3. Προσομοίωση ενός Συστήματος Αναμονής.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. Προσομοίωση ενός Συστήματος Αναμονής."

Transcript

1 3. Προσομοίωση ενός Συστήματος Αναμονής Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων, αφού φαινόμενα καθυστερήσεων λόγω της απαίτησης χρήσης περιορισμένων πόρων από πολλούς "πελάτες", μπορούν να εντοπισθούν τόσο σε απλούς υπολογιστές (π.χ. CPU, I/O, μνήμη), όσο και σε πολύπλοκα συστήματα όπως τα δίκτυα υπολογιστών (π.χ. κανάλια μετάδοσης δεδομένων). 'Εστω το σύστημα αναμονής με έναν εξυπηρετητή φαίνεται στο Σχήμα 4. Εισερχόμενοι server Εξερχόμενοι ΣΧΗΜΑ 4. Αναμονής με 'Εναν. Οι χρόνοι μεταξύ διαδοχικών αφίξεων 1, 2,K είναι ανεξάρτητες, όμοια κατανεμημένες τυχαίες μεταβλητές. 'Ενας πελάτης φθάνει και βρίσκει τον εξυπηρετητή (server) άδειο, αρχίζει αμέσως την εξυπηρέτησή του, ενώ εάν τον βρει κατειλλημένο μένει στο τέλος της ουράς αναμονής. 'Οταν ο server ελευθερωθεί, παίρνει τον πρώτο πελάτη της ουράς (αν υπάρχει κάποιος), δηλαδή έχουμε FIFO πολιτική εξυπηρέτησης. Οι χρόνοι εξυπηρέτησης των πελατών S1, S2,K είναι επίσης ανεξάρτητες, όμοια κατανεμημένες τυχαίες μεταβλητές. Η προσομοίωση θα αρχίσει από τη "μηδενική" κατάσταση του συστήματος, δηλαδή με άδειο σύστημα. Τη χρονική στιγμή 0, θα αρχίσουμε να περιμένουμε την άφιξη του πρώτου πελάτη, η οποία θα γίνει μετά από χρόνο 1. Θέλουμε να προσομοιώσουμε το σύστημα μέχρις ότου ένας συγκεκριμένος αριθμός πελατών n περάσει ουρά, δηλαδή η προσομοίωση θα σταματήσει όταν ο n -στός πελάτης θα εισέλθει στον εξυπηρετητή. 'Οπως είναι φανερό, ο χρόνος ολοκλήρωσης της προσομοίωσης είναι επίσης μια τυχαία μεταβλητή εξαρτάται από τις τιμές των τυχαίων μεταβλητών περιγράφουν τους χρόνους μεταξύ διαδοχικών αφίξεων και εξυπηρέτησης των πελατών. Προκειμένου να μετρήσουμε την απόδοση του συστήματος, θα ενδιαφερθούμε για εκτιμήσεις τριών ποσοτήτων. Πρώτα, θα εκτιμήσουμε την "αναμενόμενη" μέση καθυστέρηση ουρά dn ( ), κάθε ενός από τους n πελάτες. Το dn ( ) θα πρέπει κανονικά να βρίσκεται ως η μέση τιμή πολλών (πρακτικά άπειρων) μέσων καθυστερήσεων n πελατών. Από μία εκτέλεση του προσομοιωτή, οποία παρατηρούνται καθυστερήσεις ουρά 1, 2, K, n, των n πελατών, μία προφανής εκτίμηση του dn ( ) είναι: dn $ ( ) n i i = = 1 n 1

2 (Στη συνέχεια, όλες οι εκτιμήσεις μεγεθών θα τονίζονται με το σύμβολο ^ ). Η έννοια της καθυστέρησης, περιλαμβάνει φυσικά και την περίπτωση ένας πελάτης να μη χρειασθεί να περιμένει. Π.χ. ο πρώτος πελάτης θα έχει οπωσδήποτε 1 = 0. Πρέπει να παρατηρήσουμε εδώ, ότι το dnδεν $ ( ) είναι ο μαθηματικός μέσος όρος μιας τυχαίας μεταβλητής, αφού δεν έχουμε τυχαίες παρατηρήσεις της ίδιας τυχαίας μεταβλητής. Επίσης, εδώ το dnείναι $ ( ) μια εκτίμηση βασίζεται σε ένα "δείγμα" μεγέθους 1, αφού βασίζεται μόνο σε μία εκτέλεση του προσομοιωτή. Φυσικά, δεν είναι αρκετή μία εκτέλεση για να πάρουμε ασφαλείς εκτιμήσεις. Το μέγεθος dn ( ) είναι ένα μέτρο ενδιαφέροντος χρήστη. Ένα δεύτερο μέγεθος μας ενδιαφέρει, είναι ο αναμενόμενος μέσος αριθμός πελατών ουρά qn ( ). Το μέγεθος αυτό είναι ένα μέτρο ενδιαφέροντος συστήματος και διαφέρει από το dn ( ), καθότι η μέση τιμή υπολογίζεται πάνω στο (συνεχή) χρόνο, σε αντίθεση με το dn ( ) υπολογίζεται πάνω στους (διακριτούς) πελάτες. Συγκεκριμένα, έστω Qt () ο αριθμός των πελατών ουρά τη χρονική στιγμή t, για κάθε πραγματικό αριθμό t 0 και έστω T( n) ο χρόνος απαιτείται για να παρατηρήσουμε τις n καθυστερήσεις ουρά. Τότε, για κάθε χρόνο t μεταξύ 0 και T( n), το Qt () είναι ένας μη-αρνητικός ακέραιος. Επίσης, αν p i είναι το ποσοστό (με τιμές μεταξύ 0 και 1) του χρόνου το Qt () είναι ίσο με i, τότε το qn ( ) ορίζεται ως: qn ( ) = ενώ η εκτίμηση του qn ( ) από μία εκτέλεση του προσομοιωτή, δίνεται από τις εκτιμήσεις των p i, δηλαδή: i= 0 ip i qn $( ) = ip$ i ό $p i είναι τα παρατηρούμενα ποσοστά του χρόνου, κατά τη διάρκεια της προσομοίωσης, υπάρχουν i πελάτες ουρά. Αν T i είναι ο συνολικός χρόνος προσομοίωσης κατά τον οποίο η ουρά έχει μήκος i, τότε p$ i = Ti T( n), ό Tn ( ) = T0 + T1 + T2+ L και η (1) μπορεί να γραφεί ως: iti i qn $( ) = = 0 (2) Tn ( ) Το άθροισμα στον αριθμητή της (2) είναι η επιφάνεια "καμπύλη" του Qt (), μεταξύ της αρχής και του τέλους της προσομοίωσης, δηλαδή είναι το ολοκλήρωμα: it = i= 0 i i= 0 0 T( n) Q() t dt οπότε η εκτίμηση του qn ( ) δίνεται από τη σχέση: qn $( ) = T( n) 0 Qtdt () Tn ( ) (1) (3) 2

3 Αν και οι σχέσεις (3) και (2) είναι ισοδύναμες, η (3) είναι προτιμότερη διότι το ολοκλήρωμα μπορεί να υπολογισθεί ως το άθροισμα ορθογωνίων παραλληλογράμμων, καθώς η προσομοίωση θα εξελίσσεται. Το τρίτο και τελευταίο μέτρο απόδοσης θα εξετάσουμε, είναι η χρησιμοποίηση (utilization), ένα ακόμη μέτρο ενδιαφέροντος συστήματος. Η αναμενόμενη χρησιμοποίηση του εξυπηρετητή un ( ), είναι το μέσο ποσοστό (με τιμές μεταξύ 0 και 1) του χρόνου προσομοίωσης [από τη στιγμή 0 έως τη στιγμή T( n) ], ο εξυπηρετητής είναι απασχολημένος. Η εκτίμηση της χρησιμοποίησης un $( ), μπορεί να υπολογισθεί απ ευθείας προσομοίωση, παρατηρώντας τις στιγμές κατά τις οποίες ο εξυπηρετητής αλλάζει κατάσταση (από άεργος σε απασχολημένος και αντίστροφα) και εκτελώντας τις κατάλληλες αφαιρέσεις και διαιρέσεις. Ορίζουμε τη "συνάρτηση απασχόλησης": B (t) = 1 αν ο εξυπηρετητης ειναι απασχολημενος τη στιγμη 0 αν ο εξυπηρετητης ειναι αεργος τη στιγμη t t Το un $( ) μπορεί να εκφραστεί ως το ποσοστό του χρόνου το B() t είναι ίσο με 1. Αφού στο διάγραμμα του B(), t το ύψος της γραφικής παράστασής του είναι πάντοτε είτε 0 ή 1, το un $( ) θα μπορεί να υπολογισθεί (κατά αναλογία προς τον τρόπο υπολογισμού του qn $( ) παραπάνω), από τη σχέση: un $( ) = T( n) 0 Btdt () Tn ( ) Στο σύστημα αυτό, τα γεγονότα είναι η άφιξη και η αναχώρηση ενός πελάτη. Οι μεταβλητές συστήματος μας χρειάζονται για τις εκτιμήσεις των dn ( ), qn ( ) και un ( ), είναι: Η κατάσταση του εξυπηρετητή (0 αν είναι άεργος και 1 αν είναι απασχολημένος), ο αριθμός των πελατών ουρά, η χρονική στιγμή άφιξης κάθε πελάτη βρίσκεται ουρά (μία λίστα) και η χρονική στιγμή εμφάνισης του πιο πρόσφατου γεγονότος. Η στιγμή εμφάνισης του πιο πρόσφατου γεγονότος, η οποία ορίζεται ως e i 1 εάν ei 1 t < ei (ό t είναι ο παρών χρόνος της προσομοίωσης), μας χρειάζεται για τον υπολογισμό του πλάτους των ορθογωνίων παραλληλογράμμων, χρησιμοποιούνται στις εκτιμήσεις των qn ( ) και un ( ). (4) 3.2. Η Εκτέλεση του Προσομοιωτή. Προκειμένου να δούμε πώς το μοντέλο προσομοίωσης αναπαριστάται υπολογιστικά τη χρονική στιγμή e 0 = 0 και τις στιγμές e1, e2, K, e13 κατά τις οποίες εμφανίζονται τα 13 διαδοχικά γεγονότα απαιτούνται για να παρατηρήσουμε τον επιθυμητό αριθμό n = 6 διελεύσεων πελατών ουρά, υποθέτουμε ότι οι χρόνοι μεταξύ διαδοχικών αφίξεων και εξυπηρέτησης των πελατών είναι: 1 = 04., 2 = 12., 3 = 05., 4 = 17., 5 = 02., 6 = 16., 7 = 02., 8 = 14., 9 = 19., K S = 20., S = 07., S = 02., S = 11., S = 37., S = 06., K

4 Δηλαδή, μεταξύ της στιγμής 0 και της στιγμής της πρώτης άφιξης μεσολαβεί 0.4 της μονάδας χρόνου, μεταξύ των αφίξεων του 1ου και του 2ου πελάτη μεσολαβούν 1.2 μονάδες χρόνου κ.ο.κ., ενώ ο 1ος πελάτης θα χρειασθεί 2.0 μονάδες χρόνου εξυπηρέτηση κ.λ.π. Δεν είναι απαραίτητο να δηλωθεί η μονάδα χρόνου, αλλά απλώς να είμαστε βέβαιοι ότι όλες οι χρονικές ποσότητες εκφράζονται με την ίδια μονάδα. Σε μία πραγματική προσομοίωση (βλέπε επόμενες παραγράφους), τα i και S i παράγονται από τις πιθανοτικές κατανομές περιγράφουν τα δύο φαινόμενα αντίστοιχα. Στο Σχήμα 5 φαίνονται το σύστημα και η υπολογιστική αναπαράστασή του τις χρονικές στιγμές e0 = 0, e1 = 04., K, e13 = 86.. Στο τμήμα αναπαριστά το σύστημα φαίνεται ο εξυπηρετητής και η ουρά, ενώ οι αριθμοί είναι οι στιγμές άφιξης των πελατών (όταν υπάρχουν). Στο τμήμα αντιπροσωπεύει την υπολογιστική αναπαράσταση, οι τιμές των μεταβλητών φαίνονται, είναι μετά την ολοκλήρωση όλων των υπολογισμών συνεπάγεται το γεγονός έχει μόλις εμφανισθεί. Χρονική Αρχικοποίησης e 0 = (a) Χρονική e 1 = ΣΧΗΜΑ 5. Το και η Υπολογιστική Αναπαράστασή του κατά τις χρονικές στιγμές εμφάνισης των γεγονότων. (b) 4

5 Χρονική e 2 = (c) Χρονική e 3 = (d) Χρονική Αναχώρησης e 4 = (e) ΣΧΗΜΑ 5. (Συνέχεια) 5

6 Χρονική Αναχώρησης e 5 = (f) Χρονική Αναχώρησης e 6 = (g) Χρονική e 7 = (h) ΣΧΗΜΑ 5. (Συνέχεια) 6

7 Χρονική e 8 = (i) Χρονική Αναχώρησης e 9 = (j) από B (t) Χρονική e 10 = (k) ΣΧΗΜΑ 5. (Συνέχεια) 7

8 (l) Χρονική e 12 = (m) Χρονική Αναχώρησης e 13 = (n) ΣΧΗΜΑ 5. (Συνέχεια) 8

9 Μερικά σχόλια αφορούν τη λογική της προσομοίωσης παρουσιάζεται στο Σχήμα 5, είναι τα εξής: Το βασικό στοιχείο της δυναμικής εξέλιξης του προσομοιωτή είναι η αλληλεπίδραση του ρολογιού με τη λίστα γεγονότων. Η λίστα γεγονότων συντηρείται και το ρολόι μετακινείται στο επόμενο γεγονός, όπως αυτό καθορίζεται από τη λίστα γεγονότων. Κατά τη διάρκεια της επεξεργασίας ενός γεγονότος, δεν εξελίσσεται ο "προσομοιωμένος" χρόνος. Όμως πρέπει να ενημερώνονται οι μεταβλητές κατάστασης και οι μετρητές στατιστικών. Για παράδειγμα, θα ήταν λάθος να ενημερωθεί ο αριθμός πελατών ουρά πριν ενημερωθεί ο μετρητής της επιφάνειας από το Qt () αφού το ύψος του ορθογωνίου πρέπει να χρησιμοποιηθεί, είναι αυτό της προηγούμενης τιμής του Qt (). Ένα άλλο λάθος θα ήταν η αλλαγή της λίστας της ουράς σε μία αναχώρηση, πριν υπολογισθεί η καθυστέρηση του πρώτου πελάτη ουρά, διότι τότε θα χανόταν η χρονική στιγμή άφιξής του στο σύστημα. Μερικές φορές είναι εύκολο να παραβλεφθούν οι συνέπειες γεγονότων δεν είναι συνηθισμένα κατά τη διάρκεια της προσομοίωσης, έχουν όμως σημαντικές επιπτώσεις. Π.χ. είναι πιθανό να ξεχάσουμε ότι ένας πελάτης αναχωρεί, μπορεί να αφήσει πίσω του ένα άδειο σύστημα και κατά συνέπεια πρέπει να μείνει άεργος ο εξυπηρετητής και το γεγονός της αναχώρησης πρέπει να διαγραφεί από τη λίστα γεγονότων. Μπορεί να συμβεί δύο ή περισσότερες τιμές της λίστας γεγονότων να είναι ίδιες, οπότε πρέπει να αποφασισθεί ποιό γεγονός θα ακολουθήσει. Οι κανόνες θα χρησιμοποιούνται στις περιπτώσεις αυτές μπορεί να επηρεάζουν τα αποτελέσματα της προσομοίωσης και θα πρέπει να επιλέγονται με βάση την επιθυμητή μοντελοποίηση του συστήματος. Πάντως, όταν τα γεγονότα περιγράφονται από συνεχείς πιθανοτικές κατανομές, η πιθανότητα εμφάνισης ενός τέτοιου γεγονότος είναι 0. Τέτοια περίπτωση είναι οι χρόνοι μεταξύ διαδοχικών αφίξεων και οι χρόνοι εξυπηρέτησης του παραπάνω παραδείγματος. Το παράδειγμα εξετάζουμε έχει σκοπό να δείξει τις αλλαγές και τις δομές δεδομένων χρησιμοποιούνται σε μία προσομοίωση διακριτών γεγονότων με μηχανισμό εξέλιξης με βάση το χρόνο του επομένου γεγονότος και περιλαμβάνει τις περισσότερες από τις βασικές ιδέες απαιτούνται για πιο πολύπλοκους προσομοιωτές αυτού του τύ. Οι χρόνοι μεταξύ διαδοχικών αφίξεων και οι χρόνοι εξυπηρέτησης θα μπορούσαν να είχαν επιλεγεί από κάποιο πίνακα τυχαίων τιμών ο οποίος θα είχε δημιουργηθεί με βάση τις χρησιμοποιούμενες πιθανοτικές κατανομές περιγράφουν τα δύο μεγέθη Η Οργάνωση και η Λογική του Προγράμματος. Το σύστημα αναμονής με έναν εξυπηρετητή θα προσομοιώσουμε στις επόμενες παραγράφους, διαφέρει σε δύο σημεία με το μοντέλο χρησιμοποιήσαμε παραπάνω: 1. Η προσομοίωση θα σταματήσει όταν θα έχουν περάσει n = 1000 πελάτες ουρά, αντί για n = 6, έτσι ώστε να συλλεγούν περισσότερα δεδομένα. Πρέπει να σημειώσουμε ότι η αλλαγή αυτή στον κανόνα τερματισμού της προσομοίωσης, αλλάζει το ίδιο το μοντέλο, δεδομένου ότι οι μετρήσεις εξόδου ορίζονται σε σχέση 9

10 με τον κανόνα αυτό, όπως φαίνεται παρουσία του "n" στις εκφράσεις των ποσοτήτων dn ( ), qn ( ) και un ( ) υπολογίζονται. 2. Οι χρόνοι μεταξύ διαδοχικών αφίξεων και οι χρόνοι εξυπηρέτησης, θα μοντελοποιηθούν ως ανεξάρτητες τυχαίες μεταβλητές περιγράφονται από εκθετικές κατανομές, με μέση τιμή 1 λεπτό για τους χρόνους μεταξύ αφίξεων και 0.5 για τους χρόνους εξυπηρέτησης. Η εκθετική κατανομή με μέση τιμή β (οποιοσδήποτε θετικός πραγματικός αριθμός) είναι συνεχής, με συνάρτηση πυκνότητας πιθανότητας 1 f ( x) = e x β για x 0 β Η αλλαγή αυτή γίνεται διότι είναι πιο συνηθισμένο οι ποσότητες εισόδου "οδηγούν" την προσομοίωση, να δημιουργούνται από συγκεκριμένες κατανομές, παρά να θεωρούμε ότι είναι γνωστές, όπως έγινε προηγούμενη παράγραφο. Η επιλογή της εκθετικής κατανομής με τις παραπάνω τιμές για το β είναι ουσιαστικά αυθαίρετη και έγινε γιατί είναι εύκολο να δημιουργηθούν εκθετικές τιμές από το πρόγραμμα της προσομοίωσης. Αργότερα θα δούμε πως επιλέγουμε κατανομές και παραμέτρους για τη μοντελοποίηση των τυχαίων μεταβλητών εισόδου της προσομοίωσης. Το σύστημα αυτό αναμονής με έναν εξυπηρετητή και εκθετικούς χρόνους μεταξύ αφίξεων και εξυπηρέτησης, είναι το γνωστό σύστημα αναμονής M M 1. Για να προσομοιώσουμε αυτό το μοντέλο, πρέπει με κάποιο τρόπο να δημιουργήσουμε τυχαίες τιμές από εκθετικές κατανομές. Αρχικά καλείται μία Γεννήτρια Τυχαίων Αριθμών (βλέπε τα επόμενα Κεφάλαια), η οποία δημιουργεί μία τυχαία τιμή U είναι ομοιόμορφα (συνεχώς) κατανεμημένη μεταξύ 0 και 1. Η κατανομή αυτή θα αναφέρεται ως U ( 01, ) και έχει συνάρτηση πυκνότητας πιθανότητας 1 αν 0 x 1 f ( x) = 0 αλλιως Είναι εύκολο να δείξουμε ότι: Η πιθανότητα μία U ( 01, ) τυχαία μεταβλητή να "πέσει" σε οποιοδήποτε υποδιάστημα [x, x+ Δ x] περιλαμβάνεται στο διάστημα [0,1], είναι (ομοιόμορφα) Δx. Η κατανομή U ( 01, ) είναι βασική προσομοίωση, διότι, όπως θα δούμε αργότερα, μία τυχαία τιμή από οποιαδήποτε κατανομή, μπορεί να δημιουργηθεί, αν πάρουμε μία ή περισσότερες τυχαίες τιμές U ( 01, ) και εφαρμόσουμε κάποιο είδος μετασχηματισμού. Εδώ, έχουμε την εκθετική κατανομή, αφού πάρουμε το U, θα βρούμε το φυσικό λογάριθμό του, θα τον πολλαπλασιάσουμε με β και τελικά θα αλλάξουμε πρόσημο, ώστε να έχουμε (όπως θα δείξουμε) μία εκθετική τυχαία τιμή με μέση τιμή β, δηλαδή την τυχαία τιμή β lnu. Για να δείξουμε ότι ο αλγόριθμος αυτός δουλεύει, ας θυμηθούμε ότι η Συνάρτηση Κατανομής Πιθανότητας μιας τυχαίας μεταβλητής X, ορίζεται για κάθε πραγματικό x, ως F( x) = P( X x). Αν η X είναι εκθετική με μέση τιμή β, τότε x β x β β 0 F( x) = 1 e t dt = 1 e για κάθε x 0 αφού η συνάρτηση πυκνότητας πιθανότητας της εκθετικής κατανομής με όρισμα β t 0, είναι ( 1 β) e t. Για να δείξουμε ότι η μέθοδος αυτή είναι σωστή, 10

11 επιβεβαιώνουμε ότι η τιμή δίνει είναι μικρότερη ή ίση με x (οποιοσδήποτε πραγματικός μη-αρνητικός αριθμός), με πιθανότητα F( x) όπως παραπάνω: x x β x β x β P( β ln U x) = P(ln U ) = PU ( e ) = Pe ( U 1) = 1 e β Ο τελευταίος όρος είναι το F( x) της εκθετικής κατανομής, οπότε έχει επιβεβαιωθεί ο αλγόριθμος. Σε επόμενο Κεφάλαιο θα ασχοληθούμε εκτενέστερα με το θέμα της δημιουργίας τυχαίων τιμών από οποιαδήποτε κατανομή. Αν και οι περισσότεροι μεταφραστές γλωσσών προγραμματισμού έχουν ενσωματωμένες γεννήτριες τυχαίων αριθμών, αυτές είναι συνήθως κακής ποιότητας και έτσι πρέπει ο προγραμματιστής να αναπτύξει τη δική του γεννήτρια. Το πρόγραμμα του προσομοιωτή πρέπει να κατασκευάζεται κατά ενότητες (modules), ώστε να ξεκαθαρίζεται η λογική και οι αλληλεπιδράσεις των τμημάτων του προγράμματος, όπως περιγράφηκαν Παράγραφο 2.3. Οι πιο σημαντικές ενέργειες γίνονται στις ρουτίνες γεγονότων, τα οποία αριθμούμε ως εξής: Περιγραφή Τύπος Άφιξη Πελάτη στο 1 Αναχώρηση Πελάτη από το αφού 2 ολοκλήρωσε την εξυπηρέτησή του Γεγονός Προγραμμάτισε το Επόμενο Γεγονός Πρόσθεσε 1 ΝΑΙ Server Απασχολημένος? ΟΧΙ Θέσε = 0 για τον Πελάτη και Συγκέντρωσε Στατιστικά Δώσε Μήνυμα Λάθους και Σταμάτησε την Προσομοίωση ΝΑΙ Γεμάτη? Πρόσθεσε 1 στους Πέρασαν ΟΧΙ Αποθήκευσε τη του Πελάτη Κάνε τον Απασχολημένο Προγραμμάτισε Ένα Γεγονός Αναχώρησης για τον Πελάτη ΣΧΗΜΑ 6. Διάγραμμα Ροής για το Γεγονός Επιστροφή 11

12 Στο Σχήμα 6 παρουσιάζεται το διάγραμμα ροής για το γεγονός 1, δηλαδή την άφιξη ενός πελάτη στο σύστημα. Αντίστοιχα το Σχήμα 7 εμφανίζει το διάγραμμα ροής του γεγονότος 2, της αναχώρησης ενός πελάτη από το σύστημα. Γεγονός Αναχώρησης Κάνε τον Άδειο ΝΑΙ Άδεια? ΟΧΙ Αφαίρεσε 1 Διάγραψε το Παρόν Γεγονός Αναχώρησης Υπολόγισε την Καθυστέ-ρηση του Πελάτη Μπαίνει στον Server & Συγκέντρωσε Στατιστικά Πρόσθεσε 1 στους Πέρασαν Προγραμμάτισε Ένα Γεγονός Αναχώρησης για τον Πελάτη Προχώρησε τους της ς (αν υπάρχουν), κατά 1 Θέση Μπροστά Επιστροφή ΣΧΗΜΑ 7. Διάγραμμα Ροής για το Γεγονός Αναχώρησης 12

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Διατύπωση του προβλήματος

Διαβάστε περισσότερα

Κεφάλαιο 5: Εισαγωγή στην Προσομοίωση

Κεφάλαιο 5: Εισαγωγή στην Προσομοίωση Κεφάλαιο 5: Εισαγωγή στην Προσομοίωση Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής Προσομοίωση Τεχνικές χρήσης υπολογιστών για τη «μίμηση» των λειτουργιών διαφόρων ειδών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 5: Εισαγωγή στην Προσομοίωση

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 5: Εισαγωγή στην Προσομοίωση Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 5: Εισαγωγή στην Προσομοίωση Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια της ζωής ενός συστήματος,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation Πληροφοριακά Συστήματα Διοίκησης Προσομοίωση Simulation Προσομοίωση Έστω ότι το σύστημα βρίσκεται σε κάποια αρχική κατάσταση Αν γνωρίζουμε τους κανόνες σύμφωνα με τους οποίους το σύστημα αλλάζει καταστάσεις

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Υπολογιστικό Σύστημα Λειτουργικό Σύστημα Αποτελεί τη διασύνδεση μεταξύ του υλικού ενός υπολογιστή και του χρήστη (προγραμμάτων ή ανθρώπων). Είναι ένα πρόγραμμα (ή ένα σύνολο προγραμμάτων)

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

Προσομοίωση Συστημάτων

Προσομοίωση Συστημάτων Προσομοίωση Συστημάτων Μεθοδολογίες προσομοίωσης Άγγελος Ρούσκας Μηχανισμός διαχείρισης χρόνου και μεθοδολογίες προσομοίωσης Έχουμε αναφερθεί σε δύο μηχανισμούς διαχείρισης χρόνου: Μηχανισμός επόμενου

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή

Διαβάστε περισσότερα

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7 ο Αλγόριθμοι Χρονοδρομολόγησης Σκοπός του μαθήματος Στην ενότητα αυτή θα εξηγήσουμε το ρόλο και την αξιολόγηση των αλγορίθμων χρονοδρομολόγησης, και θα παρουσιάσουμε τους κυριότερους. Θα μάθουμε:

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Η ενότητα αυτή θα αρχίσει παρουσιάζοντας την δυνατότητα ενός κυψελωτού ράδιοσυστήματος να εξασφαλίζει την υπηρεσία σε έναν μεγάλο αριθμό

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0 Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΙΑΚΡΙΤΩΝΣΥΣΤΗΜΑΤΩΝ

ΜΟΝΤΕΛΑ ΙΑΚΡΙΤΩΝΣΥΣΤΗΜΑΤΩΝ ΜΟΝΤΕΛΑ ΙΑΚΡΙΤΩΝΣΥΣΤΗΜΑΤΩΝ Στα διακριτά συστήµατα, οι αλλαγές της κατάστασής των συµβαίνουν µόνο σε συγκεκριµένες χρονικές στιγµές, δηλ όταν συµβαίνει κάποιο γεγονός! Τα διακριτά συστήµατα µπορούν να προσοµοιωθούν

Διαβάστε περισσότερα

Εργαστήριο Λειτουργικών Συστημάτων - Αλγόριθμοι Χρονοπρογραμματισμού. Εργαστηριακή Άσκηση

Εργαστήριο Λειτουργικών Συστημάτων - Αλγόριθμοι Χρονοπρογραμματισμού. Εργαστηριακή Άσκηση Εργαστηριακή Άσκηση Οι Αλγόριθμοι Χρονοπρογραμματισμού First Come First Serve (FCFS), Shortest Job First (SJF), Round Robin (RR), Priority Weighted (PRI) Επιμέλεια: Βασίλης Τσακανίκας Περιεχόμενα Αλγόριθμοι

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Γιατί δίκτυα συστημάτων αναμονής; Τα απλά συστήματα

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Κεφάλαιο 10 ο Υποπρογράµµατα

Κεφάλαιο 10 ο Υποπρογράµµατα Κεφάλαιο 10 ο Υποπρογράµµατα Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Η αντιµετώπιση των σύνθετων προβληµάτων και η ανάπτυξη των αντίστοιχων προγραµµάτων µπορεί να γίνει µε την ιεραρχική σχεδίαση,

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ ΠΡΟΤΥΠΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ ΠΡΟΤΥΠΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ Διδάσκων: Γεώργιος Γιαγλής Παράδειγμα Μπαρ Σκοπός της παρούσας άσκησης είναι να προσομοιωθεί η λειτουργία ενός υποθετικού μπαρ ώστε να υπολογίσουμε το μέσο χρόνο

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Τι είναι ένα Κατανεμημένο Σύστημα; Επικοινωνία, Χρονισμός, Σφάλματα Μοντέλο Ανταλλαγής Μηνυμάτων 1

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα. Αγωγιμομετρία Η Πορεία των Υπολογισμών με Παραδείγματα. Πρώτα πρέπει να υπολογίσουμε την ισοδύναμη αγωγιμότητα άπειρης αραίωσης για κάθε ηλεκτρολύτη. Εδώ πρέπει να προσέξουμε τις μονάδες. Τα μεγέθη που

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα

Διαβάστε περισσότερα

σ.π.π. Γεωμετρικής Κατανομής με p=0, Αριθμός επιτυχιών μέχρι την πρώτη επιτυχία

σ.π.π. Γεωμετρικής Κατανομής με p=0, Αριθμός επιτυχιών μέχρι την πρώτη επιτυχία Ν(n) 2.11 ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ Αν αντί της ερώτησης "πόσες επιτυχίες σημειώνονται σε n δοκιμές Bernoulli;" ενδιαφέρει η ερώτηση "πόσες δοκιμές απαιτούνται μέχρι να σημειωθεί η πρώτη επιτυχία;", οδηγούμαστε

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών Εργαστήρια

Δίκτυα Υπολογιστών Εργαστήρια Δίκτυα Υπολογιστών Εργαστήρια Άσκηση 6 η Πολλαπλή Πρόσβαση με Ακρόαση Φέροντος (CSMA-CD) Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διδάσκων: Παπαπέτρου Ευάγγελος 2 1 Εισαγωγή Σκοπός της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ

ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV 5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι

Διαβάστε περισσότερα

Οι εντολές ελέγχου της ροής ενός προγράμματος.

Οι εντολές ελέγχου της ροής ενός προγράμματος. Κεφάλαιο ΙΙI: Οι εντολές ελέγχου της ροής ενός προγράμματος 31 Εντολές ελέγχου της ροής Στο παρόν κεφάλαιο ασχολούμαστε με την σύνταξη των εντολών της C οι οποίες εισάγουν λογική και ελέγχουν την ροή εκτέλεσης

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 7: Διαγράμματα Καταστάσεων

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 7: Διαγράμματα Καταστάσεων Πληροφοριακά Συστήματα Διοίκησης Ενότητα 7: Διαγράμματα Καταστάσεων Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

Θέμα Α Α3.1 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ

Θέμα Α Α3.1 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2012-2013 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1 Α2 1. Μέχρι το 1976

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική αρ χή Εισαγωγή στην Πληροφορική Σημειώσεις Παράρτημα 1 Οδηγός μελέτης για τις εξετάσεις 12/1/2017 μπορεί να συμπληρωθεί τις επόμενες μέρες Μάριος Μάντακας Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ηπείρου

Διαβάστε περισσότερα