ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις"

Transcript

1 ΦΥΕ4 Λύσεις 6 ης Εργασίας Ασκήσεις ) α)η διακριτική ικανότητα του φράγµατος ορίζεται ως ο όγος, όπου, +δ, δ δύο µήκη κύµατος που µόις διακρίνονται µε γυµνό οφθαµό και δ πού µικρό Αυτό συµβαίνει σύµφωνα µε το κριτήριο του Rayleigh όταν το µέγιστο της µίας γραµµής (του ενός µήκους κύµατος) µόις που πέφτει πάνω στο πρώτο εάχιστο της άης Για το κύµα µήκους το µέγιστο τάξης n ικανοποιεί τη συνθήκη f sinθ = n, όπου f η σταθερά του φράγµατος, ενώ για το κύµα µήκους +δ η αναγκαία συνθήκη είναι f ( sinθ sinθ) n( δ) + = +, από την οποία ανάγεται ότι: ( sinθ ) f = nδ Για να ικανοποιείται το κριτήριο του Rayleigh θα πρέπει να ισχύει ( sinθ ) = Nf όπου Ν ο αριθµός των σχισµών του φράγµατος Συνδυάζοντας τις δύο παραπάνω σχέσεις προκύπτει ότι: δ =Nn που µας δίνει τη διακριτική ικανότητα του περιθαστικού φράγµατος στην τάξη n (εν προκειµένω n=) Αντικαθιστώντας τα αριθµητικά δεδοµένα προκύπτει ότι για να είναι διακριτή η διπή γραµµή νατρίου στην τρίτη τάξη, θα πρέπει ο συνοικός αριθµός των γραµµών του φράγµατος να είναι τουάχιστον 5896 N = n δ = 6 = β) Εφαρµόζοντας τον τύπο που δείξαµε στο ερώτηµα (α), για πρώτη τάξη (n=) έχουµε: δ = = 7 m Nn Πήραµε αυθαίρετα σαν τάξη φάσµατος n=, αφού δεν καθορίζεται από την άσκηση Γενικά πάντως αν είναι δυνατή η παρατήρηση µεγαύτερης φασµατικής τάξης, τότε το δ µειώνεται, για δεδοµένη διακριτική ικανότητα Υπάρχει όµως περιορισµός στη µέγιστη τιµή του n όγω µείωσης της έντασης µε την αύξηση του n

2 ) α) Για να µην ανακάται το µήκος κύµατος, θα πρέπει και L = = 4 4n Z = ZZ () προσοχή: µήκος κύµατος στο κενό, µήκος κύµατος στην επίστρωση Ο δείκτης διάθασης της επίστρωσης προκύπτει από την σχέση 859 σε 8 (Τοµ Β, Μέρος Β) Για τα ηεκτροµαγνητικά κύµατα η σύνθετη αντίσταση είναι αντιστρόφως ανάογη προς τον δείκτη διάθασης (σχέση 84, σε ) Οπότε η () δίνει: n = nn = n () αφού για το κενό n = Z ΗΜ n () Έτσι n = 5 = και το πάχος της επίστρωσης θα είναι L = =, οπότε: 4 4n o o L = 55 Α (4 ) = 7 Α µ β) (όπως πριν, είναι το µήκος κύµατος του πράσινου στο κενό για το οποίο έχουµε πετύχει µη-ανάκαση, ενώ είναι το µήκος κύµατος στο κενό άων χρωµάτων (µπε, κόκκινο, ) Το συνοικό ανακώµενο κύµα στην περιοχή δίνεται από την 857 σε 7, για τυχόν χρώµα ( + ) + ( + ) yανακ R A cos k x ωt R A cos k x k L ωt (4) πρασινο Έχουµε επιτύχει προσαρµογή για το πράσινο, δηαδή L = = 4 4 n (5), όπου n ο δείκτης διάθασης ορατού φωτός (ίδιος για όα τα µήκη κύµατος, δεδοµένο της άσκησης) Z Z n n n n n = = = = Z + Z + n + n n + n n Είναι R Και R ( n ) ( ) Z Z n n n n n = = = = = R Z + Z n + n n+ n n n +

3 Άρα (4) y AR cos( t+ kx) + cos( kx+ tkl) ανακ ω ω (6) Εξάου y Acos( k x ωt) εισερχ = (7) Μπορούµε είτε ( ον ) να χρησιµοποιήσουµε το γεγονός ότι η ένταση Ι είναι ανάογη του τετραγώνου της αντίστοιχής διαταραχής («µετατόπισης»), δηαδή ανακ y, ανακ εισερχ y εισερχ, και να πάρουµε την µέση χρονική τιµή των τετραγώνων των (6) και (7), είτε ( ον ) να χρησιµοποιήσουµε την σχέση 87 µε την σύνθετη αντίσταση και να πάρουµε την µέση τιµή Στη δεύτερη περίπτωση βρίσκουµε διαδοχικά: = Z t Ψ εισερχ από σχέση 87 σε για την διαδιδόµενη ισχύ στη χορδή (ένταση ΗΜ κύµατος στην περίπτωσή µας) Έτσι = ZA ω (8) και Ψανακ sin sin ω sin kx sin = ZAR + + = = ( cos ) ω cos ( ) ( ) ( ) ανακ = Z = Z A R ω k x+ ωt + k x+ ωt k L = t = ZARω + kl = ZAR kl π π είναι όµως k = = και L = (δες (5)) ( στο µεσο ) 4 n n Άρα: ανακ π = ZA Rω sin (9) ανακ π = 4R sin (8),(9), όπου R = n n + γ) Αριθµητικές αντικαταστάσεις (µε n = 5 πάντοτε) για το µπε, = 45 Α, o και για το κόκκινο, = 66 Α o, δίνουν αντίστοιχα: ανακ ( µπε ) = 47 και ανακ ( κoκκ) = 7

4 ) α) Η φασική ταχύτητα ω υ = = δεν εξαρτάται από το k (γραµµική σχέση k ρ διασποράς, όες οι συνιστώσες διαδίδονται µε την ίδια ταχύτητα) Το ίδιο ισχύει και dω για την ταχύτητα οµάδας υg = = Κατά συνέπεια, η ανασύσταση του παµού dk ρ από τις επιµέρους απαράαχτες συχνότητες κάθε στιγµή, δίνει την ίδια µορφή Αυτό βέβαια είναι αναµενόµενο αφού ο παµός ικανοποιεί την χαρακτηριστική διαφορική εξίσωση του κύµατος, η οποία εξ ορισµού περιγράφει κύµατα (χωρίς διασπορά) τα οποία διατηρούν το σχήµα τους αµετάβητο καθώς διαδίδονται ( είτε σχήµα και υποκεφάαιο 4 στο πρώτο κεφάαιο, πρώτο µέρος) π = k = k x ρ ρ π =, αφού k x π ω ρ Είναι ω ω ( ) β) Το πάτος A α κάθε αρµονικής συνιστώσας ω του ανακώµενου κύµατος θα είναι ίδιο αφού ο συντεεστής ανακάσεως δεν εξαρτάται από την συχνότητα, σε σχέση µε το A π της αντίστοιχης προσπίπτουσας είναι: A Z Z R A Z Z α = = = π + (αντιστροφή του ανακώµενου) Για τον διερχόµενο παµό θα έχουµε: Aδ Z ακόµη = = = (χωρίς αντιστροφή), A Z + Z υδ π ' = υ ρ = 4ρ = x π π ω ρ ω ρ γ)προφανώς ( x) = = ( x) και ( x) = = ( x) α π δ π (δεν αάζουν οι συχνότητες µε την ανάκαση ή διάδοση) 4) Η κίνηση της χορδής περιγράφεται ως επαηία των δύο Ψ ( x, t) κυµάτων: ( xt, ) y( xt, ) y( xt, ) Acos( ωt kx δ ) Acos( ωt kx δ ) Ψ = + = Πρώτος τρόπος, χωρίς την χρήση σύνθετης αντίστασης: Το σύνθετο κύµα θα έχει την µορφή: 4

5 ( x, t) Acos( ωt kx δ ) Acos( ωt kx δ ) Ψ = = δ Acos δ δ δ cos ωt kx + + δδ ηαδή, θα είναι ένα όµοιο κύµα µε πάτος Acos και διαφορά φάσεως δ+ δ Άρα: ( ) ( δδ), = ω + cos αφού υ ρ P x t A ρ, = A ρυ = και ( ) ω εύτερος τρόπος P x, t Η φασική ταχύτητα υ φ θα είναι υ φ = µ Η στιγµιαία διαδιδόµενη ισχύς Pxt (, ) για τα οδεύοντα κύµατα θα είναι: Ψ Ψ Ψ Ψ dx Ψ P( x, t) = F υχορδ = ( ) = ( ) = υ x t x x dt x Ψ x Ψ Ψ ή ( ) =+ = Z x t t t, όπου Z ( µ ) υ αντίσταση της χορδής υ φ Ψ = + + t Εποµένως η στιγµιαία διαδιδόµενη ισχύς θα είναι: Αά Aω sin ( ωt kx δ ) Aωsin ( ωt kx δ ) = =, η σύνθετη (, ) = ω sin ( ω + δ ) + sin ( ω + δ ) + sin ( ω + δ ) sin ( ω + δ ) P x t ZA t kx t kx t kx t kx Η µέση διαδιδόµενη ισχύς θα δίνεται ως η µέση χρονικά τιµή της παραπάνω παράστασης + = + = Όµως: sin ( ωt kx δ ) sin ( ωt kx δ ) Ακόµα: sin sin cos cos ( ωt kx+ δ ) ( ωt kx+ δ ) = ( δ δ ) ( ωt kx+ δ + δ ) Εποµένως η µέση τιµή του γινοµένου θα είναι ίση µε cos ( δ δ), αφού η µέση τιµή του συνηµίτονου είναι ίση µε µηδέν Τεικά, η µέση διαδιδόµενη ισχύς στη χορδή θα είναι: φ 5

6 (, ) = ω + cos( δ δ ) P x t Z A 5) Αν y ( x, t) Acos( ωt k x) i =, i =,, τότε: i ωω k k ω+ ω k+ k y+ y = Acos t x cos t x Η περιβάουσα µηδενίζεται, για δεδοµένο t, όταν ωω k k n+ Φ n = t x= π k k Φn+ Φ n = xn+ xn = π () () Για δύο διαδοχικούς µηδενισµούς παίρνουµε ( ) ηαδή αφού << ( + ) π π x = xn+ xn = = = = k k π π +, + x ηαδή εύτερος τρόπος, Απούστερος: k x π ιαδοχικά βρίσκουµε: π x k = k = π k x= π x π x Απαντήσεις ερωτήσεων d ) 5 nm, d=5 nm, a= nm d, 5 a = Το σχήµα θα είναι όπως το σχήµα 86 (γ) στην σείδα 84 είτε και την ερώτηση 84 o Για ακτίνες Χ Α= nm και << ή, καθώς και << d d a Άρα τα φαινόµενα συµβοής και περίθασης δεν είναι εµφανή Άρα, το σχήµα συµβοής και περίθασης θα µοιάζει µε την εικόνα του σχήµατος 75, σείδα 4, για N (στο κάτω µέρος του σχήµατος) όπου κάθε µία από τις φωτεινές γραµµές, σε µεγέθυνση θα µοιάζει µε το σχήµα 8 (γ) στην σείδα 7 6

7 ) Η γωνία εκτροπής εξαρτάται από (το ηµίτονό της είναι ανάογο προς) τον δείκτη διαθάσεως, ο οποίος όγω διασποράς είναι διαφορετικός για διαφορετικά µήκη κύµατος Κατά συνέπεια τα διαφορετικά χρώµατα εκτρέπονται κατά διαφορετική γωνία και η αρχική δέσµη «διασπείρεται», εξ ου και ο όρος διασπορά (δείτε σχήµα) ) Ο φακός ειτουργεί ως εξισωτής των οπτικών δρόµων ακτίνων που εκκινούν από το ίδιο σηµείο Σ και φτάνουν στο σηµείο Σ είτε το σχήµα 859 καθώς και το σχήµα 858 στην σείδα, όπως επίσης και την σύντοµο συζήτηση που συνοδεύει τα δύο σχήµατα 4) Σε ένα οµογενές µέσο (µέσο µε σταθερό δείκτη διαθάσεως) η ευθεία διαδροµή (γραµµή) ως συντοµότερος δρόµος µεταξύ δύο σηµείων, είναι και η διαδροµή που απαιτεί τον συντοµότερο χρόνο (αρχή του Fermat) Η βαθύτερη αιτία σε µικροσκοπική κίµακα είναι ότι τα κύµατα που αντιστοιχούν σε διαφορετικές διαδροµές έχουν µεγάες διαφορές φάσεως και κατά µέσον όρο αηοαναιρούνται Κατά µήκος της ευθείας γραµµής, τα κύµατα ακοουθούν όµοιους οπτικούς δρόµους και έχουν την ίδια φάση µε αποτέεσµα να συµβάουν ενισχυτικά 5) Για να διακρίνονται τα Α και Β θα πρέπει τα είδωά τους Α και Β να έχουν ένα γωνιακό διαχωρισµό θ, όπου D η διάµετρος του διαφράγµατος Είναι D θ d θ d L tan = ή d = 65 cm L L D 7

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 7//008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 007-08 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 3 ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης 5//08 Άσκηση D Β Α p F O q F Α Β Β Α F O F Α Β D Από τη σχέση των απών φακών έχουµε: + = p q f όπου

Διαβάστε περισσότερα

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης Εικόνες (διαμορφώματα) περίθασης Εικόνες περίθασης - Πόωση Πηγή Αδιαφανές αντικείμενο htt://www.h.unimelb.edu.u/~ssk/fresnel/edge.html Φωτεινή κηίδα Poisson Διαμόρφωμα περίθασης Περίθαση περιγράφει «την

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

ΦΥΕ34 Λύσεις 5 ης Εργασίας

ΦΥΕ34 Λύσεις 5 ης Εργασίας ΦΥΕ3 Λύσεις 5 ης Εργασίας ) Έστω αρµονικό κύµα της (εκθετικής) µορφής: F( x, t) i( kx ωt+ ϕ ) = Ae. Παραγωγίζοντας βρίσκουµε: = iωf( x, t) t = ikf( x, t) x Παραγωγίζοντας αυτές τις δύο σχέσεις µία ακόµη

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ

2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ .3 Στάσιμο Κύμα.3 Στάσιμο κύμα.3.1 Μαθηματική Επεξεργασία Ας υποθέσουμε ότι έχουμε μία χορδή και σε αυτήν την χορδή διαδίδονται δύο πανομοιότυπα κύματα σε αντίθετες κατευθύνσεις. Δηαδή αν το δούμε από

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτεείς προτάσεις - να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπα το γράμμα

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου 6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή

Διαβάστε περισσότερα

ΕΑΠ ΦΥΕ 34. ( γ ) Βρείτε την ενέργεια σε ev του φωτονίου της σειράς Balmer, που έχει το

ΕΑΠ ΦΥΕ 34. ( γ ) Βρείτε την ενέργεια σε ev του φωτονίου της σειράς Balmer, που έχει το ΕΑΠ ΦΥΕ 4 Σύντοµες Απαντήσεις στην Εξέταση Ιουνίου 4 στο µάθηµα «Από την Κασική στην Σύγχρονη Φυσική» ) Η σειρά Balmer του γραµµικού φάσµατος του ατόµου του υδρογόνου αντιστοιχεί σε µεταβάσεις ηεκτρονίων

Διαβάστε περισσότερα

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Τι ονομάζουμε στάσιμο κύμα f()=0.5sin() Εξαιτίας της συμβοής δύο κυμάτων του ίδιου πάτους και της ίδιας συχνότητας που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό εαστικό μέσο με αντίθετη φορά,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

Συμβολή φωτός. Συμβολή κυμάτων. Κυματική Οπτική: Συμβολή του φωτός. Συμβολή. Περίθλαση Πόλωση

Συμβολή φωτός. Συμβολή κυμάτων. Κυματική Οπτική: Συμβολή του φωτός. Συμβολή. Περίθλαση Πόλωση Κυματική Οπτική Κυματική Οπτική: Συμβοή του ωτός Συμβοή Περίθαση Πόωση Συμβοή ωτός Συμβοή κυμάτων Αναγκαίες συνθήκες παρατήρησης στάσιμης συμβοής ορατού ωτός (~ 4-7 10-7 m): Σύμωνες πηγές Μονοχρωματικές

Διαβάστε περισσότερα

Τυπολόγιο Γʹ Λυκείου

Τυπολόγιο Γʹ Λυκείου Τυποόγιο Γʹ Λυκείου Σχοικό Έτος βιβʹ- βιγʹ Πίνακας : Τυποόγιο Τααντώσεων f = N t, ω = ϕ Ορισμός συχνότητας, κυκικής συχνότητας, σχέση συ- π Ν=αριθμός τααντώσεων = πf, ω = t T (κύκων) χνότητας περιόδου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. 5. Τα θετικά φορτισµένα σωµάτια α αποκλίνουν προς µία κατεύθυνση µε τη βοήθεια ενός µαγνητικού πεδίου. Άρα σωστή απάντηση είναι η δ.

ΑΠΑΝΤΗΣΕΙΣ. 5. Τα θετικά φορτισµένα σωµάτια α αποκλίνουν προς µία κατεύθυνση µε τη βοήθεια ενός µαγνητικού πεδίου. Άρα σωστή απάντηση είναι η δ. ΑΠΑΝΤΗΣΕΙΣ Ζήτηµα 1ο 1. Σωστή απάντηση είναι η δ.. Η ενέργεια σύνδεσης ανά νουκεόνιο µετράει τη σταθερότητα του πυρήνα. Όσο µεγαύτερη είναι η ενέργεια σύνδεσης ανά νουκεόνιο, τόσο σταθερότερος είναι ο

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34

Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34 Κυματική ΦΥΕ34 0/07/0 Ελληνικό Ανοικτό Πανεπιστήμιο Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34 KYMATIKH Διάρκεια: 80 λεπτά Ονοματεπώνυμο: Τμήμα: Θέμα ο (Μονάδες:.5) Α) Θεωρούμε

Διαβάστε περισσότερα

Τρίτη, 4 Ιουνίου 2002 ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

Τρίτη, 4 Ιουνίου 2002 ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ 00 Τρίτη, 4 Ιουνίου 00 ΓΕΝΙΚΗΣ ΠΙ ΕΙΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10 9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το

Διαβάστε περισσότερα

6.8 Συµβολή Κυµάτων. y = y 1 + y perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου

6.8 Συµβολή Κυµάτων. y = y 1 + y perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου 6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 24-10-11 ΑΠΟΦΟΙΤΟΙ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Κύματα (Βασική θεωρία)

Κύματα (Βασική θεωρία) Κύματα (Βασική θεωρία) Λεεδάκης Κωστής ( koleygr@gmailcom ) 10 Δεκεμβρίου 015 1 1 Βασικά στοιχεία Κύμα ονομάζεται οποιαδήποτε διαταραχή διαδίδεται μέσα στο χώρο Τα ηεκτρομαγνητικά κύματα είναι τα μόνα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ ΚΑΙ ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΑ Η διάδοση μιας διαταραχής μέσα σ' ένα μέσο ονομάζεται κύμα. Για τη δημιοργία ενός μηχανικού κύματος

Διαβάστε περισσότερα

Κεφάλαιο 2ο : Κύματα

Κεφάλαιο 2ο : Κύματα 1 Κεφάαιο ο : Κύματα Κύμα: Είναι η διάδοση μιας διαταραχής μέσα σε ένα υικό μέσο πχ. νερό,σχοινί κπ... Προσοχή Το κύμα μεταφέρει ενέργεια και ορμή αά ΟΧΙ ύη. *Τα κύματα διαδίδονται με σταθερή ταχύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Ένα αυτοκίνητο κινείται με κατεύθυνση από το Νότο προς το Βορρά. Κάποια στιγμή ο οδηγός αντιαμβάνεται ένα εμπόδιο και φρενἀρει. Εάν το αυτοκίνητο διαθέτει Α.Β.S.,

Διαβάστε περισσότερα

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ο ΘΕΜΑ Α. Ερωτήσεις ποαπής επιογής ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Το μήκος κύματος δύο κυμάτων που συμβάουν και δημιουργούν στάσιμο κύμα είναι. Η απόσταση μεταξύ δύο διαδοχικών δεσμών του στάσιμου κύματος θα είναι α..

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα

Διαβάστε περισσότερα

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων Γραμμικά φαινόμενα μηχανικών κυμάτων Επαηία-Υπέρθεση Κυμάτων Υπέρθεση (επαηία) κυμάτων (superpositio) Συμβοή (χωρική) κυμάτων (iterferece) (stadig waves) Κανονικοί τρόποι ταάντωσης (ormal modes) Διακροτήματα

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις.

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις. 6 Κύµατα 6.1 Ορισµός του κύµατος Κύµα ονοµάζεται η διάδοση µιας διαταραχής που µεταφέρει ενέργεια και ορµή µε στα- ϑερή ταχύτητα. Εαστικό µέσο ονοµάζεται κάθε υικό µέσο που, για όγους απότητας, δεχόµαστε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπα το γράµµα που αντιστοιχεί στη φράση η οποία συµπηρώνει σωστά την ηµιτεή πρόταση.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 10/11/09. ασκούνται οι δυνάµεις των ελατηρίων k

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 10/11/09. ασκούνται οι δυνάµεις των ελατηρίων k //9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9- ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης //9 Άσκηση Α) Θεωρούµε µετατόπιση της µάζας m, από το σηµείο ισορροπίας του ελατηρίου k, κατά και αντίστοιχα

Διαβάστε περισσότερα

Οπτική Μικροκυμάτων ΜΚ 2

Οπτική Μικροκυμάτων ΜΚ 2 Οπτική Μικροκυμάτων ΜΚ Εισαγωγή Τα Μικροκύματα είναι ηεκτρομαγνητικά κύματα με μήκος κύματος 0.cm

Διαβάστε περισσότερα

Στάσιμα Κύματα. Εξίσωση κύματος που διαδίδεται προς τη θετική φορά του άξονα xox :

Στάσιμα Κύματα. Εξίσωση κύματος που διαδίδεται προς τη θετική φορά του άξονα xox : Στάσιμα Κύματα Εξίσωση κύματος που διαδίδεται προς τη θετική φορά του άξονα xox : y 1 = Aημ2π( t x ) Εξίσωση κύματος που διαδίδεται προς την αρνητική φορά του άξονα xox : y 2 = Aημ2π( t + x ) Η συμβοή

Διαβάστε περισσότερα

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος.

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος. ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΚΥΜΑΤΑ Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε στο φύο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα

Διαβάστε περισσότερα

+ παριστάνει : α. διάσπαση β β. διάσπαση γ γ. σύντηξη δ. σχάση. Μονάδες 5

+ παριστάνει : α. διάσπαση β β. διάσπαση γ γ. σύντηξη δ. σχάση. Μονάδες 5 ΘΜ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η πυρηνική αντίδραση 35 4 9 + 9 U 56 Ba 36 Kr + 3 + ενέργεια α. διάσπαση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙOΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. γ.. α. 3. γ.. β. 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ Β. Σωστή είναι

Διαβάστε περισσότερα

Εξαναγκασµένες φθίνουσες ταλαντώσεις

Εξαναγκασµένες φθίνουσες ταλαντώσεις ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς

1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς Διονύσης Μητρόπουος Άνοδος κάθοδος κυιόμενου αρχικά σώματος σε κεκιμένο επίπεδο, με ή χωρίς οίσθηση ΕΚΦΩΝΗΣΗ Ένα «στρογγυό» σώμα έχει μάζα m, ακτίνα R και ροπή αδράνειας Ι cm m R². Οι τιμές του είναι ⅖

Διαβάστε περισσότερα

Περίθλαση από διπλή σχισµή.

Περίθλαση από διπλή σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 81 8. Άσκηση 8 Περίθλαση από διπλή σχισµή. 8.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φράγµατα περίθλασης και ειδικότερα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 2 Ο : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ Ορισμοί Χαρακτηριστικά μεγέθη Η διάδοση μιας διαταραχής στο χώρο ονομάζεται κύμα. Για τη δημιουργία ενός κύματος απαιτείται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΔΙΑΔΟΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΤΥΠΟΛΟΓΙΟ ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΒΑΣΙΚΑ ΜΕΓΕΘΗ ΓΕΝΙΚΕΣ ΣΧΕΣΕΙΣ Φασική ταχύτητα διάδοσης των Η/Μ κυμάτων στο μέσο διάδοσης c [m s - ] Για τον αέρα: c 0 8 m s - Συχνότητα

Διαβάστε περισσότερα

6η Διάλεξη Οπτικές ίνες

6η Διάλεξη Οπτικές ίνες 6η Διάεξη Οπτικές ίνες Γ. Έηνας, Διάεξη 6, σε. Χρματική Διασπορά Γ. Έηνας, Διάεξη 6, σε. Pae Χρματική Διασπορά Οι οπτικές πηγές δεν είναι μονοχρματικές: Οπτική Ισχύς Μήκος κύματος Χρόνος Ώστε πρέπει να

Διαβάστε περισσότερα

ΘΕΩΡIΑ 2. ΕΙ Η ΚΥΜΑΤΩΝ

ΘΕΩΡIΑ 2. ΕΙ Η ΚΥΜΑΤΩΝ ΘΕΩΡIΑ 1. ΟΡIΣΜΟΣ Καείται o µηχαvισµός διάδoσης µιας διαταραχς, µέσα σ' έvα εαστικό µέσo, µε oρισµέvη ταχύτητα, έτσι ώστε vα µεταφέρεται εvέργεια και oρµ από σηµείo σε σηµείo τoυ εαστικoύ µέσoυ. Με τo

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 Σχετικότητα ΦΥΕ4 /7/1 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 KYMATIKH ιάρκεια: 1 λεπτά Ονοµατεπώνυµο: Τµήµα: Θέµα 1 ο (Μονάδες:.) Α) Θεωρούµε µετατόπιση

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ

ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΚΥΚΛΟΣ ΙΓΩΝΙΣΜΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ Προτεινόµενα Θέµατα Γ Λυκείου Φεβρουάριος 011 Φυσική κατεύθυνσης ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς αό τις αρακάτω ροτάσεις 1-5 και δία το γράµµα ου

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49 ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ Σ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ Θέµα ο. δ. γ 3. α 4. γ 5. β ΚΚυυρρι ιιαακκήή 33 ΙΙααννοουυααρρί ίίοουυ 0033 Θέµα ο. Α) Σωστή απάντηση: (β) Αφού ο τροχός κυλίεται

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

R 1. e 2r V = Gauss E + 1 R 2

R 1. e 2r V = Gauss E + 1 R 2 : Γραμμική πυκνότητα φορτίου βρίσκεται στον άξονα αγώγιμου κυινδρικού φοιού εσωτερικής ακτίνας και εξωτερικής α) Να υποογιστεί η επαγόμενη πυκνότητα φορτίου στις δύο όψεις του φοιού, αν το συνοικό του

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 8 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία

Διαβάστε περισσότερα

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Τρίτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Μονοχρωματική φωτεινή δέσμη, που

Διαβάστε περισσότερα

Κεφάλαιο 13. Περιοδική Κίνηση

Κεφάλαιο 13. Περιοδική Κίνηση Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία

Διαβάστε περισσότερα

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

8. Κύµατα. Εγκάρσια κυµατική κίνηση

8. Κύµατα. Εγκάρσια κυµατική κίνηση Βιβλιογραφία 8. Κύµατα Εγκάρσια κυµατική κίνηση F. S. Crawford Jr. Κυµατική. (Σειρά Μαθηµάτων Φυσικής Berkele, Τόµος 3. Αθήνα 979). Κεφ., 4, 5. H. J. Pai. Φυσική των ταλαντώσεων και των κυµάτων. (Εκδόσεις

Διαβάστε περισσότερα

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D., Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ)

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ) ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ Θέµα. Ένας αρµονικός ταλανττής µε ασθενή απόσβεση, (µάζα=, σταθερά ελατηρίου= s, συντελεστής τριβής= r διεγείρεται

Διαβάστε περισσότερα

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1 Μεγεθυντικός φακός 1. Σκοπός Οι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στις ημιτεείς προτάσεις Α-Α4να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπα το γράμμα που αντιστοιχεί στη φράση η οποία τη

Διαβάστε περισσότερα

Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1]

Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1] Άσκηση 3 - Κύματα Η δημιουργία κυμάτων είναι το αποτέλεσμα πολλών φυσικών διεργασιών. Κύματα εμφανίζονται στην επιφάνεια της θάλασσας, τα ηχητικά κύματα οφείλονται στις διαταραχές της πίεσης του αέρα,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. Επαναηπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.. Μια δέσµη

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

6 Κυμάνσεις. Σχέση δύναμης - κίνησης. Κύμα ορισμός Είδη κυμάνσεων Οδεύοντα και στάσιμα κύματα. Μαρία Κατσικίνη users.auth.

6 Κυμάνσεις. Σχέση δύναμης - κίνησης. Κύμα ορισμός Είδη κυμάνσεων Οδεύοντα και στάσιμα κύματα. Μαρία Κατσικίνη users.auth. 6 Κμάνσεις Κύμα ορισμός Είδη κμάνσεων Οδεύοντα και στάσιμα κύματα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάογη της αομάκρνσης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1ο. ΘΕΜΑ 2ο. 1 α, 2 δ, 3 γ, 4 δ 5. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Σωστό. 1. Σωστό το α ικαιολόγηση:

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1ο. ΘΕΜΑ 2ο. 1 α, 2 δ, 3 γ, 4 δ 5. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Σωστό. 1. Σωστό το α ικαιολόγηση: ΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΣΕΙΣ Γ ΤΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 9 ΜÏΟΥ 007 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ (ΚΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΠΝΤΗΣΕΙΣ ΘΕΜΤΩΝ ΘΕΜ ο α, δ, 3 γ, 4 δ 5. α Λάθος β Σωστό

Διαβάστε περισσότερα

2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 16 Ιουνίου Ενδεικτικές απαντήσεις

2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 16 Ιουνίου Ενδεικτικές απαντήσεις ο Γενικό Λύκειο Λευκάδας Άγγεος Σικειανός 6 Ιουνίου ΘΕΜΑ Α Ενδεικτικές απαντσεις Α δ, Α δ, Α β, Α γ, Α5 α Σωστ, β Σωστ, γ Λάθος, δ Λάθος, ε Σωστ. ΘΕΜΑ Β Β. Α. Η θεμειώδης εξίσωση της κυματικς για την διάδοση

Διαβάστε περισσότερα

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα.

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. 1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. Για τους δείκτες διάθλασης n 1 και n 2 ισχύει: n 2 = (11 / 10)

Διαβάστε περισσότερα

Ακουστικό Ανάλογο Μελανών Οπών

Ακουστικό Ανάλογο Μελανών Οπών Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:

Διαβάστε περισσότερα

8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση

8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση 11//17 8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Ηλεκτρομαγνητισμός Πως συνδέονται ο ηλεκτρισμός με τον μαγνητισμό; Πως παράγονται τα κύματα;

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ. και f= 1 T. Κινητική προσέγγιση της Α.Α.Τ. υναμική προσέγγιση της Α.Α.Τ. D = m. Ενεργειακή προσέγγιση της Α.Α.Τ.

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ. και f= 1 T. Κινητική προσέγγιση της Α.Α.Τ. υναμική προσέγγιση της Α.Α.Τ. D = m. Ενεργειακή προσέγγιση της Α.Α.Τ. ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη της Α.Α.Τ. Συχνότητα f Ν t και f T Γωνιακή συχνότητα ω π και ωπf Τ. Απομάκρυνση: Κινητική προσέγγιση της Α.Α.Τ. χ Α ημ(ωt + φ 0 ) όταν φ 0

Διαβάστε περισσότερα

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες 1. Τοπική μορφή νόμου Newton για μιγαδικές ακουστικές ποσότητες Η τοπική μορφή του νόμου Newton που συσχετίζει την ταχύτητα σωματιδίων με την

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

α) Πως ερµηνεύεται η φράση: «µε γωνιακές συχνότητες που διαφέρουν πολύ λίγο»; γ) Να βρεθούν η γωνιακή συχνότητα ω, η συχνότητα f και η περίοδος Τ των

α) Πως ερµηνεύεται η φράση: «µε γωνιακές συχνότητες που διαφέρουν πολύ λίγο»; γ) Να βρεθούν η γωνιακή συχνότητα ω, η συχνότητα f και η περίοδος Τ των Σύνθεση δύο ΑρµονικώνΤαλαντώσεων που εξελίσσονται στην ίδια ευθεία γύρω από την ίδια θέση µε ίδιο πλάτος και γωνιακές συχνότητες που διαφέρουν πολύ λίγο Έστω ότι υλικό σηµείο εκτελεί ταυτόχρονα τις ταλαντώσεις:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

Τα πρώτα δύο ελάχιστα της έντασης βρίσκονται συμμετρικά από το μέγιστο σε απόσταση φ=±λ/α.

Τα πρώτα δύο ελάχιστα της έντασης βρίσκονται συμμετρικά από το μέγιστο σε απόσταση φ=±λ/α. Φασματόμετρα & Ιντερφερομετρα Τα φασματόμετρα και ιντερφερόμετρα (συμβολόμετρα) χρησιμοποιούνται στη φασματοσκοπία για τη μέτρηση είτε του μήκους κύματος, αλλά τα βρίσκουμε και σε συσκευές λέιζερ όπου

Διαβάστε περισσότερα

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπα το γράμμα που αντιστοιχεί στη φράση η οποία συμπηρώνει σωστά

Διαβάστε περισσότερα

Θέµα Α: Ερωτήσεις πολλαπλής επιλογής

Θέµα Α: Ερωτήσεις πολλαπλής επιλογής Θέµα : Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

ΕΞΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ

ΕΞΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ e- laboratory ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ http://users.dra.sch.gr/filplatakis ΟΝΟΜΑ ΕΞΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΚΥΡΙΑΚΗ 20 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ

Διαβάστε περισσότερα

1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής. 2... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα.

1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής. 2... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα. 1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής.... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα. 3... Τα σημεία ενός κύματος που παρουσιάζουν μεταξύ τους διαφορά

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 007 Φυσική Γ υκείου θετικής - τεχνοογικής κατεύθυνσης Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα