι τύποι:. ημ ω +συν ημω ω 1 κι. εφω συνω πόδειξη. ημ ω +συν ω + x Ο + Μ x + + x ΟΜ Ο + Ο x + 1 πόδειξη. x M(x, ) B (x) Ο A () ω x ημω εφω συνω x x x 75. Ν διτυπώσετε κι ν ποδείξετε τον νόμο των ημιτόνων. Σε κάθε τίγωνο ισχύει: x γ ημ ημ ημγ B (x) M(x, ) Ο A () ω x πόδειξη Θεωούμε τίγωνο κι το ύψος του ( ) Στο οθογώνιο τίγωνο ( 90) έχουμε: ημ οπότε ημ (1) Στο οθογώνιο τίγωνο ( 90) έχουμε: γ ημ οπότε ημ () πό τις σχέσεις ( 1 ), ( ) ποκύπτει: Επιμέλει: σίλης Κάνις Σελίδ

23 ημ ημ οπότε ημ ημ (3) Όμοι ποδεικνύουμε ότι γ ημ ημ (4) πό τις σχέσεις (3), (4) ποκύπτει γ ημ ημ ημ 76. Ν διτυπώσετε κι ν ποδείξετε τον νόμο των συνημιτόνων. Σε κάθε τίγωνο ισχύουν οι σχέσεις + γ γσυν γ + γσυν γ + συν πόδειξη Θεωούμε τίγωνο κι το ύψος του ( ) Θ δείξουμε ότι + γ γσυν. Στο οθογώνιο τίγωνο ( 90) έχουμε: συν οπότε συν (1) κι πό το θεώημ του Πυθγό: + () γ Στο οθογώνιο τίγωνο ( 90 ) πό το θεώημ του Πυθγό έχουμε: + + ( γ ) + γ γ + ( ) + γ (1) γ + γ γσυν Με νάλογο τόπο ποδεικνύετι ότι: γ + γσυν κι γ + συν Κλό διάσμ κι κλή επιτυχί!!! Επιμέλει: σίλης Κάνις Σελίδ 3

Ο Μ. Γ α Γ Κ. σκαληνό. ισοσκελές. οξυγώνιο Β >90. ισογώνιο. αμβλυγώνιο. δ α. ισόπλευρο. ορθογώνιο. μ α. μ β

Ο Μ. Γ α Γ Κ. σκαληνό. ισοσκελές. οξυγώνιο Β >90. ισογώνιο. αμβλυγώνιο. δ α. ισόπλευρο. ορθογώνιο. μ α. μ β 17 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΤΞΗΣ ((ΩΜΤΡΙΙ --ΤΡΙΙΩΝΟΜΤΡΙΙ)) ΚΦΛΙΙΟ 1 οο εεωμεετίί. 1. 1 68. Τι ονομάζετι Τίγωνο κι ποι τ κύι στοιχεί του; Ονομάζετι τίγωνο το επίπεδο σχήμ που οίζετι πό τί μη συνευθεικά

Διαβάστε περισσότερα

Ονομάζεται αλγεβρική παράσταση κάθε έκφραση που συνδυάζει πράξεις μεταξύ αριθμών και μεταβλητών.

Ονομάζεται αλγεβρική παράσταση κάθε έκφραση που συνδυάζει πράξεις μεταξύ αριθμών και μεταβλητών. 1 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΚΦΛΙΟ 1 ο λγεβικές Πστάσεις. 1. 1. Τι ονομάζετι λγεβική πάστση; Ονομάζετι λγεβική πάστση κάθε έκφση που συνδυάζει πάξεις μετξύ ιθμών κι μετβλητών.. Τι ονομάζετι ιθμητική τιμή λγεβικής πάστσης;

Διαβάστε περισσότερα

ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ. Η φιλοσοφία είναι ένα παιχνίδι με στόχους και όχι κανόνες. Τα μαθηματικά είναι ένα παιχνίδι με κανόνες και όχι στόχους.

ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ. Η φιλοσοφία είναι ένα παιχνίδι με στόχους και όχι κανόνες. Τα μαθηματικά είναι ένα παιχνίδι με κανόνες και όχι στόχους. ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΑΞΗΣ Η φιλοσοφί είνι έν πιχνίδι με στόχους κι όχι κνόνες. Τ μθημτικά είνι έν πιχνίδι με κνόνες κι όχι στόχους. ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΤΑΞΗΣ ((ΑΛΕΡΑ))

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ 78 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 1. Τι ονοµάζετε δύνµη ν ; Ονοµάζετι δύνµη ν µε άση τον ριθµό κι εκθέτη το φυσικό ν > 1, το γινό- µενο πό ν πράγοντες ίσους µε. Ορίζουµε κόµ ότι: 1 0 1 µε 0 - ν. Ποιες

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο. 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω ΜΕ

ΚΕΦΑΛΑΙΟ 2 Ο. 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω ΜΕ ΚΕΦΛΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙ 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΓΩΝΙΣ ω ΜΕ o ω 18 o 1. Πώς οίζονται οι τιγωνομετικοί αιθμοί μίας οξείας γωνίας σε οθογώνιο τίγωνο; ΠΝΤΗΣΗ Γ β α γ Το ημίτονο της οξείας γωνίας σε οθογώνιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

Να βρίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωρίζουμε τις ακτίνες τους και το μήκος της διακέντρου.

Να βρίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωρίζουμε τις ακτίνες τους και το μήκος της διακέντρου. Ενότητα 6 Κύκλος Στην ενότητα αυτή θα μάθουμε: Να βίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωίζουμε τις ακτίνες τους και το μήκος της διακέντου. Να αποδεικνύουμε και να εφαμόζουμε τις σχέσεις εγγεγαμμένων

Διαβάστε περισσότερα

5 3 (iii) Όταν έχει εστίες τα σηµεία Ε ( 5, 0), Ε( 5, 0) και διέρχεται από το 5 = = 144, C : β = α = 5 3 α =.6 64 = 1. y = α β. ( γ 2 (5.

5 3 (iii) Όταν έχει εστίες τα σηµεία Ε ( 5, 0), Ε( 5, 0) και διέρχεται από το 5 = = 144, C : β = α = 5 3 α =.6 64 = 1. y = α β. ( γ 2 (5. . Ασκήσεις σχοικού ιίου σείδς A Οµάδς. Ν είτε την εξίσωση της υπεοής σε κθεµιά πό τις πκάτω πειπτώσεις : (i) Ότν έχει εστίες τ σηµεί Ε (, 0), Ε(, 0) κι κουφές τ σηµεί Α(5, 0) κι Α ( 5, 0). (ii) Ότν έχει

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

Μαθηματι ά ατεύθυνσης

Μαθηματι ά ατεύθυνσης Β Λυκείου Μαθηματι ά ατεύθυνσης Ο Κύκλος Θεωία Μεθοδολογία -Ασκήσεις Σ υ ν ο π τ ι κ ή Θ ε ω ί α Ονομασία Διατύπωση Σχόλια Σχήμα Α. Κύκλος Οισμός: Ονομάζεται κύκλος με κέντο Ο και ακτίνα το σύνολο των

Διαβάστε περισσότερα

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης 1 Θ Ε Ω Ρ Ι Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης Ο Ρ Ι Σ Μ Ο Ι Τ Υ Π Ο Ι Ι Ι Ο Τ Η Τ Ε Σ Ι Α Ν Υ Σ Μ Α Τ Α Μηδενικό διάνυσµ: AA= 0 µε οποιδήποτε κτεύθυνση Μονδιίο διάνυσµ: AB = 1 Αντίθετ δινύσµτ: ντίθετη

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ 1. Ν χρκτηρίσετε τις πρκάτω προτάσεις με Σωστό ( Σ ) ή Λάθος ( Λ ) i. ( - ) =- ii. ( 1- ) =1- iii. Αν χ < 1 τότε χ -χ + 1 = χ - 1 iv. Ισχύει: χ = Û χ = v.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

1. Δίνεται το τριώνυμο f x 2x 2 2 λ 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου 0 Επνληπτικές Ασκήσεις Άλγεβρς Α Λυκείου Δίνετι το τριώνυμο λ 5 λ 5, όπου λ Ν ποδείξετε ότι η δικρίνουσ του τριωνύμου ισούτι με Δ 4λ 5λ 3 β Ν βρείτε γι ποιες τιμές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΟΡΙΣΜΟΣ: Έστω Ε κι Ε δύο σημεί του επιπέδου. Έλλειψη με εστίες τ σημεί Ε κι Ε λέγετι ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το Ερωτήσεις του τύπου «Σωστό-Λάθος» * Αν ΑΒ ΒΓ ΑΓ τότε τ σημεί Α Β Γ είνι συνευθεικά Σ Λ * Αν * Αν ΑΒ ΒΓ τότε ΓΔ 4 * Αν λ τότε // Σ Λ 5 * Αν ΑΒ ΒΑ τότε ΑΒ τότε ΑΔ Σ Λ Σ Λ Σ Λ 6 * Τ δινύσμτ ΑΒ κι ΟΑ - ΟΒ

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων 8 Άλλοι τύποι γι το εµβδόν τριγώνου Λόγος εµβδών οµοίων τριγώνων - πολυγώνων Α ΑΠΑΡΑΙΤΗΤΣ ΓΝΩΣΙΣ ΘΩΡΙΑΣ Άλλοι τύποι γι το εµβδόν τριγώνου Με τη βοήθει του βσικού τύπου γι το εµβδόν τριγώνου, µε µήκη πλευρών,

Διαβάστε περισσότερα

Επαναληπτικές Έννοιες

Επαναληπτικές Έννοιες Επιμέλει: Ροκίδης Μιχάλης Μθημτικός M.Sc ) ΣΥΝΟΛΑ 0,,,, Φυσικοί,,,0,,, Ακέριοι,, 0 Ρητοί \ Άρρητοι Πργμτικοί ) ΔΥΝΑΜΕΙΣ Ορισμοί Επνληπτικές Έννοιες, ν 0. ν, ν, ν, ν πράγοντες.., 0 Ιδιότητες Κοινής Βάσης

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ

Γ ε ω μ ε τ ρ ι α. Β Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι Λ υ κ ε ι ο υ νλογιες Ομοιοτητ Μετρικες Σχεσεις Εμβδ Μετρηση Κυκλου Με πολυ μερκι ι τους κλους

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης 0 33 Η ΕΛΛΕΙΨΗ Ορισμός Έλλειψης Έστω E κι Ε δύο σημεί ενός επιπέδου Ονομάζετι έλλειψη με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ E κι

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μθημτικά Γ Γυμνσίου Μθημτικά Γ Γυμνσίου Περιεχόμεν ΚΕΦΑΛΑΙΟ : Οι Πργμτικοί Αριθμοί Η θεωρί με Ερωτήσεις Ασκήσεις & Προλήμτ ΚΕΦΑΛΑΙΟ : Αλγερικές Πρστάσεις

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχεδίση µε τη χρήση Η/Υ Κ Ε Φ Λ Ι 1 Γ Ε Ω Μ Ε Τ Ρ Ι Κ Ε Σ Κ Τ Σ Κ Ε Υ Ε Σ Ρ Λ Ε Ω Ν Ι Σ Ν Θ Π Υ Λ Σ, Ε Π Ι Κ Υ Ρ Σ Κ Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Ι Ι Κ Η Σ Η Σ Κ Ι Ι Χ Ε Ι Ρ Ι Σ Η Σ Ε Ρ Γ Ω Ν Τ Ε Ι Λ Ρ Ι Σ Σ

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

1. Αποδείξτε ότι η εξίσωση ημx x

1. Αποδείξτε ότι η εξίσωση ημx x Αποείξτε ότι η εξίσωση ημ Η εξίσωση είνι ισούνμη με την έχει μονική ίζ στο ιάστημ, π ημ κι συνεπώς είνι σκόπιμο ν θεωήσουμε τη συνάτηση, π R : : ημ κι ν ποσπθήσουμε ν ποείξουμε, φενός ότι η εξίσωση έχει

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Α

Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Α Γ. Ε. ΛΥΚΕΙΟ 008 193 Γ. Ε. ΛΥΚΕΙΟ 008 194 Θέμ 1 ο Α. Ν δώσετε τον ορισμό της πόλυτης τιμής ενός πργμτικού ριθμού Μονάδες 5 Β. Αν 0 κι μ, ν θετικοί κέριοι ν ποδείξετε ότι: μ μν ν = Γ. Ν χρκτηρίσετε τις

Διαβάστε περισσότερα

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλιο ο: ΚΩΝΙΚΕ ΤΟΜΕ Ερωτήσεις του τύπου «ωστόάθος» 1. * Η εξίσωση + = ( > 0) πριστάνει κύκλο.. * Η εξίσωση + + κ + λ = 0 µε κ, λ 0 πριστάνει πάντ κύκλο.. * Ο κύκλος µε κέντρο Κ (1, 1) που περνά πό το

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται: Λόγος ευθυγράµµων τµηµάτων Ότν θέλουµε ν συγκρίνουµε δύο ευθύγρµµ τµήµτ, υπολογίζουµε τη διάφορ ή το λόγο των µηκών τους. Στην περίπτωση του λόγου υπολογίζουµε πόσες Φορές το έν τµήµ είνι µεγλύτερο πό

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

ολοκληρωτικος λογισμος

ολοκληρωτικος λογισμος γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Πολλαπλασιασμός-Διαίρεση ρητών παραστάσεων

Πολλαπλασιασμός-Διαίρεση ρητών παραστάσεων ΜΕΡΟΣ Α.0 ΠΡΑΞΕΙΣ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ. 0 ΠΡΑΞΕΙΣ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Πολλπλσισμός-Διίρεση ρητών πρστάσεν Πολλπλσισμός Γι ν πολλπλσιάσουμε ένν κέριο ριθμό με έν κλάσμ ή ι ν πολλπλσιάσουμε δύο κλάσμτ, χρησιμοποιούμε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)]

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)] Γι ποιες τιμές του ορίζοντι οι πρστάσεις ; δ 9 7 ε Ν υπολογιστούν οι πρκάτω πρστάσεις : Α = 7 Ν γίνουν οι πράξεις: Β = 7 γ στ [ ( ) ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] Αν = 9 0 8 κι = 0,00 ν υπολογίσετε την

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το Ε Π Α Ν Α Λ Η Ψ Η Σελ.. Τ σύνολ των ριθµών:. Ν: οι Φυσικοί ριθµοί Ν = {0,,,, 4,.. } β. Ζ: οι Ακέριοι ριθµοί Ζ = {. -, -, -, 0 +, +, +,. } γ. Q: οι Ρητοί ριθµοί Q = / Ζ κι β Ζ µε β 0 β δ. Q : οι Άρρητοι

Διαβάστε περισσότερα