Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις"

Transcript

1 Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ

2 Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ ή προσομοιώσεων Monte Carlo μ έ μ ά ί μ ή.

3 Βασικές έννοιες ή μ ή ί ώ μό ή μά μ μέ ύ. Δε στοχεύουμε σε ακριβή λύση αλλά χειριζόμαστε τις πιθανότητες όταν το σύστημα να είναι σε καταστάσεις μ-ν. Τα βάρη wμ(t) είναι η πιθανότητα το σύστημα να είναι στην κατάσταση μ τη χρονική στιγμή t. Τα βάρη πρέπει να υπακούουν στο νόμο των πιθανοτήτων:

4 Βασικές έννοιες Για μία ποσότητα Q στην κατάσταση μ τη χρονική στιγμή t δίνεται η εκτίμηση Η αναμενόμενη τιμή της ποσότητας Q για κατάσταση ισορροπίας είναι Οι πιθανότητες ακλουθούν κατανομή Boltzmann Και είναι η συνάρτηση επιμερισμού

5 Δ μά - μ ί ά ή μ Q έ ή μ ά ύμ μ μ μή ό p(q) ύ ό μή Boltzmann. έ μή ί ή ό μέ μή Q έ ώ ά Η πιο χρήσιμη ποσότητα δίνεται για n=2

6 Δ μά - μ ί Η συνάρτηση συσχετισμού δυο σημείων ορίζεται Παίρνει μέγιστη τιμή για Και πέφτει γρήγορα ασυμπτωτικά

7 Μοντέλο Ising Κύρια υπόθεση: Ο μαγνητισμός δημιουργείται από συνδυασμό μαγνητικών διπόλων ή ατόμων Το μοντέλο χρησιμοποιεί ένα πλέγμα οποιασδήποτε γεωμετρίας που σε κάθε πλεγματική θέση τοποθετούνται ατομα με σπιν si Στο σιδηρομαγνητικό πρότυπο Ising τα σπιν παίρνουν τιμες +1 και -1

8 Μοντέλο Ising Η Χαμιλτονιανή για το μοντέλο Θεωρούμε κυβικό πλέγμα με Ν πλεγματικές θέσεις διατεταγμένες σε κύβο πλευράς L Η συνάρτηση επιμερισμού γίνεται

9 Μοντέλο Ising Η πιο σημαντική ποσότητα είναι η μέση μαγνήτιση <Μ> Αυτό κυρίως, γιατί το σύστημα παρουσιάζει μετάβαση φάσης από μία διατεταγμένη φάση (χαμηλής θερμοκρασίας) για <Μ> > 0 στην άτακτη φάση (υψηλής θερμοκρασίας) όπου η μαγνήτιση χάνεται <Μ> = 0 στην κρίσιμη θερμοκρασία βc Η μέση μαγνήτιση υπολογίζεται:

10 Μοντέλο Ising Η μέση ενέργεια: Αλλά σημαντικές ποσότητες, είναι η μέση μαγνητική επιδεκτικότητα και η ειδική θερμότητα, που σχετίζονται με τη μέση μαγνήτιση ανά σπιν.

11 Μοντέλο Ising Για το μοντέλο Ising στην κρίσιμη θερμοκρασία το μήκος συσχετισμού ξ τείνει στο άπειρο και συμπεριφέρεται ασυμπτωτικά σαν με t μια αδιάστατη παράμετρο που ονομάζεται μειωμένη θερμοκρασία και μετράει πόσο μακριά βρισκόμαστε από την κρίσιμη.

12 Μοντέλο Ising Η συνάρτηση συσχετισμού συμπεριφέρεται σύμφωνα με την Παρόμοια συμπεριφορά βάθμισης παρουσιάζουν και η ειδική θερμότητα, η μαγνήτιση και η μαγνητική επιδεκτικότητα σύμφωνα με τις σχέσεις: Οι εκθέτες των σχέσεων λέγονται κρίσιμοι εκθέτες και παρουσιάζουν την ιδιότητα της παγκοσμιότητας

13 Βασικές αρχές προσομοιώσεων M.C. Για την επίλυση ενός συστήματος σαν το Ising χρησιμοποιούμε M.C. Προσομοίωση τυχαίων θερμικών διαταραχών για μετάβαση από μια κατάσταση σε μία άλλη. Για την εκτίμηση της ποσότητας Q ενός συστήματος χρησιμοποιούν Μ καταστάσεις: Αν επιλεγούν οι πιθανότητες ίσες:

14 Monte Carlo μ ώ Ανάγκη για important- sampling Για ένα κυβικό πλέγμα 6x6x καταστάσεις Ένας τυπικός αριθμητικός υπολογισμός μπορεί μέχρι 108 Χρησιμοποιούμε την πιθανότητα Pμ να επιλεγεί μια κατάσταση μ Και η εκτίμηση για την Q

15 Αλυσίδες Μαρκόβ και δομή των Μόντε Κάρλο Για τη δημιουργία τέτοιων καταστάσεων χρησιμοποιούνται διαδικασίες Μαρκόβ. Δημιουργία κατάστασης ν από μ διαφορετική κάθε φορά με πιθανότητα μετάβασης Σε κατάσταση ισορροπίας ικανοποιείται:

16 Αλυσίδες Μαρκόβ και δομή των Μόντε Κάρλο Για την κατανομή της κανονικής συλλογής τότε: Λύσεις επιλέγονται ανάλογα με την αποδοτικότητά τους:

17 Αλυσίδες Μαρκόβ και δομή των Μόντε Κάρλο Στις λύσεις οι σταθερές Α επιλέγονται ώστε Οι πιθανότητες μετάβασης σπάνε σε 2 κομμάτια Πιθανότητα επιλογής Λόγος αποδοχής Εύρεση αλγορίθμου με Α=1

18 Single spin-flip algorithm (Metropolis) Cluster flip-algorithm (Wolff)

19 Metropolis Αλγόριθμος Ενδιαφερόμαστε για μεταβάσεις σε ενέργειες που δε διαφέρουν πολύ Αλλάζοντας 1 μόνο σπιν μιας κατάστασης, δημιουργούμε μία νέα που διαφέρει κατά ενέργεια Η κάθε πιθανότητα επιλογής παίρνει την τιμή: Και η συνθήκη ισορροπίας: 12J

20 Metropolis Αλγόριθμος Επιλέγουμε από τις λύσεις για τον λόγο αποδοχής: Ο αποδοτικότερος αλγόριθμος (Metropolis)

21 Wolff Αλγόριθμος Επιλογή ενός σπιν γεννήτορα και κτίσιμο cluster γύρω από αυτό Προσθήκη μελών στο cluster με πιθανότητα Padd Η περιοχή που μας ενδιαφέρει είναι το σύνορο του cluster Για m σπιν που μπορούν να ενσωματωθούν και n που δεν μπορούν

22 Wolff Αλγόριθμος Η ενέργεια εξαρτάται από τους δεσμούς που δημιουργούνται ή καταστρέφονται στο σύνορο: Άρα επιλέγοντας γίνεται 1 ο λόγος αποδοχής

23 Επιλογή Wolff Χρειαζόμαστε στατιστικά ανεξάρτητα δείγματα Ο Metropolis δημιουργεί ισχυρά συσχετισμένες νέες καταστάσεις Συνάρτηση αυτοσυσχετισμού μιας ποσότητας: Μειώνεται ασυμπτωτικά με εκθετικό τρόπο: Στην κρίσιμη περιοχή ο χρόνος αυτοσυσχετισμού μεγαλώνει και παρουσιάζει βάθμιση

24 Επιλογή Wolff Στην κρίσιμη περιοχή για Wolff βήματα, ο χρόνος αυτοσυσχετισμού είναι πολύ μικρότερος. Αυτό συμβαίνει γιατί φτιάχνει μεγάλα cluster, με αποτέλεσμα μεγάλα cluster να δημιουργούνται και να καταστρέφονται ανάλογα με το μέγεθος τους.

25 Επιλογή Wolff ό Cluster Wolff μ ί ί μ ή L = 32

26 Θερμική ισορροπία Ενδιαφερόμαστε για το σύστημά μας σε ισορροπία Αλλαγή αρχικών συνθηκών και μεγέθους του συστήματος

27 Θερμική ισορροπία Αρχική κατάσταση για υψηλή θερμοκρασία

28 Μια πρώτη προσέγγιση της βc Έχοντας κατασκευάσει Νc cluster με ni μέλη το καθένα και Si σπιν Η μαγνήτιση και η μέση μαγνήτιση και η μέση μαγνήτιση ανά σπιν

29 Μια πρώτη προσέγγιση της βc Αναμένουμε μια απότομη αλλαγή φάσης για β=βc περίπου για την τιμή Για θερμοκρασίες μικρότερες εκείνης της αλλαγής φάσης β>βc όλο και περισσότερα σπιν προσανατολίζονται στην ίδια διεύθυνση

30 Μέθοδοι υπολογισμού Στο μοντέλο Ising όταν η β πλησιάζει την βc παρουσιάζονται φαινόμενα πεπερασμένου μεγέθους και οι διακυμάνσεις χ, c παρουσιάζουν μέγιστο σε μία ψευδοκρίσιμη θερμοκρασία βc(l) για το μοντέλο μας

31 Μέθοδοι υπολογισμού Για β βc Άρα Και οι κρίσιμοι εκθέτες παρουσιάζουν βάθμιση σύμφωνα:

32 Finite size scaling -με κατάρρευση Υπολογισμός της κρίσιμης θερμοκρασίας και των κρίσιμων εκθετών ν, γ ταυτόχρονα Θέλουμε σχέση βάθμισης για τις διακυμάνσεις κοντά στην κρίσιμη θερμοκρασία Για F(x) συνάρτηση βάθμισης και ορίζοντας την αδιάστατη μεταβλητή Η βάθμιση της μαγνητικής επιδεκτικότητας:

33 Finite size scaling-με κατάρρευση Όταν x 0 Η συνάρτηση βάθμισης λοιπόν βρίσκεται από μετρήσεις μαγνητικής επιδεκτικότητας Αντίστοιχες συναρτήσεις βάθμισης για τη μέση μαγνήτιση και την ειδική θερμότητα:

34 Finite size scaling Όταν ισχύουν οι σχέσεις βάθμισης τότε όλες οι μετρήσεις πέφτουν πάνω στην ίδια καμπύλη. Για τη μαγνητική επιδεκτικότητα πρέπει να γνωρίζουμε την βc, γ/ν και ν κ Μικρές μεταβολές στις παραμέτρους προκαλούν απόκλιση των καμπυλών

35 Finite size scaling Για τη βάθμιση της μέσης μαγνήτισης κ

36 Finite size scaling Βάθμιση της ειδικής θερμότητας κ

37 Binder Cumulant Την κρίσιμη θερμοκρασία μπορούμε να υπολογίσουμε και με cumulant 4ης τάξης Ο cumulant παίρνει μια σταθερή τιμή U* στην κρίσιμη θερμοκρασία για συστήματα διαφορετικού μεγέθους Για β>βc η τιμή του τείνει να ταυτιστεί με τη τιμή γκαουσιανής κατανομής μικρής διασποράς 2/3 Από την τομή των καμπυλών U(β, L) στο (βc, U*) βρίσκουμε καλή εκτίμηση για την κρίσιμη θερμοκρασία

38 Binder Cumulant Βαθμίζοντας τον Binder cumulant μπορούμε να πάρουμε μία ακόμα εκτίμηση της κρίσιμης θερμοκρασίας και του εκθέτη ν Η συνάρτηση βάθμισης: Λόγω της σχέσης:

39 Binder Cumulant Binder Cumulant ά L μ ί : ύμ ή έμ μ ύ κ

40 Binder Cumulant ύ μ = c = ύμ ό μή μ ώ ί ή μή. ί μ U 0.5 ή μ ί μ όμ ό ί Binder Cumulant ά L μ ί.

41 Binder Cumulant ά μ Binder Cumulant ύμ μ ά μ μέ μ έ μέ = 0.63 c = ύμ ή ά μ έ μέ ί μ έ μ ί ύ ό μ έ

42 Energy Cumulant Αντίστοιχα ορίζουμε το cumulant ενέργειας: Τα ελάχιστα των γραφικών παραστάσεων για διάφορα L τείνουν στην κρίσιμη θερμοκρασία σαν

43 έ μ ύ μ ώ ύ μ ί ά μή 2/3 κ

44 Υπολογισμός σφαλμάτων Ο υπολογισμός των σφαλμάτων που εισέρχονται στις μετρούμενες ποσότητες έγινε με τη μέθοδο Jacknife Για μια ποσότητα Q Για ανεξάρτητες μετρήσεις το πραγματικό στατιστικό σφάλμα είναι

45 Υπολογισμός σφαλμάτων Για n μετρήσεις τις οποίες χωρίζουμε σε καλάθια bins που περιέχουν στοιχεία Και για κάθε bin τις μετράμε ως ανεξάρτητες και το σφάλμα υπολογίζεται:

46 έ μ βc Blotte FerrenbergLandau Vicari (3) (26) (3)

47 έ μ

48 ΤΕΛΟΣ

ιδιάστατο Πρότυπο Potts µε Αριθµητικές Προσοµοιώσεις Monte Carlo

ιδιάστατο Πρότυπο Potts µε Αριθµητικές Προσοµοιώσεις Monte Carlo ιδιάστατο Πρότυπο Potts µε Αριθµητικές Monte Carlo Φίλιος Κωνσταντίνος Σχολή Εφαρµοσµένων Μαθηµατικών & Φυσικών Επιστηµών ΕΜΠ 10 Νοεµβρίου 2010 Φίλιος Κωνσταντίνος ιδιάστατο Πρότυπο Potts µε Αριθµητικές

Διαβάστε περισσότερα

Κεφάλαιο 6: Κρίσιμοι Εκθέτες. Υπολογιστική Φυσική ΙΙ. Αναγνωστόπουλος Κωνσταντίνος

Κεφάλαιο 6: Κρίσιμοι Εκθέτες. Υπολογιστική Φυσική ΙΙ. Αναγνωστόπουλος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Φυσική ΙΙ Κεφάλαιο 6: Κρίσιμοι Εκθέτες Αναγνωστόπουλος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διπλωματική Εργασία στην Υπολογιστική Φυσική

Διπλωματική Εργασία στην Υπολογιστική Φυσική Διπλωματική Εργασία στην Υπολογιστική Φυσική Μελέτη του Δισδιάστατου Πρότυπου Heisenberg με Μεθόδους Monte Carlo Καλλιστής Νικόλαος Επιβλέπων καθηγητής: Αναγνωστόπουλος Κωνσταντίνος Σκοπός της Διπλωματικής

Διαβάστε περισσότερα

Ονοματεπώνυμο: Καλλιστής Νικόλαος Επιβλέπων καθηγητής: Αναγνωστόπουλος Κωνσταντίνος

Ονοματεπώνυμο: Καλλιστής Νικόλαος Επιβλέπων καθηγητής: Αναγνωστόπουλος Κωνσταντίνος Ονοματεπώνυμο: Καλλιστής Νικόλαος Επιβλέπων καθηγητής: Αναγνωστόπουλος Κωνσταντίνος Αν. Καθηγητής Ε.Μ.Π. - 2 - .. Καλλιστής Νικόλαος Διπλωματούχος Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Ε.Μ.Π.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΦΝΕΙΟ ΦΟΛΗ ΕΥΑΡΜΟΜΕΝΩΝ ΜΑΘΗΜΑΣΙΚΩΝ ΚΑΙ ΥΤΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΟΜΕΑ ΥΤΙΚΗ Μελέτη του Προτύπου 2D-Potts σε Υπολογιστικό Περιβάλλον MATLAB ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ ΣΟΤ Γιάννη Ασσιώτη Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo

Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo Υπολογιστική εξοµοίωση του δισδιάστατου πλέγµατος Ising µε τη µέθοδο Monte Carlo Κουτσιούµπας Αλέξανδρος εκέµβριος 00 Το µοντέλο Ising εισήχθη από τους Lenz (190) και Ising (195) για την περιγραφή της

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 1) Θεωρούµε ένα σύστηµα που αποτελείται από ένα σωµατίδιο µε σπιν ½ και µε µαγνητική ροπή

Διαβάστε περισσότερα

Experiment Greek (Cyprus) Q2-1

Experiment Greek (Cyprus) Q2-1 Greek (Cyprus) Q2-1 Τίτλος Σπόροι που αναπηδούν - Ένα μοντέλο για μεταβάσεις φάσεων και αστάθειες. Παρακαλούμε να διαβάσετε τις γενικές οδηγίες που υπάρχουν στον ξεχωριστό φάκελο πριν ξεκινήσετε αυτό το

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Προσομοιώσεις Monte Carlo σε GPU ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Δημητρίου Ν. Καρκούλη Επιβλέπων: Κωνσταντίνος Αναγνωστόπουλος

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Σπόροι που αναπηδούν - Ένα μοντέλο για τις αλλαγές φάσης και τις καταστάσεις αστάθειας.

Σπόροι που αναπηδούν - Ένα μοντέλο για τις αλλαγές φάσης και τις καταστάσεις αστάθειας. Greek (Greece) Q2-1 Σπόροι που αναπηδούν - Ένα μοντέλο για τις αλλαγές φάσης και τις καταστάσεις αστάθειας. Παρακαλούμε να διαβάσετε τις γενικές οδηγίες που υπάρχουν στον ξεχωριστό φάκελο πριν ξεκινήσετε

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1

Αλγόριθμος Metropolis. Γ. Θεοδώρου 1 Αλγόριθμος Metropols Γ. Θεοδώρου Γ. Θεοδώρου 1 Δειγματοληψία Οι δύο βασικές μέθοδοι δειγματοληψίας είναι, Κλασική δειγματοληψία (καλείται και: Monte Carlo), και Δειγματοληψία Metropols. Η βασική διαφορά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων

Διαβάστε περισσότερα

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) , Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Τα συνεχή στο χρόνο δυναμικά συστήματα, γνωστά και ως συστήματα διαφορικών εξισώσεων, περιγράφουν φαινόμενα που μεταβάλλονται συνεχώς στο χρόνο.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μελέτη των Self avoiding Random Walks Ρούσσος Ιωσήφ Α.Μ: 09102046 Επιβλέπων Καθηγητής Κωνσταντίνος Ν.

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 2

Ασκήσεις Κεφαλαίου 2 Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14. Κρίσιμοι Εκθέτες Εισαγωγή

ΚΕΦΑΛΑΙΟ 14. Κρίσιμοι Εκθέτες Εισαγωγή ΚΕΦΑΛΑΙΟ 14 Κρίσιμοι Εκθέτες 14.1 Εισαγωγή Ήδη αναφέραμε σε προηγούμενα κεφάλαια πως ένα φυσικό σύστημα το οποίο εμφανίζει μία συνεχή μετάβαση φάσης κατά την οποία, καθώς β β c ή, ισοδύναμα, καθώς η αδιάστατη

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Μελέτη του Πρότυπου Potts στις Δύο Διαστάσεις με Αριθμητικές Προσομοιώσεις Monte Carlo ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Μελέτη του Πρότυπου Potts στις Δύο Διαστάσεις με Αριθμητικές Προσομοιώσεις Monte Carlo ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Μελέτη του Πρότυπου Potts στις Δύο Διαστάσεις με Αριθμητικές Προσομοιώσεις Monte Carlo ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσεις a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Υπολογιστική Φυσική ΙΙ

Υπολογιστική Φυσική ΙΙ Υπολογιστική Φυσική ΙΙ Μια Εισαγωγή στις Προσομοιώσεις Monte Carlo στη Στατιστική Φυσική Για το μάθημα Υπολογιστικής Φυσικής ΙΙ 8ο εξάμηνο Σχολής ΕΜΦΕ Εθνικό Μετσόβιο Πολυτεχνείο Κωνσταντίνος Ν. Αναγνωστόπουλος

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Η Επιστήμη της Θερμοδυναμικής ασχολείται με την ποσότητα της θερμότητας που μεταφέρεται σε ένα κλειστό και απομονωμένο σύστημα από μια κατάσταση ισορροπίας σε μια άλλη

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση τυπικής αβεβαιότητας τύπου B Η εκτίμηση βασίζεται στις διαθέσιμες πληροφορίες και την εμπειρία, χρησιμοποιώντας συνήθως: τα χαρακτηριστικά του κατασκευαστή

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας. Βιολογικές επιδράσεις. Ακτινοπροστασία

Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας. Βιολογικές επιδράσεις. Ακτινοπροστασία Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας Βιολογικές επιδράσεις Ακτινοπροστασία Π. Παπαγιάννης Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr PHYS215

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

Προσομοιώσεις Monte Carlo σε GPU

Προσομοιώσεις Monte Carlo σε GPU ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Προσομοιώσεις Monte Carlo σε GPU Δημήτρης Καρκούλης Επιβλέπων: Κ. Αναγνωστόπουλος 15/07/2010 Πρακτική στο

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:

Διαβάστε περισσότερα

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

17/10/2016. Στατιστική Ι. 3 η Διάλεξη Στατιστική Ι 3 η Διάλεξη 1 2 Τυχαία μεταβλητή X στο δειγματικό χώρο Ω Μια πραγματική συνάρτηση που αντιστοιχίζει τα στοιχεία του δειγματικού χώρου Ω στο σύνολο των πραγματικών αριθμών τέτοια ώστε για κάθε

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου

Διαβάστε περισσότερα

Ορισμός και Ιδιότητες

Ορισμός και Ιδιότητες ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

Μελέτη των Self-avoiding random walks

Μελέτη των Self-avoiding random walks Μελέτη των Self-avoiding random walks ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή εφαρμοσμένων Μαθηματικών και Φυσικών επιστημών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΡΟΥΣΣΟΣ ΙΩΣΗΦ Επιβλέπων καθηγητής Κ. Ν. Αναγνωστόπουλος Εισαγωγή

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα