1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05"

Transcript

1 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 Μέτρηση Ορισμός: η συστηματική διαδικασία με την οποία καταχωρίζουμε αριθμητικές τιμές στα στοιχεία μέλη του δείγματος της έρευνας μας ανθρώπους, αντικείμενα, γεγονότα, δοκίμια- με βάση ένα σύνολο κανόνων. Με τη μέτρηση μιας μεταβλητής μπορούμε εκτός από το να καταχωρίζουμε αριθμητικές τιμές, να κατατάξουμε, να ιεραρχήσουμε, να περιγράψουμε διαφορές στα στοιχεία του δείγματος της έρευνας μας ανθρώπους, αντικείμενα, γεγονότα, δοκίμια-. Αξιοπιστία (reliability) Μια μέτρηση μιας μεταβλητής είναι αξιόπιστη όταν μετά από διαδικασίες επαναλαμβανόμενων μετρήσεων, με τη χρήση ίδιων οργάνων μέτρησης στα ίδια πειραματικά υποκείμενα και κάτω από τις ίδιες συνθήκες προκύπτουν ίδιες τιμές της μεταβλητής αυτής. Ορισμένοι ερευνητές θεωρούν αξιοπιστία =διακύμανση των πραγματικών τιμών της ανεξάρτητης μεταβλητής / διακύμανση των παρατηρούμενων τιμών της εξαρτημένης μεταβλητής Εγκυρότητα (Validity) Μια μέτρηση μιας μεταβλητής είναι έγκυρη αν μετράει πραγματικά αυτό που επιδιώκει να μετρήσει με τη μεταβλητή αυτή. Ο Crombach διακρίνει τρία είδη εγκυρότητας: την εγκυρότητα περιεχομένου, την εγκυρότητα εννοιολογικής κατασκευής και την εγκυρότητα με βάση κριτήριο. Κλίμακες μέτρησης για τη μέτρηση των μεταβλητών. 1. Ονομαστική ή κατηγορική κλίμακα μέτρησης (nominal scale) Η κατάταξη των υποκειμένων της μέτρησης γίνεται σε καλά προσδιορισμένες, ισοδύναμες και σαφώς διακριτές μεταξύ τους κατηγορίες. Αποδίδονται αριθμητικές τιμές σε κάθε κατηγορία ατόμων, αντικειμένων ή παρατηρήσεων. Ένα υποκείμενο μέτρησης, δηλαδή μια μονάδα παρατήρησης ανήκει σε μια μόνο κατηγορία, η οποία και ισοδύναμη διακρίνεται από τις υπόλοιπες ως προς ένα χαρακτηριστικό ή ιδιότητα με σαφή τρόπο. Είναι η απλούστερη μορφή μέτρησης. 1

2 Παραδείγματα: Μεταβλητές που μετρούνται με ονομαστικές ή κατηγορικές κλίμακες : το φύλλο (1= άνδρας, 2= γυναίκα) Ο τόπος διαμονής (1= αστικός, 2=ημιατικός, 3= αγροτικός) Το θρήσκευμα (1= Χριστιανός, 2= Μουσουλμάνος, 3= Ινδουιστής, κλπ.) Παρατηρήσεις: Οι τιμές 1,2,κλπ δεν αποτελούν αριθμούς αλλά απλά σύμβολα, δεν μπορούν συνεπώς να γίνουν πράξεις με αυτές που να έχουν νόημα. Στην περίπτωση μιας κατηγορικής μεταβλητής με δυο κατηγορίες οι κατηγορίες είναι αμοιβαία αποκλειόμενες, οπότε έχουμε μια διχοτομική κατηγορική μεταβλητή. 2. Τακτική ή ιεραρχική κλίμακα μέτρησης ( ordinal scale) Η κατάταξη των υποκειμένων της μέτρησης γίνεται σε κατηγορίες διακριτές, ισοδύναμες, όπως και στην ονομαστική κλίμακα, αλλά επιπλέον και ιεραρχικά διατεταγμένες μεταξύ τους. Οι τακτικές κλίμακες έχουν όλα τα χαρακτηριστικά των ονομαστικών κλιμάκων μέτρησης συν το στοιχείο της διάταξης. Αποδίδονται αριθμητικές τιμές σε κάθε κατηγορία ατόμων, αντικειμένων ή παρατηρήσεων και οι κατηγορίες είναι ιεραρχικά τοποθετημένες σε σειρά. Έτσι στην πρώτη κατηγορία αποδίδεται η τιμή 1, στην αμέσως επόμενη ο αριθμός 2 κ.ο.κ. Η ιεραρχική αυτή τοποθέτηση δε σημαίνει ότι η διαφορά μεταξύ της Α και Β κατηγορίας είναι ίση με τη διαφορά μεταξύ της Γ και της Δ. Οι αριθμοί αντιπροσωπεύουν ιεραρχική σειρά, όχι μέγεθος διαφοράς. Οι διαδοχικές βαθμίδες κατηγορίες της κλίμακας δεν ισαπέχουν ως προς την αριθμητική τους τιμή. Παραδείγματα: Μεταβλητές που μετρούνται με τακτικές ή ιεραρχικές κλίμακες : Προϊόντα τοποθετούνται σε ιεραρχική κλίμακα με κριτήριο την ποιότητα τους. Αντιστοιχίζουμε την κλίμακα ποιότητας Α με την τιμή 1, την ποιότητα Β με τον αριθμό 2 κοκ. Η ιεραρχική αυτή τοποθέτηση δε σημαίνει ότι η διαφορά ποιότητας μεταξύ της Α και Β κατηγορίας είναι ίση με τη διαφορά ποιότητας μεταξύ της Γ και της Δ, απλώς ότι η καλύτερη κατηγορία ποιότητας είναι η Α, ενώ η Δ η χειρότερη. Τα μέλη μιας εξαμελούς οικογένειας ταξινομούνται σε κατηγορίες ανάλογα με το ύψος τους. Η χρήση της τακτικής κλίμακας δε σημαίνει ότι η διαφορά ύψους μεταξύ των κατηγοριών είναι ίση. Δεν υπάρχει το στοιχείο της ίσης απόστασης ανάμεσα σε δυο διαδοχικές κατηγορίες, παρά μόνο η σειρά διάταξης από την ανώτερη έως την κατώτερη κατηγορία, πχ από τον πατέρα μέχρι το μικρότερο παιδί. Παράδειγμα τακτικής κλίμακας είναι η διάταξη των κομμάτων στο κοινοβούλιο, ανάλογα με τη δύναμη των εδρών που διαθέτουν. Η 2

3 αριθμητική υπεροχή ανάμεσα στο πρώτο και το δεύτερο κόμμα δεν είναι του ιδίου μεγέθους με αυτήν του δευτέρου και του τρίτου κόμματος. Παρατηρήσεις: Οι τιμές 1,2,κλπ δεν αποτελούν αριθμούς αλλά απλά σύμβολα διάταξης, δεν μπορούν συνεπώς να γίνουν πράξεις με αυτές, που να είναι ερμηνεύσιμες. Δεν έχει νόημα ο μέσος όρος του πρώτου, του δεύτερου και του νιοστού αθλητή. Εάν όμως χρησιμοποιηθούν τακτικές κλίμακες στις οποίες οι κατηγορίες των δεδομένων κλιμακώνονται ανάλογα με την ποσότητα του χαρακτηριστικού που μετρείται τότε ο μέσος όρος είναι ερμηνεύσιμος. Εάν οι δυνατές απαντήσεις σε ερώτημα που μετρά μεταβλητή με τακτική κλίμακα μέτρησης είναι : 1= καθόλου, 2=λίγο, 3=αρκετά, 4=πολύ, τότε η τιμή του μέσου όρου 3,9 έχει το νόημα ότι οι ερωτώμενοι ως σύνολο δίνουν στη μεταβλητή την τιμή μάλλον πολύ. Στις τακτικές κλίμακες μέτρησης εντάσσονται και οι λεγόμενες κλίμακες Likert, των οποίων οι απαντήσεις διαβαθμίζονται από το απόλυτα αρνητικό μέχρι το απόλυτα θετικά, ανάλογα με το θέμα που εξετάζεται : 1= διαφωνώ απόλυτα, 2 = διαφωνώ, 3 = αβέβαιος, 4 = συμφωνώ και 5= συμφωνώ απόλυτα. Και στις κλίμακες αυτές ο μέσος όρος είναι ερμηνεύσιμος 3. αριθμητική ή ισο-διαστημική κλίμακα μέτρησης (interval scale) Η κατάταξη των υποκειμένων της μέτρησης γίνεται σε κατηγορίες διακριτές, αμοιβαία αποκλειόμενες, ισοδύναμες, και ιεραρχικά διατεταγμένες μεταξύ τους όπως και στην τακτική κλίμακα, αλλά επιπλέον ίσες διαφορές μεταξύ αριθμών που αποδίδονται στις κατηγορίες αντιπροσωπεύουν και ίσες διαφορές ως προς ένα χαρακτηριστικό μεταξύ των κατηγοριών αυτών. Οι κλίμακες διαστημάτων έχουν όλα τα χαρακτηριστικά των τακτικών κλιμάκων μέτρησης συν το στοιχείο ότι χρησιμοποιούν σταθερή μονάδα μέτρησης. Οι μεταβλητές που μετρούνται με μια ισο-διαστημική κλίμακα έχουν όλες τις ιδιότητες των μεταβλητών που μετρούνται με τις τακτικές κλίμακες, με μια πρόσθετη ιδιότητα: η διαφορά μεταξύ δυο τυχαίων διαβαθμίσεων μέσα στην κλίμακα αντιπροσωπεύει και ίσες διαφορές στο μετρούμενο χαρακτηριστικό. Μέθοδος: Καθορίζεται μια μονάδα μέτρησης και προσδιορίζονται οι μονάδες που απαιτούνται για να δηλωθεί η διαφορά μεταξύ των ισοδύναμων κατηγοριών. Παραδείγματα μεταβλητών που μετρούνται με κλίμακες διαστημάτων: Ο χρόνος (με μονάδες μέτρησης το λεπτό min, το δευτερόλεπτο sec, την ώρα h), η απόσταση, η ηλικία, η θερμοκρασία (σε κλίμακες Celsius, Fahrenheit, Kelvin) είναι κλασσικά παραδείγματα ισοδιαστημικών κλιμάκων μέτρησης. Μέτρηση διαστημάτων : 3

4 Η διαφορά μεταξύ των ετών 2009 και 2006 είναι ίση με τη διαφορά μεταξύ των ετών 2003 και Η μεταβολή θερμοκρασίας από 10 ο C σε 15 ο C είναι όμοια με τη μεταβολή από 60 ο C σε 65 ο C. Άρα το συγκεκριμένο αριθμητικό διάστημα πχ. των 5 ο C ή των τριών ετώναντιπροσωπεύει την ίδια μεταβολή, την ίδια διαφορά, ως προς το μετρούμενο χαρακτηριστικό,(τη μεταβλητή), ανεξάρτητα από τη θέση του διαστήματος στην κλίμακα μέτρησης. Συμπέρασμα: Ίσες αριθμητικές αποστάσεις κατά μήκος της ισο-διαστημικής κλίμακας μέτρησης αντιπροσωπεύουν ίσες διαφορές ως προς τη μετρούμενη μεταβλητή. Παραδείγματα: Σε μια έρευνα σε δημοτικό σχολείο, ο μαθητής Α πήρε βαθμό 5 σε ένα τεστ αναγνωστικής ικανότητας, ο μαθητής Β πήρε βαθμό 6, ο μαθητής Γ πήρε βαθμό 8 και ο Δ βαθμό 9. Η βαθμολογική διαφορά του μαθητή Β από τον Α είναι ίδια με τη διαφορά ανάμεσα στον μαθητή Δ και στο Γ, μια μονάδα. Άρα σε ότι αφορά την αναγνωστική ικανότητα, που είναι η μετρούμενη μεταβλητή-,μπορούμε να πούμε όσο καλύτερος είναι ο Β από τον Α, τόσο καλύτερος είναι ο Δ έναντι του Γ. Παρατηρήσεις: Οι ισο-διαστημικές κλίμακες ομαδοποιούν τα δεδομένα μας όπως και οι ονομαστικές και οι τακτικές κλίμακες. Οι ισο-διαστημικές κλίμακες ταξινομούν τα δεδομένα μας όπως και οι τακτικές κλίμακες. Έχουν σταθερή μονάδα μέτρησης και επομένως είναι σε θέση να προσδιορίσουν αποστάσεις και διαστήματα ανάμεσα στα δεδομένα μας, δυνατότητα που δεν έχουν οι ονομαστικές και οι τακτικές κλίμακες. Οι ισο-διαστημικές κλίμακες όμως δεν έχουν σημείο αφετηρίας το απόλυτο μηδέν, επειδή το σημείο της αρχής της διαστημικής κλίμακας ορίζεται αυθαίρετα και δεν αντιστοιχεί απαραίτητα στο μηδέν του μετρούμενου χαρακτηριστικού. Για παράδειγμα βαθμός 0 στο τεστ του δημοτικού σχολείου δε σημαίνει ανύπαρκτη, μηδενική αναγνωστική ικανότητα του μαθητή, όπως και βαθμός 0 στην θερμοκρασιακή κλίμακα Celsius δε σημαίνει και απουσία θερμότητας και απόλυτο μηδέν. Απλά έχει ορισθεί κατά σύμβαση. Επομένως οι ισο-διαστημικές κλίμακες στερούνται απολύτου μηδενός και αυτό σημαίνει αδυναμία να εξυπηρετήσουν όλες τις μαθηματικές λειτουργίες,όπως λόγου χάρη συγκρίσεις τιμών. Για παράδειγμα το πηλίκο 8 ο C / 4 ο C = 2 δε σημαίνει ότι οι 8 ο C είναι αντιπροσωπεύουν διπλάσια θερμότητα από τους 4 ο C. Δοκίμασε μόνος σου να βρεις το ανάλογο για τον ημερολογιακό χρόνο που μετριέται με αφετηρία τη γέννηση του Χριστού. Σε αντίθεση με τα ανωτέρω, ορισμένες μαθηματικές πράξεις στις ισοδιαστημικές κλίμακες, όπως η πρόσθεση και η διαίρεση έχουν νόημα, αρκεί να 4

5 λάβουμε υπόψη ότι αυτό που μπορεί να προστεθεί και να διαιρεθεί σε μια διαστημική κλίμακα είναι τα διαστήματα, δηλαδή διαφορές τιμών και ποσοτήτων και όχι καθαυτές οι ποσότητες. Οι λόγοι είναι δυο: 1. αν και υπάρχει σημείο με τιμή μηδέν στην κλίμακα, αυτό ορίζεται αυθαίρετα, συμβατικά, (ο μαθητής που δεν έλυσε κανένα πρόβλημα δε σημαίνει ότι έχει μηδέν αριθμητική ικανότητα) και 2. η μονάδα μέτρησης σε μια κλίμακα διαστημάτων, ενώ προσδιορίζεται και είναι σταθερή, είναι και αυτή αυθαίρετη. 4. αναλογική κλίμακα μέτρησης (ratio scale). Είναι η μέτρηση του υψηλοτέρου επιπέδου. Λαμβάνει το όνομα της από το γεγονός ότι επιτρέπει τω χρήση μαθηματικών αναλογιών ανάμεσα στις βαθμίδες της. Στο πλαίσιο της αναλογικής κλίμακας είναι δυνατό να γίνει λόγος για διπλάσιο, τριπλάσιο κλπ, επειδή ακριβώς υπάρχει σε αυτήν το απόλυτο μηδέν, η πραγματική αφετηρία μέτρησης., στο οποίο βασίζεται η χρήση των μαθηματικών αναλογιών και το οποίο εκφράζει την παντελή απουσία του μετρούμενου χαρακτηριστικού.. Οι ιδιότητες των αναλογικών κλιμάκων είναι πέντε (5): α. οι κατηγορίες στις οποίες εντάσσουν τα υποκείμενα της έρευνας ανθρώπους, αντικείμενα, δοκίμια, παρατηρήσεις -,είναι καθορισμένες, σαφώς διακριτές μεταξύ τους, πράγμα που σημαίνει ότι ένα και το αυτό υποκείμενο μπορεί να ανήκει μόνο σε μια κατηγορία. β. οι κατηγορίες των δεδομένων είναι διατεταγμένες. γ. οι κατηγορίες των δεδομένων κλιμακώνονται ανάλογα με την ποσότητα του ιδιαίτερου χαρακτηριστικού που κατέχουν. δ. ίσες διαφορές στις αριθμητικές τιμές της κλίμακας, αντανακλούν επίσης ίσες διαφορές στο χαρακτηριστικό ή στην ιδιότητα που μετρά η κλίμακα. ε. το σημείο μηδέν αντικατοπτρίζει την απουσία της ιδιότητας ή του χαρακτηριστικού που μετρά η κλίμακα. Οι περισσότερες κλίμακες μέτρησης στις Φυσικές επιστήμες και στην τεχνολογία είναι αναλογικές, στις κοινωνικές και ανθρωπιστικές επιστήμες όμως χρησιμοποιούνται λίγο ή σπάνια. Κλασσικά παραδείγματα μεταβλητών που μετρώνται με αναλογικές κλίμακες είναι η ταχύτητα, η απόλυτη θερμοκρασία σε κλίμακα Kelvin, η πίεση του αίματος, το βάρος, η επιτάχυνση, η μάζα κλπ. 5. Ασκήσεις για την κατανόηση των κλιμάκων μέτρησης: Στις παρακάτω ερωτήσεις να βρείτε με ποια κλίμακα μέτρησης μετράται το χαρακτηριστικό- μεταβλητή που ερευνά η κάθε ερώτηση. 1. ποια είναι η ηλικία σας : κάτω των 18, από 18 έως 45, από 46 μέχρι περιοχή διαμονής σας : αστική, ημιαστική, αγροτική 3. φύλλο : άνδρας, γυναίκα 5

6 4. ποια είναι η ηλικία σας ;.. ( σε έτη) 5. ποια είναι η καταγωγή του πατέρα σας : ελληνική, αρμενική, αλβανική, ρωσική, άλλη 6. πόσο ευχαριστημένος/η είστε από την επίδοση σας στο σχολείο: καθόλου, λίγο, αρκετά, πολύ, πάρα πολύ. 7. πόσα αυτοκίνητα έχετε στην ιδιοκτησία σας : κανένα, ένα, δυο, τρία, τέσσερα. 8. πόσο έντονα είναι τα προβλήματα οικονομικής κρίσης που υπάρχουν στη χώρα μας φέτος; :α. δεν υπάρχουν προβλήματα, β. υπάρχουν μέτριας έκτασης προβλήματα, γ. υπάρχουν πολλά προβλήματα. 9. Κατά τη γνώμη σας οι μαθητές δεν τρων πρωινό το πρωί στο σπίτι διότι: α. ξυπνούν αργά και δεν προλαβαίνουν, β. προτιμούν το έτοιμο φαγητό, γ. δεν το έχουν συνηθίσει δ. άλλο 10. Οδηγείτε : ναι, όχι. 11. Πόσες ώρες οδηγείτε την εβδομάδα : (σημειώστε) 12. Πόσες ώρες οδηγείτε την εβδομάδα: α. καθόλου, β. λίγο, γ. μέτρια, δ. πολύ, ε. πάρα πολύ ΑΠΑΝΤΗΣΕΙΣ 1. τακτική 2. ονομαστική 3. ονομαστική 4. ισοδιαστημική 5. ονομαστική ή κατηγορική 6. τακτική 7. αναλογική 8. τακτική 9. ερωτήσεις πολλαπλής απάντησης,ορθότερα 4 διχοτομικές κατηγορικές μεταβλητές 10. διχοτομική κατηγορική 11. αναλογική αριθμητική 12. τακτική. 6

SPSS. Βασικά στοιχεία

SPSS. Βασικά στοιχεία SPSS Βασικά στοιχεία Εισαγωγικά Στοιχεία SPSS (Statistical Package for Social Sciences) Χρησιμοποιείται σε έρευνες των Κοινωνικών Επιστημών ημιουργήθηκε στο Πανεπιστήμιο του Stanford Το 1975 ιδρύεται η

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 2. ΜΕΤΑΒΛΗΤΕΣ -ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΜΕΤΑΒΛΗΤΩΝ Όλες οι έρευνες αναφέρονται σε μεταβλητές

Διαβάστε περισσότερα

Βασικές Στατιστικές Έννοιες 1.1 Η έννοια της μεταβλητής

Βασικές Στατιστικές Έννοιες 1.1 Η έννοια της μεταβλητής Βασικές Στατιστικές Έννοιες 1.1 Η έννοια της μεταβλητής Με τον όρο «μεταβλητή» ονομάζουμε κάθε τι το οποίο μεταβάλλεται, ποικίλλει ή παραλλάσσει. Και αυτό το «κάθε τι» μπορεί να είναι ένα χαρακτηριστικό,

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

Περιγραφική και πειραματική έρευνα

Περιγραφική και πειραματική έρευνα 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 Περιγραφική και πειραματική έρευνα Σε μια έρευνα που περιλαμβάνει δύο μεταβλητές

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Αξιοπιστία. Η αξιοπιστία. Η αξιοπιστία αναφέρεται στη σταθερότητα των αποτελεσμάτων δύο μετρήσεων, η οποία προκύπτει όταν απουσιάζει το τυχαίο σφάλμα.

Αξιοπιστία. Η αξιοπιστία. Η αξιοπιστία αναφέρεται στη σταθερότητα των αποτελεσμάτων δύο μετρήσεων, η οποία προκύπτει όταν απουσιάζει το τυχαίο σφάλμα. Αξιοπιστία Η αξιοπιστία. Η αξιοπιστία αναφέρεται στη σταθερότητα των αποτελεσμάτων δύο μετρήσεων, η οποία προκύπτει όταν απουσιάζει το τυχαίο σφάλμα. Είδη αξιοπιστίας: 1. Αξιοπιστία εξέτασης-επανεξέτασης

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Σημερα και την επόμενη βδομάδα Η ερευνητική διαδικασία Επαγωγικός και παραγωγικός συλλογισμός Είδη ερευνητικών ερωτημάτων Ερευνητικές υποθέσεις Βασικές ερευνητικές

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΕΝΝΟΙΕΣ-ΔΕΙΚΤΕΣ στην ΠΟΣΟΤΙΚΗ ΕΡΕΥΝΑ:

ΕΝΝΟΙΕΣ-ΔΕΙΚΤΕΣ στην ΠΟΣΟΤΙΚΗ ΕΡΕΥΝΑ: ΕΝΝΟΙΕΣ-ΔΕΙΚΤΕΣ στην ΠΟΣΟΤΙΚΗ ΕΡΕΥΝΑ: Γιώτα Παπαγεωργίου Σκοπός: Σκοπός της υποενότητας αυτής είναι η κατανόηση από τους καταρτιζόμενους της διαδικασίας σύλληψης και μέτρησης των εννοιών στις Κοινωνικές

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ. Μέθοδος. Μέρη της Έρευνας. Πώς ερευνήθηκε το πρόβληµα? Μέθοδος. Ερµηνεία µετρήσεων Αξιολόγηση. Μέτρηση.

ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ. Μέθοδος. Μέρη της Έρευνας. Πώς ερευνήθηκε το πρόβληµα? Μέθοδος. Ερµηνεία µετρήσεων Αξιολόγηση. Μέτρηση. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ιάλεξη 5. Μετρήσεις στη Φυσική Αγωγή και

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Εγκυρότητα και Αξιοπιστία. Χριστίνα Καραμανίδου, PhD

Εγκυρότητα και Αξιοπιστία. Χριστίνα Καραμανίδου, PhD Εγκυρότητα και Αξιοπιστία Χριστίνα Καραμανίδου, PhD Η έννοια της εγκυρότητας Η εγκυρότητα της έρευνας είναι το βασικό κριτήριο με βάση το οποίο θα ληφθεί η απόφαση για αξιοποίηση ή όχι των ευρημάτων. Η

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές

Διαβάστε περισσότερα

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009)

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) 1. Ταυτότητα της Έρευνας Το πρόβλημα του λειτουργικού αναλφαβητισμού στην Κύπρο στις ηλικίες των 12 με 15 χρόνων

Διαβάστε περισσότερα

Οι µαθητές δήλωσαν ολογράφως το σχολείο τους. Τα δεδοµένα κωδικοποιήθηκαν ως εξής : ΠΙΝΑΚΑΣ 1

Οι µαθητές δήλωσαν ολογράφως το σχολείο τους. Τα δεδοµένα κωδικοποιήθηκαν ως εξής : ΠΙΝΑΚΑΣ 1 3 ΙΙ. ΤΟ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΚΑΙ ΤΑ Ε ΟΜΕΝΑ. Σχολείο Οι µαθητές δήλωσαν ολογράφως το σχολείο τους. Τα δεδοµένα κωδικοποιήθηκαν ως εξής : ΠΙΝΑΚΑΣ 1 Συχνότητα Γυµνάσιο 773 37.93% Λύκειο 1006 49.36% ΤΕΕ 259 12.71%

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών. Ενότητα 9: ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΡΗΣΗΣ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών. Ενότητα 9: ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΡΗΣΗΣ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 9: ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΡΗΣΗΣ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη,

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

Δρ Νεοφύτου Λ. & Σταύρου Χ. Παιδαγωγικό Ινστιτούτο Κύπρου

Δρ Νεοφύτου Λ. & Σταύρου Χ. Παιδαγωγικό Ινστιτούτο Κύπρου Δρ Νεοφύτου Λ. & Σταύρου Χ. Παιδαγωγικό Ινστιτούτο Κύπρου Στατιστική ανάλυση αξιολογήσεων «Η αξιολόγηση είναι μια συστηματική διαδικασία που καθορίζει σε ποιο βαθμό έχουν επιτευχθεί οι στόχοι της διδασκαλίας»

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις.

Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μαθηματικά B Γυμνασίου Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μέρος Α.- Θεωρία. 1. Τι λέμε αλγεβρική και τι αριθμητική παράσταση; 2. Τι λέμε αναγωγή ομοίων όρων; 3. Τι λέμε εξίσωση α βαθμού; 4. Τι λέμε πρώτο

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ

ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ Ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών 1,,3,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο 1 καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο I. Τι είναι η επιστήμη; A. Ο στόχος της επιστήμης είναι να διερευνήσει και να κατανοήσει τον φυσικό κόσμο, για να εξηγήσει τα γεγονότα στο φυσικό κόσμο,

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ.

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. Είδαμε πως το 4.2% των μαθητών στο δείγμα μας δεν έχουν ελληνική καταγωγή. Θα μπορούσαμε να εξετάσουμε κάποια ειδικά χαρακτηριστικά αυτών των ξένων μαθητών

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς

Διαβάστε περισσότερα

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Νίκος Καλογερόπουλος 2014 Τι είναι έρευνα στην στατιστική Αρχική παρατήρηση: κάτι που πρέπει να διευκρινιστεί Κάθε χρόνο υπόσχομαι στον εαυτό μου ότι

Διαβάστε περισσότερα

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενα μaθήματα Συστήματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Τριγωνοποίηση: Σύντομη θεωρητική εισαγωγή και υποδειγματικές εφαρμογές. Μαρία Καλλέρη και Άννα Σπύρτου

Τριγωνοποίηση: Σύντομη θεωρητική εισαγωγή και υποδειγματικές εφαρμογές. Μαρία Καλλέρη και Άννα Σπύρτου Τριγωνοποίηση: Σύντομη θεωρητική εισαγωγή και υποδειγματικές εφαρμογές Μαρία Καλλέρη και Άννα Σπύρτου 1 Ορισμός Μπορεί να οριστεί ως η χρήση δύο ή περισσοτέρων μεθόδων συλλογής δεδομένων Ονομάζεται και

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 15 Ευχαριστίες 19. Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας

Περιεχόμενα. Πρόλογος 15 Ευχαριστίες 19. Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας Περιεχόμενα Πρόλογος 15 Ευχαριστίες 19 Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας 1.1. Η Εμφάνιση της Ψυχομετρίας 21 1.1.1. Κατά τη Νεολιθική Περίοδο 21 1.1.2. Κατά την Αιγυπτιακή και Σουμερική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις-Μονώνυμα

Αλγεβρικές Παραστάσεις-Μονώνυμα ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β Αλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές στην προσπάθειά μας να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Μάθετε πως να επιλέγετε και να αξιοποιείτε τα ελαστικά σας στο μέγιστο βαθμό. Πόσο πρέπει να

Μάθετε πως να επιλέγετε και να αξιοποιείτε τα ελαστικά σας στο μέγιστο βαθμό. Πόσο πρέπει να Πληροφορίες ελαστικών Μάθετε πως να επιλέγετε και να αξιοποιείτε τα ελαστικά σας στο μέγιστο βαθμό. Πόσο πρέπει να φουσκώνω τα ελαστικά μου; Πώς καταλαβαίνουμε ότι το πέλμα έχει φθαρεί υπερβολικά; Γιατί

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΔΗΜΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ ΦΥΛΟ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΔΗΜΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ ΦΥΛΟ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΔΗΜΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΙΚΙΑ: 28-53 ΦΥΛΟ AΝΔΡΕΣ ΓΥΝΑΙΚΕΣ 6 26 ΣΠΟΥΔΕΣ ΤΕΙ/ΑΕΙ 10 Δευτεροβάθμια 16 Δημοτικό 3 ΤΟΠΟΣ ΚΑΤΟΙΚΙΑΣ Αστική υποβαθμισμένη 2 Αστική αναβαθμισμένη 18 Ημιαστική

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009 Με δείγματα ευκολίας δεν γίνεται έρευνα: Η επιλογή των υποκειμένων της έρευνας Βιβή Βασάλα ΣΕΠ στο ΕΑΠ Ερωτήματα Πώς προσδιορίζονται τα όρια του ερευνητικού πληθυσμού; ; Ποιος είναι ο τρόπος-μέθοδος επιλογής

Διαβάστε περισσότερα

Ποσοτική Έρευνα. Λογιστική Θεωρία και Έρευνα

Ποσοτική Έρευνα. Λογιστική Θεωρία και Έρευνα Μεταπτυχιακό Πρόγραμμα στη Λογιστική & Χρηματοοικονομική Master of Science (MSc) in Accounting and Finance ΤΕΙ ΠΕΙΡΑΙΑ Λογιστική Θεωρία και Έρευνα Ερωτηματολόγια & Συνεντεύξεις Ποσοτική Έρευνα Βασικό χαρακτηριστικό

Διαβάστε περισσότερα

Σχεδιασμός και Εκπόνηση Εκπαιδευτικής Έρευνας

Σχεδιασμός και Εκπόνηση Εκπαιδευτικής Έρευνας Σχεδιασμός και Εκπόνηση Εκπαιδευτικής Έρευνας Ενότητα 3: Οι τεχνικές έρευνας και επεξεργασίας δεδομένων: α) το ερωτηματολόγιο και β) η συνέντευξη Δημήτρης Κολιόπουλος Σχολή Ανθρωπιστικών & Κοινωνικών Επιστημών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΤΕΤΑΡΤΟ 4 ο δίωρο: ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ. Γιώτη Ιφιγένεια (Α.Μ. 6222) Λίβα Παρασκευή (Α.Μ. 5885)

ΤΕΤΑΡΤΟ 4 ο δίωρο: ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ. Γιώτη Ιφιγένεια (Α.Μ. 6222) Λίβα Παρασκευή (Α.Μ. 5885) ΤΕΤΑΡΤΟ 4 ο δίωρο: ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ. Γιώτη Ιφιγένεια (Α.Μ. 6222) Λίβα Παρασκευή (Α.Μ. 5885) Ανάλυση σε επιμέρους στόχους: 1. Εκτιμούν τη μορφή γραφημάτων με βάση τα δεδομένα τους. 2. Κατανοούν ότι

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα