Σωστό - Λάθος Επαναληπτικές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σωστό - Λάθος Επαναληπτικές"

Transcript

1 ΘΕΩΡΙΑ ΣΤΑΤΙΣΤΙΚΗ ΟΛΩΝ ΤΩΝ ΕΤΩΝ ημιτελές(veron ) ΠΡΟΣΟΧΗ! Επισημαίω ότι οι λύσεις ούτε πλήρεις είαι ούτε έχου διπλοελεγχθεί τουλάχιστο μέχρι τώρα.ετσι ο ααγώστης πρέπει α έχει υπόψη του ότι μπορεί α υπάρχου ελλείψεις ή αι λάθη αι α χρησιμοποιεί τις σημειώσεις με διή του ευθύη ΘΕΜΑ ο Α. Aς υποθέσουμε ότι,2,,k είαι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα εός δείγματος μεγέθους, όπου k, μη μηδειοί φυσιοί αριθμοί με k. α. Τι οομάζεται απόλυτη συχότητα, που ατιστοιχεί στη τιμή, =,2,,k; Μοάδες 3 β. Τι οομάζεται σχετιή συχότητα f της τιμής, =,2,,k; Μοάδες 3 γ. Να αποδείξετε ότι: ) 0 f για =,2,,k ) f + f2 + + fk =. Μοάδες 4 Απάτηση: α. Στη τιμή ατιστοιχίζεται η απόλυτη συχότητα, δηλαδή ο φυσιός αριθμός που δείχει πόσες φορές εμφαίζεται η τιμή της εξεταζόμεης μεταβλητής Χ στο σύολο τω παρατηρήσεω. β. Α διαιρέσουμε τη συχότητα με το μέγεθος του δείγματος, προύπτει η σχετιή συχότητα (relatve frequency) f της τιμής, δηλαδή: f = =, 2,..., 0 γ. ) Αφού 0 0 f ) f+ f f = = = = Επααληπτιές Αθαασίου Δημήτρης (Μαθηματιός) pera.gr

2 2003 Γ. Να δώσετε το ορισμό της διαμέσου (δ) εός δείγματος παρατηρήσεω. Μοάδες 6 Απάτηση: Διάμεσος (δ) εός δείγματος παρατηρήσεω οι οποίες έχου διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, ότα το είαι περιττός αριθμός, ή ο μέσος όρος (ημιάθροισμα) τω δύο μεσαίω παρατηρήσεω ότα το είαι άρτιος αριθμός. Σχόλιο: σχολιό σ α. Το εύρος είαι μέτρο θέσης. Σχόλιο: σχολιό σ. 92.Το ορθό είαι ότι είαι μέτρο διασποράς β. Η διαύμαση εφράζεται με τις ίδιες μοάδες με τις οποίες εφράζοται οι παρατηρήσεις. Σχόλιο: σχολιό σ. 95 ε. Το υλιό διάγραμμα χρησιμοποιείται μόο για τη γραφιή παράσταση τω ποσοτιώ μεταβλητώ. Σχόλιο: σχολιό σ Επααληπτιές Γ. Να γράψετε στο τετράδιό σας το γράμμα που ατιστοιχεί στη σωστή απάτηση. Μέτρο θέσης εός συόλου δεδομέω είαι : α. το εύρος β. η διάμεσος γ. η διαύμαση δ. η τυπιή απόλιση. Μοάδες 5 Απάτηση: β. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 2

3 Δ. Να ορίσετε το συτελεστή μεταβολής εός συόλου παρατηρήσεω. Μοάδες 6 Απάτηση: Ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας (coeffcent of varaton),ορίζεται ως: > = α 0 = α < 0 Αποτελεί έα μέτρο με το οποίο μας βοηθά στη σύγριση ομάδω τιμώ, που ) είτε εφράζοται σε διαφορετιές μοάδες μέτρησης ) είτε εφράζοται στη ίδια μοάδα μέτρησης, αλλά έχου σηματιά διαφορετιές μέσες τιμές, είαι ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας ο οποίος ορίζεται από το λόγο: Ο συτελεστής μεταβολής εφράζεται επί τοις εατό, είαι συεπώς αεξάρτητος από τις μοάδες μέτρησης αι παριστάει έα μέτρο σχετιής διασποράς τω τιμώ αι όχι της απόλυτης διασποράς, Εφράζει, δηλαδή, τη μεταβλητότητα τω δεδομέω απαλλαγμέη από τη επίδραση της μέσης τιμής. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 3

4 2004 Γ. Να χαρατηρίσετε τις προτάσεις που αολουθού γράφοτας στο τετράδιό σας τη λέξη ή δίπλα στο γράμμα που ατιστοιχεί σε άθε πρόταση. α. Η συχότητα της τιμής μιας μεταβλητής Χ είαι αρητιός αριθμός. β. Στη αοιή αταομή το 95% τω παρατηρήσεω βρίσεται στο διάστημα (, + ), όπου είαι η μέση τιμή τω παρατηρήσεω αι η τυπιή τους απόλιση. γ. Α διαιρέσουμε τη συχότητα μιας μεταβλητής Χ με το μέγεθος του δείγματος, προύπτει η σχετιή συχότητα f της τιμής. Μοάδες Επααληπτιές - στ. Το μέτρο διασποράς εύρος ισούται με τη διαφορά της ελάχιστης παρατήρησης από τη μέγιστη παρατήρηση. Μοάδες 2 Σχόλιο: Aυτό που περιγράφει είαι το εύρος ή ύμαση (range) (σχολιό σ92) 2005 Β. α. Ποιες μεταβλητές λέγοται ποσοτιές; Μοάδες 3 Απάτηση: Ποσοτιές λέγοται οι μεταβλητές, τω οποίω οι τιμές είαι αριθμοί. β. Πότε μια ποσοτιή μεταβλητή οομάζεται διαριτή αι πότε συεχής; Μοάδες 4 Απάτηση: ) Μια ποσοτιή μεταβλητή οομάζεται διαριτή, ότα παίρει μόο μεμοωμέες τιμές. Τέτοιες μεταβλητές είαι, για παράδειγμα, ο αριθμός τω υπαλλήλω μιας επιχείρησης (με τιμές,2, ), το αποτέλεσμα της ρίψης εός ζαριού (με τιμές,2,,6) τλ. ) Μια ποσοτιή μεταβλητή οομάζεται συεχής, ότα μπορεί α πάρει οποιαδήποτε τιμή εός διαστήματος πραγματιώ αριθμώ (α, β). Παραδείγματα συεχώ μεταβλητώ είαι το ύψος αι το βάρος τω μαθητώ της Γ Λυείου, ο χρόος που χρειάζοται οι μαθητές α απατήσου στα θέματα μιας εξέτασης, η διάρεια μιας τηλεφωιής συδιάλεξης τλ. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 4

5 - γ. Η διαύμαση είαι μέτρο θέσης. Μοάδες 2 Σχόλιο: Είαι μέτρο διασποράς (σχολιό σ.93) 2005 Επααληπτιές (επίσης 2008, 202 αι 205) Α3. Πώς ορίζεται ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας μιας μεταβλητής X, α > 0 αι πώς, α < 0 ; Μοάδες 4 Απάτηση: Ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας ορίζεται ως: = α > 0 < = α 0 - Β. Να χαρατηρίσετε τις προτάσεις που αολουθού, γράφοτας στο τετράδιό σας τη λέξη ή δίπλα στο γράμμα, το οποίο ατιστοιχεί στη σωστή απάτηση. α. Οι ποιοτιές μεταβλητές διαρίοται σε διαριτές αι συεχείς. Μοάδες 2 γ. Στη περίπτωση τω ποσοτιώ μεταβλητώ, ετός από τις συχότητες f αι v, χρησιμοποιούται αι οι λεγόμεες αθροιστιές συχότητες F, N. Μοάδες 2 (σχολιό σ.66) δ. Τα σπουδαιότερα μέτρα διασποράς μιας μεταβλητής είαι η μέση τιμή αι η διάμεσος αυτής. Μοάδες 2 Σχόλιο: Είαι μέτρα θέσης αι όχι διασποράς Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 5

6 2006 δ. Το υλιό διάγραμμα χρησιμοποιείται για τη γραφιή παράσταση μόο ποσοτιώ δεδομέω. Μοάδες 2 Σχόλιο: Σχολιό σ Επααληπτιές γ. Ο συτελεστής μεταβλητότητας () είαι αεξάρτητος από τις μοάδες μέτρησης τω δεδομέω. Μοάδες 2 δ. Η διάμεσος δ είαι μέτρο διασποράς. Μοάδες β. Να δώσετε το ορισμό της διαμέσου (δ) εός δείγματος παρατηρήσεω, ότα ο είαι άρτιος αριθμός. Μοάδες 3 Απάτηση Διάμεσος (δ) εός δείγματος αρτίω παρατηρήσεω οι οποίες έχου διαταχθεί σε αύξουσα σειρά είαι ο μέσος όρος (ημιάθροισμα) τω δύο μεσαίω παρατηρήσεω. (σχολιό σ.87) - Γ. Να χαρατηρίσετε τις προτάσεις που αολουθού, γράφοτας στο τετράδιό σας δίπλα στο γράμμα που ατιστοιχεί σε άθε πρόταση τη λέξη, α η πρόταση είαι σωστή, ή, α η πρόταση είαι λαθασμέη. α. Στη περίπτωση τω ποσοτιώ μεταβλητώ, οι αθροιστιές σχετιές συχότητες F εφράζου το ποσοστό τω παρατηρήσεω που είαι μιρότερες ή ίσες της τιμής. Μοάδες 2 Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 6

7 2007 Επααληπτιές Γ. Να χαρατηρίσετε τις προτάσεις που αολουθού, γράφοτας στο τετράδιό σας τη λέξη ή δίπλα στο γράμμα, το οποίο ατιστοιχεί στη άθε πρόταση. α. Έστω ότι έχουμε έα δείγμα μεγέθους αι ότι f, =,2,,, είαι οι ατίστοιχες σχετιές συχότητες τω τιμώ μιας μεταβλητής. Α α είαι το ατίστοιχο τόξο εός υλιού τμήματος στο υλιό διάγραμμα συχοτήτω, τότε: α = 360, για =,2,,. Μοάδες 2 f 2008 (επίσης 2005 αι 202 αι 205) Α3. Πώς ορίζεται ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας μιας μεταβλητής X, α > 0 αι πώς, α < 0 ; Μοάδες 4 Απάτηση: Συτελεστής μεταβολής ή συτελεστής μεταβλητότητας ορίζεται ως: = α > 0 < = α 0 β. Η διάμεσος δ εός δείγματος παρατηρήσεω t, t2,, t είαι πάτοτε μία από τις παρατηρήσεις αυτές. Μοάδες 2 Σχόλιο: Είαι σωστό μόο α το πλήθος τω παρατηρήσεω είαι περιττός αριθμός. σχολιό βιβλίο σ. 87 ε. Στο ιστόγραμμα συχοτήτω ομαδοποιημέω δεδομέω, το εμβαδό του χωρίου που ορίζεται από το πολύγωο συχοτήτω αι το οριζότιο άξοα είαι ίσο με το μέγεθος του δείγματος. Μοάδες 2 Σχόλιο: σχολιό βιβλίο σ. 74 Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 7

8 2008 Επααληπτιές B. α. Να δώσετε το ορισμό της διαύμασης τω παρατηρήσεω t, t2,, t μιας μεταβλητής X. Μοάδες 3 Aπάτηση Η διαύμαση ή διασπορά (varance) ορίζεται ως ο μέσος όρος τω τετραγώω τω απολίσεω τω παρατηρήσεω t, t 2,... t μια μεταβλητής Χ από τη μέση τιμή τους.δηλαδή ορίζεται από τη σχέση: 2 = t = ( ) 2. Ο τύπος αυτός αποδειύεται ότι μπορεί α πάρει τη ισοδύαμη μορφή: = 2 2 t = 2 t = 2 η οποία διευολύει σηματιά τους υπολογισμούς υρίως ότα η μέση τιμή δε είαι αέραιος αριθμός. Οτα έχουμε πίαα συχοτήτω ή ομαδοποιημέα δεδομέα, η διαύμαση ορίζεται από τη σχέση: 2 = = ( ) 2 ή τη ισοδύαμη μορφή: = 2 2 = = 2 όπου, 2,..., οι τιμές της μεταβλητής (ή τα έτρα τω λάσεω) με ατίστοιχες συχότητες, 2,..., - α. Γειά δεχόμαστε ότι έα δείγμα τιμώ μιας μεταβλητής είαι ομοιογεές, εά ο συτελεστής μεταβολής του δείγματος δε ξεπερά το 0%. Μοάδες 2 Σχόλιο: Σχολιό: σ.97 Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 8

9 ε. Το διάγραμμα συχοτήτω χρησιμοποιείται για τη γραφιή παράσταση τω τιμώ μιας ποιοτιής μεταβλητής. Μοάδες 2 Σχόλιο: Σχολιό: σ B. Α,2,, είαι οι τιμές μιας μεταβλητής X που αφορά τα άτομα εός δείγματος μεγέθους ( ), α ορίσετε τη σχετιή συχότητα f της τιμής, =,2,,. Μοάδες 5 Απάτηση: f = - δ. Το ραβδόγραμμα χρησιμοποιείται για τη γραφιή παράσταση τω τιμώ μιας ποιοτιής μεταβλητής. Μοάδες 2 Σχόλιο: Σχολιό σ.87.για τις ποιοτιές έχουμε το διάγραμμα συχοτήτω. ε. Η μέση τιμή εός συόλου παρατηρήσεω είαι έα μέτρο θέσης. Μοάδες Επααληπτιές - γ. Η διάμεσος εός δείγματος παρατηρήσεω είαι η τιμή για τη οποία το πολύ 50% τω παρατηρήσεω είαι μιρότερες από αυτή αι το πολύ 50% τω παρατηρήσεω είαι μεγαλύτερες από τη τιμή αυτή. Μοάδες 2 Σχόλιο: σχολιό βιβλίο σ. 88 δ. Α η αμπύλη συχοτήτω για έα χαρατηριστιό είαι αοιή ή περίπου αοιή με τυπιή απόλιση αι εύρος R, τότε ισχύει 6R Μοάδες 2 Σχόλιο: Το ορθό είαι R σχολιό σ. 95 τελευταίες δύο γραμμές Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 9

10 200 Α. Έστω t,t2,...,t οι παρατηρήσεις μιας ποσοτιής μεταβλητής Χ εός δείγματος μεγέθους, που έχου μέση τιμή Σχηματίζουμε τις διαφορές t, t 2,..., t Να αποδείξετε ότι ο αριθμητιός μέσος τω διαφορώ αυτώ είαι ίσος με μηδέ. Μοάδες 7 ( ) ( ) ( ) Απάτηση: t + t t t+ t t = = = 0 Α2. Α,2,, είαι οι παρατηρήσεις μιας ποσοτιής μεταβλητής X εός δείγματος μεγέθους αι w,w2,...,w είαι οι ατίστοιχοι συτελεστές στάθμισης (βαρύτητας), α ορίσετε το σταθμιό μέσο της μεταβλητής Χ. Μοάδες 4 O σταθμιός μέσος βρίσεται από το τύπο: Απάτηση: w + w w = = w 2 2 = w+ w w w = - ε) Η διάμεσος είαι έα μέτρο θέσης, το οποίο επηρεάζεται από τις αραίες παρατηρήσεις. 200 Επααληπτιές γ) Σε μια ομαδοποιημέη αταομή με λάσεις ίσου πλάτους οι διαδοχιές ετριές τιμές τω λάσεω διαφέρου μεταξύ τους όσο αι το πλάτος άθε λάσης. δ) Σε μια ομαδοποιημέη αταομή με λάσεις ίσου πλάτους το εμβαδό του χωρίου που ορίζεται από το πολύγωο σχετιώ συχοτήτω αι το οριζότιο άξοα είαι ίσο με το μέγεθος του δείγματος. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 0

11 20 Α3. Τι εφράζει η σχετιή συχότητα f μιας παρατήρησης εός δείγματος. Μοάδες 4 Απάτηση: Α διαιρέσουμε τη συχότητα με το μέγεθος του δείγματος, προύπτει η σχετιή συχότητα (relatve frequency) f της τιμής, δηλαδή f = Εφράζει τι λάσμα τω παρατηρήσεω έχει τιμή. α) Η διαύμαση εφράζεται στις ίδιες μοάδες με τις οποίες εφράζοται οι παρατηρήσεις. Μοάδες 2 (σ. 95 σχολιού) Ιδιο με θέμα 205 β) Σε μία αοιή αταομή το εύρος ισούται περίπου με έξι φορές τη μέση τιμή, δηλαδή R 6. Μοάδες 2 Σχόλιο: σ.95 v) σχολιό.το σωστό είαι 6 τυπιές απολίσεις δηλαδή R 6. δ) Πάτοτε έα μεγαλύτερο δείγμα δίει πιο αξιόπιστα αποτελέσματα από έα μιρότερο δείγμα. Μοάδες 2 Σχόλιο: σ.60 σχολιό.δε παίζει ρόλο μόο το μέγεθος του δείγματος αλλά αι πόσο ατιπροσωπευτιό του πληθυσμού είαι. ε) Έα δείγμα τιμώ μιας μεταβλητής είαι ομοιογεές, α ο συτελεστής μεταβλητότητας δε ξεπερά το 0%. Μοάδες 2 Σχόλιο: σ.97 σχολιό Αθαασίου Δημήτρης (Μαθηματιός) pera.gr

12 20 επααληπτιές - γ) Η αθροιστιή συχότητα Ν μίας αταομής εφράζει το πλήθος τω παρατηρήσεω που είαι μιρότερες ή ίσες της τιμής. Σχόλιο: σχολιό βιβλίο σ.66 δ) Στη αοιή αταομή το 95% περίπου τω παρατηρήσεω βρίσεται στο διάστημα (, + ), όπου η μέση τιμή αι η τυπιή απόλιση. Σχόλιο: σχολιό βιβλίο σ.95.το ορθό είαι 68% ε) Η διάμεσος (δ) εός δείγματος παρατηρήσεω, οι οποίες έχου διαταχθεί σε αύξουσα σειρά, ορίζεται πάτα ως η μεσαία παρατήρηση. Σχόλιο: σχολιό βιβλίο σ.87.ισχύει μόο για περιττό πλήθος παρατηρήσεις. 202 (ίδιο με 205) Α3. Πώς ορίζεται ο συτελεστής μεταβολής ή συτελεστής μεταβλητότητας μιας μεταβλητής X, α > 0 αι πώς, α < 0 ; Μοάδες 4 Απάτηση: Συτελεστής μεταβολής ή συτελεστής μεταβλητότητας ορίζεται ως: = α > 0 = α < 0 α) Το υλιό διάγραμμα χρησιμοποιείται μόο για τη γραφιή παράσταση ποσοτιώ δεδομέω (μοάδες 2). Σχόλιο: σχολιό βιβλίο σ.70 δ) Το εύρος, η διαύμαση αι η τυπιή απόλιση τω τιμώ μιας μεταβλητής είαι μέτρα διασποράς (μοάδες 2). Σχόλιο: σχολιό βιβλίο σ.9-95 Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 2

13 202 (Επααληπτιές) Α2. Α t, t2,..., tv είαι οι παρατηρήσεις μιας μεταβλητής X εός δείγματος μεγέθους, τότε α ορίσετε τη μέση τιμή τω παρατηρήσεω. Μοάδες 4 Απάτηση: Μμέση τιμή εός συόλου παρατηρήσεω ορίζεται ως το άθροισμα τω παρατηρήσεω διά του πλήθους τω παρατηρήσεω. Ότα σε έα δείγμα μεγέθους οι παρατηρήσεις μιας μεταβλητής Χ είαι t,t2,...,tv, τότε η μέση τιμή συμβολίζεται με αι δίεται από τη σχέση: t + t t t 2 = = = = t = όπου το σύμβολο t παριστάει μια συτομογραφία του αθροίσματος t+t2+...+tv αι διαβάζεται = άθροισμα τω t από = έως. Συχά, ότα δε υπάρχει πρόβλημα σύγχυσης, συμβολίζεται αι ως t ή αόμα πιο απλά με t Σε μια αταομή συχοτήτω, α, 2,..., είαι οι τιμές της μεταβλητής Χ με συχότητες v,v2,...,v ατίστοιχα, η μέση τιμή ορίζεται ισοδύαμα από τη σχέση: = = = = = = Η παραπάω σχέση ισοδύαμα γράφεται: = = f = = α) Α f είαι η σχετιή συχότητα της τιμής μιας μεταβλητής Χ, τότε ισχύει: 0 f Σχόλιο: σχολιό βιβλίο σ.65. Tέθηε η ίδια αι το 205 β) Α είαι η τιμή μιας ποσοτιής μεταβλητής Χ, τότε η αθροιστιή σχετιή συχότητα F εφράζει το ποσοστό τω παρατηρήσεω που είαι μεγαλύτερες της τιμής Σχόλιο: σχολιό βιβλίο σ.65. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 3

14 203 Α3. Να δώσετε το ορισμό της διαμέσου (δ) εός δείγματος παρατηρήσεω. Μοάδες 4 Απάτηση: Διάμεσος (δ) εός δείγματος παρατηρήσεω οι οποίες έχου διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, ότα το είαι περιττός αριθμός, ή ο μέσος όρος (ημιάθροισμα) τω δύο μεσαίω παρατηρήσεω ότα το είαι άρτιος αριθμός. (σχολιό σ.87) - γ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφιή παράσταση τω τιμώ μιας ποσοτιής μεταβλητής. (μοάδες 2) Σχόλιο.σ.87 σχολιό.το ορθό είαι ποιοτιής μεταβλητής δ) Η διάμεσος είαι έα μέτρο θέσης, το οποίο επηρεάζεται από τις αραίες παρατηρήσεις. (μοάδες 2) Σχόλιο.σ.87 σχολιό.το ορθό είαι ότι δε επηρεάζεται. 203 Επααληπτιές Α2. Να ορίσετε το μέτρο διασποράς εύρος ή ύμαση. (Μοάδες 4) Απάτηση: Eύρος ή ύμαση (range) (R), που ορίζεται ως η διαφορά της ελάχιστης παρατήρησης από τη μέγιστη παρατήρηση, δηλαδή: Εύρος R = Μεγαλύτερη παρατήρηση-μιρότερη παρατήρηση Σχόλιο.σ.92 σχολιό γ) Σε μια ποσοτιή μεταβλητή ατί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχοτήτω. (μοάδες 2) Σχόλιο: σχολιό βιβλίο σ. 69 δ) Έα δείγμα τιμώ μιας μεταβλητής Χ χαρατηρίζεται ομοιογεές, ότα ο συτελεστής μεταβολής ξεπερά το 0% (μοάδες 2) Σχόλιο: σχολιό βιβλίο σ. 97 Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 4

15 204 Α3. Πότε μια ποσοτιή μεταβλητή λέγεται διαριτή αι πότε συεχής; Μοάδες 4 Απάτηση: Διαριτή λέγεται η ποσοτιή μεταβλητή που παίρει μόο «μεμοωμέες» τιμές. Τέτοιες μεταβλητές είαι, για παράδειγμα, ο αριθμός τω υπαλλήλω μιας επιχείρησης (με τιμές,2, ), το αποτέλεσμα της ρίψης εός ζαριού (με τιμές,2,,6) τλ. Συεχής λέγεται μια ποσοτιή μεταβλητή ότα μπορεί α πάρει οποιαδήποτε τιμή εός διαστήματος πραγματιώ αριθμώ (α, β) Τέτοιες μεταβλητές είαι το ύψος αι το βάρος τω μαθητώ της Γ Λυείου, ο χρόος που χρειάζοται οι μαθητές α απατήσου στα θέματα μιας εξέτασης, η διάρεια μιας τηλεφωιής συδιάλεξης τλ. γ) Σε μια αοιή ή περίπου αοιή αταομή το 95% περίπου τω παρατηρήσεω βρίσοται στο διάστημα (, + ), όπου η μέση τιμή αι η τυπιή απόλιση τω παρατηρήσεω. (μοάδες 2) Σχόλιο: σ.95 σχολιού.το ορθό είαι 68% δ) Α είαι τιμή μιας ποσοτιής μεταβλητής X, τότε η αθροιστιή συχότητα N εφράζει το πλήθος τω παρατηρήσεω που είαι μεγαλύτερες της τιμής. (μοάδες 2) Σχόλιο: σ.66 σχολιό Eφράζει το πλήθος τω παρατηρήσεω που είαι μιρότερες ή ίσες της τιμής ε) Το υλιό διάγραμμα είαι έας υλιός δίσος χωρισμέος σε υλιούς τομείς, τα εμβαδά ή, ισοδύαμα, τα τόξα τω οποίω είαι αάλογα προς τις ατίστοιχες συχότητες v ή τις σχετιές συχότητες f τω τιμώ της μεταβλητής. (μοάδες 2) Σχόλιο: σ.70 σχολιό Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 5

16 204 Επααληπτιές Α3. Τι οομάζεται (απόλυτη) συχότητα v της τιμής μιας μεταβλητής X ;Μοάδες 4 Απάτηση: Eίαι ο φυσιός αριθμός που δείχει πόσες φορές εμφαίζεται η τιμή της εξεταζόμεης μεταβλητής Χ στο σύολο τω παρατηρήσεω. Σχόλιο: σ. 65 σχολιό - α) Σε μια αοιή ή περίπου αοιή αταομή το 99,7% περίπου τω παρατηρήσεω βρίσεται στο διάστημα ( 2, + 2), όπου η μέση τιμή αι η τυπιή απόλιση τω παρατηρήσεω. (μοάδες 2) Σχόλιο: σ. 95 σχολιό.σε αυτό το διάστημα βρίσεται το 95% περίπου τω παρατηρήσεω. β) Σε ομαδοποιημέα δεδομέα το εμβαδό του χωρίου που ορίζεται από το πολύγωο συχοτήτω αι το οριζότιο άξοα είαι πάτοτε ίσο με έα. (μοάδες 2) Σχόλιο: σ. 74 σχολιό.το σωστό είαι ότι το εμβαδό είαι ίσο με το μέγεθος του δείγματος. Ισο με έα είαι το εμβαδό που ορίζεται από το πολύγωο σχετιώ συχοτήτω αι το οριζότιο άξοα. Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 6

17 205 Απάτηση: w + w w = = w 2 2 = w+ w w w = Σχόλιο: σχολιό σ γ) Η διαύμαση τω παρατηρήσεω μιας ποσοτιής μεταβλητής Χ εφράζεται με τις ίδιες μοάδες με τις οποίες εφράζοται οι παρατηρήσεις. (σ. 95 σχολιού) δ) Α για τους συτελεστές μεταβολής τω δειγμάτω αι ισχύει B> A, τότε λέμε ότι το δείγμα Β εμφαίζει μεγαλύτερη ομοιογέεια από το δείγμα Α. σ σχολιό (όσο πιο μιρός είαι ο συτελεστής μεταβολής τόσο πιο ομοιογεές είαι το δείγμα) Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 7

18 205 Επααληπτιές (το ίδιο 202) Απάτηση: Συτελεστής μεταβολής ή συτελεστής μεταβλητότητας = α > 0 < = α (Ξαατέθηε το 202 επααληπτιές) γ) Για τη σχετιή συχότητα f της τιμής μιας μεταβλητής X, ισχύει ότι 0 Σχόλιο: Δες σ.65 σχολιού.εξήγηση: Eίαι f f = αι δεδομέου ότι δ) Η τυπιή απόλιση τω παρατηρήσεω μιας ποσοτιής μεταβλητής X είαι μέτρο θέσης. Σχόλιο : Είαι μέτρο διασποράς (σ.9 αι σ. 95 σχολιού) f Αθαασίου Δημήτρης (Μαθηματιός) pera.gr 8

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά. ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Τι οομάζεται συάρτηση Συάρτηση uncton είαι μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα αριβώς στοιχείο άποιου

Διαβάστε περισσότερα

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Παγόσμιο χωριό γώσης 0 ο ΜΑΘΗΜΑ ΕΝΟΤΗΤΑ 2.3. ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Σοπός: Στη εότητα αυτή παρουσιάζοται τα μέτρα θέσης αι τα μέτρα διασποράς. Ο ορισμός τους αι διάφοροι μέθοδοι υπολογισμού. Γίεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο .Στη ερώτηση με ποιο μέσο πηγαίετε στη δουλειά σας 0 άτομα απάτησα: αυτοκίητο, τραμ, τρόλεϊ, αυτοκίητο, λεωφορείο, τραμ, τραμ, αυτοκίητο, λεωφορείο, τραμ, τρόλεϊ, αυτοκίητο, τραμ, αυτοκίητο, μετρό, τρόλεϊ,

Διαβάστε περισσότερα

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος

Διαβάστε περισσότερα

(c f (x)) = c f (x), για κάθε x R

(c f (x)) = c f (x), για κάθε x R ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Α η συάρτηση f είαι

Διαβάστε περισσότερα

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi Στατιστική "Υπάρχου τα μικρά ψέματα, τα μεγάλα ψέματα και οι στατιστικές" Μαρκ Τουαί Σε κάθε πρόβλημα της Στατιστικής υπάρχει έας «πληθυσμός» Ω τα στοιχεία του οποίου (άτομα) εξετάζοται ως προς έα χαρακτηριστικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. φυσικός αριθµός, που δείχνει πόσες φορές εµφανίζεται η τιµή x i της µεταβλητής αυτής. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. φυσικός αριθµός, που δείχνει πόσες φορές εµφανίζεται η τιµή x i της µεταβλητής αυτής. Σ Λ 2o Κεφάλαιο ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Το χρώµα κάθε αυτοκιήτου είαι ποιοτική µεταβλητή. Σ Λ 2. * Ο αριθµός τω αθρώπω που παρακολουθού µια συγκεκριµέη τηλεοπτική εκποµπή είαι διακριτή

Διαβάστε περισσότερα

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε .3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ ΘΕΩΡΙΑ. Μέση τιµή x = x = x = + + + t t... t = x + x +... + x + +... + x κ κ = f x κ t κ κ = κ κ x = κ x. Σταθµικός Μέσος x = xw + x w +... + x w w + w +... + w = x w w όπου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι x 1,x,,x k είαι οι τιµές µιας µεταβλητής Χ, που αφορά τα άτοµα εός δείγµατος µεγέθους, όπου

Διαβάστε περισσότερα

4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ

4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ 174 47 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ Το ζήτημα της διαιρετότητας τω αεραίω είαι υρίαρχο θέμα στη Θεωρία τω Αριθμώ Μια έοια που βοηθάει στη μελέτη αι επίλυση προβλημάτω διαιρετότητας είαι η έοια τω ισοϋπόλοιπω αριθμώ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους,

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση.4 Μέτρα θέσης Στη συέχεια θα περιγράψουµε κάποια µέτρα, τα οοµαζόµεα µέτρα θέσης. Τα µέτρα θέσης µίας καταοµής, είαι κάποια αριθµητικά µεγέθη που δίου τη θέση του κέτρου

Διαβάστε περισσότερα

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση

Διαβάστε περισσότερα

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση

Διαβάστε περισσότερα

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 860). Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ .Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,...,

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,..., Μετά το τέλος της µελέτης του 2ου κεφαλαίου, ο µαθητής θα πρέπει α γωρίζει: Τις βασικές έοιες της στατιστικής όπως πληθυσµός, δείγµα κ.λ.π. καθώς και τις κατηγορίες τω µεταβλητώ. Τους ορισµούς της απόλυτης,

Διαβάστε περισσότερα

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ 1 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΘΕΩΡΙΑ 1. Κλάσµα : Είαι το µαθηµατιό σύµβολο το οποίο δηλώει σε πόσα ίσα µέρη χωρίσαµε το όλο αι πόσα µέρη πήραµε Κλάσµα : πόσα µέρη πήραµε σε πόσα ίσα µέρη χωρίσαµε : αριθµητής

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ 1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν. 13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x)

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x) taeeolablogspotcom Άσκηση η Δίεται η συάρτηση f() S + +, R όπου η μέση τιμή και S > η τυπική απόκλιση τω παρατηρήσεω εός δείγματος μεγέθους Α η εφαπτομέη της καμπύλης f στο σημείο της A(,f ( ) ) είαι παράλληλη

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή 49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

1. [0,+ , >0, ) 2. , >0, x ( )

1.  [0,+   ,      >0,   ) 2. ,    >0,  x   ( ) Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου. Κεφάλαιο 2 ο. Στατιστική

Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου. Κεφάλαιο 2 ο. Στατιστική Μαθηματικά Γεικής Παιδείας Γ Λυκείου Κεφάλαιο Μαθηματικά Γεικής Παιδείας Γˊ Λυκείου Κεφάλαιο ο Στατιστική ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟΥ ΣΤΑΤΙΣΤΙΚΗ Στατιστική είαι έα σύολο αρχώ και μεθοδολογιώ για: το σχεδιασμό της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ. =, όπου x A και g( x) 0.

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ. =, όπου x A και g( x) 0. ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισµός: Συάρτηση (functon) είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β Πράξεις µε Συαρτήσεις

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ Αρχικά, με τη έοια στατιστική θεωρούσαμε τη απαρίθμηση και καταγραφή τω μετρήσεω. Οι παρατηρήσεις αυτές ή οι μετρήσεις ααφέροται σε συγκεκριμέο ατικείμεο ή γεγοός.

Διαβάστε περισσότερα

2 ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή

2 ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή ΣΤΑΤΙΣΤΙΚΗ Εισαγωγή Ο όρος Στατιστική εδεχομέως α προέρχεται από τη λατιική λέξη status (πολιτεία, κράτος) η οποία, χρησιμοποιήθηκε αρχικά για το χαρακτηρισμό αριθμητικώ δεδομέω που ααφέροται κυρίως στο

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου Θεωρία Θ Ε Ω Ρ Ι Α Παελλαδικώ εξετάσεω Βασίλης Γατσιάρης ωρεά υποστηρικτικό υλικό Θεωρία Στο βιβλίο αυτό, για πρακτικούς λόγους χρησιµοποιούµε τα πιο κάτω σύµβολα, για τις διάφορες κατηγορίες τω θεµάτω

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0 Η ΕΞΙΣΩΣΗ α+β=0 εξισώσεις πρώτου βαθμού. Να λύσετε τις παρακάτω εξισώσεις: α) 5 ( ) = ( ) β) 8( ) ( ) = ( + ) 5(5 ) γ) (5 ) ( ) = ( + ) δ) (-)-(-)=7( -)-(+). Να λύσετε τις παρακάτω εξισώσεις: 5 α) β) 8

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 3 Αµφιάλη 4389-43

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Μία συάρτηση α µε πεδίο ορισµού το Ν * λέγεται ακολουθία και συµβολίζεται µε (α ) δηλ. a : N * R : α = α( ) Ο α 1 λέγεται πρώτος όρος της ακολουθίας, ο α δεύτερος

Διαβάστε περισσότερα

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi. ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω

Διαβάστε περισσότερα

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R Ερωτήσεις πολλαπλής επιλογής 1. * Η ακολουθία είαι µια συάρτηση µε πεδίο ορισµού το σύολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R. * Η γραφική παράσταση µιας ακολουθίας είαι Α. Μια ευθεία γραµµή Β. Μια παραβολή Γ. Μια

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική 9. Ποσοτικές μεταβλητές 9.. Κατασκευή πίακα καταομής συχοτήτω 9.. Γραφική παρουσίαση καταομής συχοτήτω 9..3 Αριθμητικά περιγραφικά μέτρα 9..3. Μέτρα θέσης 9..3. Μέτρα διασποράς 9..3.3

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:

Διαβάστε περισσότερα

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική αάλυση δεδομέω με χρήση Η/Υ (του 8 ου Εξαμήου Σπουδώ του Τμήματος Βιοτεχολογίας) Διδάσκω: Γιώργος Κ. Παπαδόπουλος. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΛΓΕΡΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΘΟΥΣ ΠΙΘΝΟΤΗΤΕΣ 1. Για οποιαδήποτε εδεχόμεα, εός δειγματικού χώρου Ω ισχύει η σχέση PA B= PA+ PB. ( ) ( ) ( ). Ισχύει ότι PA ( B) + PA ( B) = PA ( ) + PB ( )

Διαβάστε περισσότερα

Α. Οι Πραγματικοί Αριθμοί

Α. Οι Πραγματικοί Αριθμοί ΠΑΡΑΡΤΗΜΑ Α Οι Πραγματικοί Αριθμοί Α1 Να τοποθετήσετε σε φθίουσα σειρά τους αριθμούς: 01 0 15, 0 15,, 01 5 5 A Να υπολογίσετε τη τιμή της παράστασης 4 1 A Να ρεθού το πηλίκο και το υπόλοιπο της διαίρεσης

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας. Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε

Διαβάστε περισσότερα

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4 Γιατί οι μέλισσες κάου εξαγωικές τις κηρήθρες τους ; Χριστία Δασκαλάκη Α.Μ. 99 Ημερομηία παράδοσης 9-10-014 Θεωρούμε έα καοικό -γωο και σημειώουμε μια γωία του καθώς και τις γωίες του ισοσκελούς τριγώου

Διαβάστε περισσότερα

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδώ : Διοίκηση Επιχειρήσεω και Οργαισμώ Θεματική Εότητα : Δ.Ε.Ο. 3 Χρηματοοικοομική Διοίκηση Ακαδημαϊκό Έτος : 202-203 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ «Χρηματοδοτική Αάλυση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα