ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ"

Transcript

1 ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν βασικές έννοιες και σχέσεις της φυσικής μέσα από δραστηριότητες ή απλές πειραματικές διαδικασίες. Παράλληλος στόχος είναι οι μαθητές να αποκτήσουν την ικανότητα να διεξάγουν μετρήσεις σημαντικών φυσικών μεγεθών, που θα χρησιμοποιήσουν και στα επόμενα επίπεδα της σχολικής εκπαίδευσης και να χειρίζονται τα όργανα μέτρησης του σχολικού εργαστηρίου που απαιτούνται για τη διεξαγωγή των μετρήσεών τους. Ιδιαίτερη έμφαση δίδεται στο πώς καταγράφεται μια μέτρηση σε συνάρτηση με την ακρίβεια του χρησιμοποιούμενου οργάνου. Έννοιες και φυσικά μεγέθη Μέτρηση και μονάδες μέτρησης - Όργανα μέτρησης - Ακρίβεια οργάνου - Σημαντικά ψηφία - Μήκος - Εμβαδόν επιφάνειας - Όγκος σώματος Στόχοι Οι μαθητές να αποκτήσουν την ικανότητα: 1. Να κάνουν μετρήσεις μήκους με χάρακα και διαστημόμετρο και να καταγράφουν το αποτέλεσμα της μέτρησης με τον αριθμό των σημαντικών ψηφίων που προσδιορίζεται από το κάθε όργανο μέτρησης. 2. Να υπολογίζουν πειραματικά το εμβαδό γεωμετρικών ή ακανόνιστων επίπεδων σχημάτων καθώς και την επιφάνεια γεωμετρικών στερεών. 3. Να υπολογίζουν πειραματικά τον όγκο ενός υγρού και ενός στερεού σώματος. Τα φυσικά μεγέθη «μήκος», «επιφάνεια», «όγκος» και η μέτρησή τους Η έννοια του χώρου προκύπτει ως κοινή ιδιότητα όλων των αντικειμένων που μας περιβάλλουν: Κάθε άνθρωπος αντιλαμβάνεται ότι όλα τα σώματα καταλαμβάνουν κάποιο χώρο. Για να προσδιορίσουμε το χώρο που καταλαμβάνει ένα αντικείμενο, χρησιμοποιούμε τις έννοιες μήκος, επιφάνεια και όγκος. Σε αυτή την άσκηση θα ασχοληθούμε με τη μέτρηση των μεγεθών αυτών. Όμως τι εννοούμε όταν λέμε ότι μετράμε ένα μέγεθος; Μέτρηση και μονάδες μέτρησης Μέτρηση ονομάζουμε κάθε διαδικασία σύγκρισης ομοειδών μεγεθών. Αν για παράδειγμα, συγκρίνουμε το ύψος της αίθουσας του εργαστηρίου με το μήκος μιας συγκεκριμένης ράβδου και βρίσκουμε ότι το ύψος της αίθουσας είναι εξαπλάσιο του μήκους της ράβδου, λέμε ότι κάναμε μια μέτρηση μήκους. Όταν συγκρίνουμε τις επιφάνειες της Ελλάδας και της Γαλλίας και βρίσκουμε ότι το εμβαδόν της Γαλλίας είναι 5,1 φορές μεγαλύτερο από το εμβαδόν της Ελλάδας, κάναμε μέτρηση εμβαδού κλπ. Για να έχουν οι άνθρωποι έναν ενιαίο τρόπο σύγκρισης των μεγεθών που μετράνε, συμφώνησαν να χρησιμοποιούν ένα κοινό «σύστημα μονάδων μέτρησης». Δηλαδή συμφώνησαν με ποιο τρόπο θα ορίσουν το μέτρο (m) για τη μέτρηση του μήκους, πώς θα ορίσουν το δευτερόλεπτο (s) για τη μέτρηση του χρόνου, το κιλό (Kg) για τη μέτρηση της μάζας κλπ. Έτσι, κάθε μέγεθος έχει τη δική του μονάδα μέτρησης ως προς την οποία το μετράμε. Μέτρηση και Σφάλματα Σε κάθε μέτρηση υπεισέρχεται πάντοτε ένα σφάλμα, μικρό ή μεγάλο. Το σφάλμα αυτό μπορεί να οφείλεται:

2 α) Σε ατέλειες της κατασκευής του οργάνου που χρησιμοποιούμε (ακρίβεια του οργάνου, κατάλληλη κλίμακα, κατασκευαστικές ατέλειες κλπ). β) Σε υποκειμενικές εκτιμήσεις που μπορεί να κάνουμε κατά τη μέτρηση (στην τοποθέτηση των οργάνων μέτρησης, στην ανάγνωση της ένδειξης κλπ). γ) Σε βαθύτερες αιτίες που είναι συνυφασμένες με την ίδια την δομή και τη λειτουργία του φυσικού κόσμου. [Για παράδειγμα, δεν μπορούμε να μετρήσουμε ταυτόχρονα και με απεριόριστη ακρίβεια τη θέση και την ταχύτητα ενός ηλεκτρονίου, όσο περίπλοκες συσκευές και αν επινοήσουμε!] Τα υποκειμενικά σφάλματα, που είναι αναπόφευκτα σε κάθε μέτρηση, μπορούμε να τα υπολογίσουμε. Το πετυχαίνουμε επαναλαμβάνοντας την ίδια μέτρηση πολλές φορές (του ίδιου μεγέθους, με τον ίδιο τρόπο και με το ίδιο όργανο). Η τιμή που προσεγγίζει με τη μεγαλύτερη ακρίβεια το μετρούμενο μέγεθος είναι η μέση τιμή (μέσος όρος) όλων των αποτελεσμάτων των μετρήσεων που πραγματοποιήσαμε. Ακρίβεια ενός οργάνου μέτρησης - Σημαντικά ψηφία Ας προσπαθήσουμε να μετρήσουμε το πάχος ενός φύλλου του βιβλίου μας με ένα χάρακα. Διαπιστώνουμε ότι αυτό δεν είναι δυνατό. Δεν μπορούμε να είμαστε βέβαιοι για το αποτέλεσμα της μέτρησης. Ο χάρακας δεν είναι ένα όργανο αρκετά ακριβές για να κάνουμε μετρήσεις τόσο μικρών μηκών. Πώς θα προσδιορίσουμε και θα εκφράσουμε την ακρίβεια ενός οργάνου μέτρησης; Οι μαθητές μετρούν με το χάρακά τους το πλάτος (α) ενός βιβλίου σε cm. Καταγράφουν και ανακοινώνουν στην τάξη το αποτέλεσμα της μέτρησης. α= cm Ας υποθέσουμε ότι οι μαθητές Α, Β, Γ και Δ, για το ίδιο βιβλίο, ανακοινώνουν τα αποτελέσματα: Α: 20,35cm, ο Β: 20cm, ο Γ: 20,34624cm, ο Δ: 20,4cm. Κάθε μαθητής κατέγραψε το αποτέλεσμα της μέτρησής του με ένα αριθμό που έχει ένα συγκεκριμένο αριθμό ψηφίων. Τι σημαίνουν τα αριθμητικά ψηφία που προέκυψαν από κάθε μέτρηση; Ο Α έκανε τη μέτρησή του (20,35cm) με ακρίβεια τεσσάρων ψηφίων: Ισχυρίζεται ότι είναι σίγουρος για τα τρία πρώτα (το 2, το 0, και το 3), σχεδόν σίγουρος για το τελευταίο (το 5) και αβέβαιος για τα επόμενα ψηφία. Ο Β έκανε τη μέτρησή του (20cm) με ακρίβεια δύο ψηφίων: Ισχυρίζεται ότι είναι σίγουρος για το 2, σχεδόν σίγουρος (ή σίγουρος) για το 0 και αβέβαιος για τα επόμενα ψηφία. Ο Γ έκανε τη μέτρησή του (20,34624cm) με ακρίβεια 7 ψηφίων (!!): Ισχυρίζεται ότι είναι σίγουρος για το 2, το 0, το 3, το 4, το 6, το 2, σχεδόν σίγουρος για το τελευταίο ψηφίο (το 4) και αβέβαιος για τα επόμενα ψηφία. Ο Δ έκανε τη μέτρησή του (20,4cm) με ακρίβεια τριών ψηφίων: Ισχυρίζεται ότι είναι σίγουρος για το 2, και το 0, σχεδόν σίγουρος (ή σίγουρος) για το 4 και αβέβαιος για τα επόμενα ψηφία. Τα ψηφία του αριθμητικού αποτελέσματος κάθε μέτρησης, για τα οποία είμαστε σίγουροι (ή σχεδόν σίγουροι) θα τα ονομάζουμε σημαντικά ψηφία της μέτρησης. Ο αριθμός των σημαντικών ψηφίων προσδιορίζει την ακρίβεια της μέτρησης. Έτσι, λέμε ότι: Ο Α έκανε τη μέτρησή του με ακρίβεια τεσσάρων σημαντικών ψηφίων. Ο Β έκανε τη μέτρησή του με ακρίβεια δύο σημαντικών ψηφίων. Ο Γ έκανε τη μέτρησή του με ακρίβεια επτά σημαντικών ψηφίων. 2

3 Ο Δ έκανε τη μέτρησή του με ακρίβεια τριών σημαντικών ψηφίων. Η ακρίβεια μιας μέτρησης εξαρτάται από το είδος των οργάνων μέτρησης που χρησιμοποιούμε. Για παράδειγμα, άλλη ακρίβεια έχει μια μέτρηση που γίνεται με το χάρακα, άλλη (μεγαλύτερη ακρίβεια) μια μέτρηση που γίνεται με το διαστημόμετρο και διαφορετική μια μέτρηση που γίνεται με δέσμη laser. Είναι δυνατό με το χάρακα να κάνουμε μέτρηση με την ακρίβεια που ισχυρίζεται ο Γ; Ασφαλώς ΟΧΙ. Με το χάρακα μπορούμε να κάνουμε τις μετρήσεις του πλάτους του βιβλίου το πολύ με τέσσερα σημαντικά ψηφία. Η μέγιστη ακρίβεια στη μέτρηση εκφράζεται από το αποτέλεσμα που ανακοίνωσε ο Α: α=20,35cm. Ωστόσο, μπορεί να μη χρειάζεται να εκφράσουμε το αποτέλεσμα μιας μέτρησης με τη μέγιστη ακρίβεια που μας παρέχει το όργανο μέτρησης που χρησιμοποιούμε. Στο παράδειγμά μας, είναι πιθανό να θέλουμε να εκφράσουμε το αποτέλεσμα με τρία ή με δύο σημαντικά ψηφία. Στη περίπτωση αυτή στρογγυλοποιούμε κατάλληλα το αριθμητικό αποτέλεσμα: έτσι, αν θέλουμε να εκφράσουμε το αποτέλεσμα της μέτρησης του πλάτους του βιβλίου με τρία σημαντικά ψηφία, το αποτέλεσμα θα είναι α=20,4cm και με δύο σημαντικά ψηφία α=20cm. Συμπεραίνουμε ότι οι μετρήσεις των μαθητών Α, Β και Δ είναι αξιόπιστες: τα αποτελέσματα που ανακοίνωσαν διαφέρουν ως προς τον αριθμό των σημαντικών ψηφίων, αλλά βρίσκονται μέσα στα περιθώρια της ακρίβειας που μας παρέχει ο χάρακας. Το αποτέλεσμα όμως που ανακοίνωσε ο Γ είναι αναξιόπιστο: ο χάρακας δεν μας παρέχει δυνατότητα μέτρησης με τόσα πολλά σημαντικά ψηφία. Σημείωση: Αν εκφράσουμε το αποτέλεσμα α=20,35cm της μέτρηση του πλάτους του βιβλίου σε μέτρα, πρέπει να γράψουμε: α=0,2035m. Αν το εκφράσουμε σε χιλιόμετρα, θα γράψουμε: α=0, km. Βλέπουμε ότι στο αριθμητικό αποτέλεσμα εμφανίστηκαν μερικά μηδενικά, πριν το πρώτο μη μηδενικό ψηφίο της αρχικής έκφρασης (πριν από το 2). Πώς θα μετρήσουμε σε τέτοιες περιπτώσεις τα σημαντικά ψηφία της μέτρησης; Είναι φανερό ότι ο αριθμός των μηδενικών αριστερά του πρώτου μη μηδενικού ψηφίου (αριστερά του 2 στα παραδείγματά μας) δεν επηρεάζει την ακρίβεια της μέτρησης, αλλά εξαρτάται από τις μονάδες ως προς τις οποίες εκφράζουμε το αποτέλεσμα. Επομένως για να βρούμε τον αριθμό των σημαντικών ψηφίων αγνοούμε όλα τα μηδενικά αριστερά του πρώτου μη μηδενικού ψηφίου του αριθμητικού αποτελέσματος. Διδακτικά βήματα Για τη διεξαγωγή της διδακτικής πρότασης προτείνεται να διατεθούν τέσσερεις διδακτικές ώρες. 1) Μέτρηση μήκους (2 διδακτικές ώρες) a. Εισάγουμε την έννοια «μήκος», μέσα από παραστάσεις της καθημερινής εμπειρίας των μαθητών. Καταγράφουμε συγκεκριμένα παραδείγματα, όπου εμφανίζεται η έννοια του μήκους (το μήκος της διαδρομής Αθήνας-Πάτρας, το μήκος των τριών διαστάσεων της αίθουσας, το μήκος των τριών διαστάσεων του βιβλίου, η απόσταση Γης - Σελήνης κλπ). b. Εισάγουμε την έννοια της μέτρησης, τις μονάδες μέτρησης και τα όργανα μέτρησης. Παρουσιάζουμε τουλάχιστον δύο όργανα μέτρησης μήκους: το χάρακα και το διαστημόμετρο. Δείχνουμε πώς γίνεται η μέτρηση των διαστάσεων ενός βιβλίου με το χάρακα. Δείχνουμε πώς γίνονται μετρήσεις με το διαστημόμετρο (για παράδειγμα, μετράμε το πάχος ενός βιβλίου). 3

4 c. Εισάγουμε με παραδείγματα την έννοια των σφαλμάτων σε μια μέτρηση και τη μέση τιμή πολλών μετρήσεων του ίδιου μεγέθους με το ίδιο όργανο. d. Πραγματοποιούμε μετρήσεις των διαστάσεων ενός βιβλίου με το χάρακα. Πώς καταγράφουμε το αριθμητικό αποτέλεσμα μιας μέτρησης με συγκεκριμένο όργανο μέτρησης; Στο πλαίσιο του παραδείγματος, εισάγουμε την έννοια των σημαντικών ψηφίων και της ακρίβειας ενός οργάνου μέτρησης. e. Οι μαθητές χωρίζονται σε ομάδες και διεξάγουν την Εργαστηριακή άσκηση 1: Μέτρηση μήκους, με βάση το επισυναπτόμενο φύλλο εργασίας. 2) Μέτρηση εμβαδού (1 διδακτική ώρα) a. Δείχνουμε παραδείγματα επίπεδων επιφανειών και επιφανειών στερεών σωμάτων. Εισάγουμε τρεις μονάδες μέτρησης επιφάνειας: το m 2, το cm 2 και το mm 2. Με τη βοήθεια σχημάτων και τετραγωνισμένου χαρτιού καθοδηγούμε τους μαθητές να βρουν τη σχέση cm 2 και mm 2. Στη συνέχεια να υπολογίσουν τις σχέσεις του cm 2 και mm 2 με το m 2. b. Δείχνουμε με παραδείγματα πώς υπολογίζουμε το εμβαδόν του ορθογωνίου παραλληλογράμμου, του ορθογώνιου τριγώνου, του κύκλου, της επιφάνειας ενός κύβου και της επιφάνειας της σφαίρας. c. Δείχνουμε πώς μπορούμε να υπολογίσουμε το εμβαδόν μιας ακανόνιστης επιφάνειας με τη βοήθεια τετραγωνισμένου χαρτιού. d. Οι μαθητές χωρίζονται σε ομάδες και διεξάγουν την Εργαστηριακή άσκηση 2: Μέτρηση εμβαδού, με βάση το επισυναπτόμενο φύλλο εργασίας. 3) Μέτρηση όγκου (1 διδακτική ώρα) a. Δείχνουμε έναν κύβο ακμής 1cm και ορίζουμε τη μονάδα μέτρησης όγκου 1cm 3. Ορίζουμε με κατάδειξη τις μονάδες 1m 3, 1cm 3 και 1mm 3. Καθοδηγούμε τους μαθητές να βρουν τις σχέσεις μεταξύ των τριών μονάδων. b. Δείχνουμε με παραδείγματα πώς υπολογίζουμε τον όγκο ενός κύβου, ενός (ορθού) κυλίνδρου και μιας σφαίρας. c. Δείχνουμε πώς μετράμε τον όγκο μιας ποσότητας υγρού σώματος με χρήση ογκομετρικού κυλίνδρου. d. Δείχνουμε πώς μετράμε τον όγκο ενός στερεού σώματος με τη βοήθεια ογκομετρικού κυλίνδρου. e. Οι μαθητές χωρίζονται σε ομάδες και διεξάγουν την Εργαστηριακή άσκηση 3: Μέτρηση όγκου, με βάση το επισυναπτόμενο φύλλο εργασίας. 4

5 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Έννοιες και φυσικά μεγέθη Μέτρηση και μονάδες μέτρησης - Όργανα μέτρησης - Ακρίβεια οργάνου - Σημαντικά ψηφία - Μήκος - Εμβαδόν επιφάνειας - Όγκος σώματος Σκοπός των Εργαστηριακών Ασκήσεων Ο στόχος των εργαστηριακών ασκήσεων 1, 2 και 3 είναι να μάθετε να κάνετε μετρήσεις μήκους, εμβαδού επιφανειών και όγκου υγρών και στερεών σωμάτων που ανήκουν στον κόσμο της καθημερινής μας ζωής. Να χρησιμοποιείτε σωστά τα διαθέσιμα όργανα μέτρησης και να καταγράφετε τα πειραματικά αποτελέσματα. Απαιτούμενα όργανα και υλικά 1. Χάρακας 2. Διαστημόμετρο 3. Κέρμα των 2 4. Φύλλο χαρτιού Α4 Εργαστηριακή Άσκηση 1: Μέτρηση μήκους Πειραματική διαδικασία 1) Μετρήστε πέντε φορές με τον ίδιο χάρακα το μήκος, το πλάτος και τη διαγώνιο ενός φύλλου Α4 (κάθε διαδοχική μέτρηση να γίνεται από διαφορετικό μαθητή της ομάδας). Οι μετρήσεις να εκφραστούν με τρία σημαντικά ψηφία, σε cm. Καταγράψτε τα αποτελέσματα στον Πίνακα Α. Υπολογίστε τη μέση τιμή του μήκους, του πλάτους και της διαγωνίου του φύλου Α4 σε cm, σε m και mm (Πίνακας Α). Μήκος L 1 του φύλλου Α4 (cm) ΠΙΝΑΚΑΣ Α Πλάτος L 2 του φύλλου Α4 (cm) 1 η μέτρηση: 1 η μέτρηση: 1 η μέτρηση: 2 η μέτρηση: 2 η μέτρηση: 2 η μέτρηση: 3 η μέτρηση: 3 η μέτρηση: 3 η μέτρηση: 4 η μέτρηση: 4 η μέτρηση: 4 η μέτρηση: 5 η μέτρηση: 5 η μέτρηση: 5 η μέτρηση: Μήκος της διαγωνίου Δ του φύλλου Α4 (cm) Μέση τιμή του μήκους σε cm Μέση τιμή του μήκους σε m L= m Μέση τιμή του μήκους σε mm L= mm Μέση τιμή του μήκους σε cm Μέση τιμή του μήκους σε m L= m Μέση τιμή του μήκους σε mm L= mm Μέση τιμή του μήκους σε cm Μέση τιμή του μήκους σε m L= m Μέση τιμή του μήκους σε mm L= mm 5

6 2) Μετρήστε με το διαστημόμετρο το πάχος α 50 εσωτερικών φύλλων του βιβλίου της Φυσικής, με ακρίβεια τριών σημαντικών ψηφίων, σε mm. Υπολογίστε το πάχος ΠΙΝΑΚΑΣ Β Πάχος (α) 50 φύλλων του βιβλίου α= mm= cm= m Πάχος (β) ενός φύλλου του βιβλίου β= mm= cm= m β που έχει το κάθε φύλλο σε mm. Εκφράστε τα αποτελέσματα σε cm και m και καταχωρίστε τα στον πίνακα Β. 3) Κάθε μαθητής της ομάδας, μετράει με το ίδιο διαστημόμετρο σε cm και με ακρίβεια τριών σημαντικών ψηφίων, τη διάμετρο του κέρματος των δύο ευρώ. Καταγράψτε πέντε από τις μετρήσεις σας στον Πίνακα Γ. Υπολογίστε τη μέση τιμή της διαμέτρου του κέρματος. Υπολογίστε την περίμετρο του κέρματος και καταγράψτε τα αποτελέσματα στον πίνακα Γ. 4) Επαναλάβατε τις μετρήσεις και τους υπολογισμούς του βήματος 3 χρησιμοποιώντας αντί του διαστημομέτρου, το χάρακα. Γράψτε δύο λόγους για τους οποίους οι μετρήσεις με το διαστημόμετρο είναι ακριβέστερες. 1 ος λόγος: 2 ος λόγος: Μετρήσεις με το διαστημόμετρο Διάμετρος του κέρματος (cm) ΠΙΝΑΚΑΣ Γ Μετρήσεις με το χάρακα Διάμετρος του κέρματος (cm) 1 η μέτρηση: 1 η μέτρηση: 2 η μέτρηση: 2 η μέτρηση: 3 η μέτρηση: 3 η μέτρηση: 4 η μέτρηση: 4 η μέτρηση: 5 η μέτρηση: 5 η μέτρηση: Μέση τιμή της διαμέτρου σε cm Δ= cm Περίμετρος του κέρματος σε cm Μέση τιμή της διαμέτρου σε cm Δ= cm Περίμετρος του κέρματος σε cm 6

7 Απαιτούμενα όργανα και υλικά 1. Χάρακας 2. Χαρτί μιλιμετρέ 3. Διαφανή φύλλα Α4 Εργαστηριακή Άσκηση 2: Μέτρηση εμβαδού Πειραματική διαδικασία 1) Κάντε τις κατάλληλες μετρήσεις για να υπολογίσετε το εμβαδόν του τριγώνου και του παραλληλογράμμου που εικονίζονται στο σχήμα 1, χρησιμοποιώντας το χάρακα. [Οι μετρήσεις σας να γίνουν σε cm, με ακρίβεια δύο σημαντικών ψηφίων. Οι υπολογισμοί των εμβαδών να γίνουν σε cm 2, με ακρίβεια δύο σημαντικών ψηφίων] Καταγράψτε τα αποτελέσματα στις αντίστοιχες στήλες του Πίνακα Δ. 2) Μετρήστε το εμβαδόν των ίδιων σχημάτων με τη βοήθεια του χαρτιού μιλιμετρέ, σε cm 2. Καταγράψτε τα αποτελέσματα στην αντίστοιχη στήλη του πίνακα Δ. 3) Μετρήστε το εμβαδόν της ακανόνιστης επιφάνειας του σχήματος σε mm 2. Γράψτε το αποτέλεσμα στον πίνακα Δ. ΠΙΝΑΚΑΣ Δ Υπολογισμός με χρήση του χάρακα Μέτρηση με τη βοήθεια του χαρτιού μιλιμετρέ Εμβαδόν του τριγώνου (cm 2 ): Εμβαδόν του παραλληλογράμμου (cm 2 ): Εμβαδόν της ακανόνιστης επιφάνειας (cm 2 ): 7

8 Σχήμα 1 8

9 Απαιτούμενα όργανα και υλικά 1. Διαστημόμετρο 2. Ογκομετρικός κύλινδρος 200mL 3. Σφαιρίδιο (γυάλινο ή πλαστικό) 4. Φιαλίδιο πλαστικό 5. Νερό 6. Πλαστελίνη Εργαστηριακή Άσκηση 3: Μέτρηση όγκου Πειραματική διαδικασία 1) Υπολογίστε πειραματικά τη χωρητικότητα του πλαστικού φιαλιδίου σε cm 3 (με ακρίβεια τριών σημαντικών ψηφίων). Η μέτρηση να γίνει με τη βοήθεια του ογκομετρικού κυλίνδρου. 2) Ρίξτε μέσα στον ογκομετρικό κύλινδρο (των 200ml) νερό, περίπου μέχρι τη μέση. a) Τοποθετήστε τον κύλινδρο πάνω σε μια οριζόντια επιφάνεια και σημειώστε στον πίνακα Ε την ένδειξη που αντιστοιχεί στην ελεύθερη επιφάνεια του νερού, με ακρίβεια τριών σημαντικών ψηφίων. b) Πάρτε ένα κομμάτι πλαστελίνης που να χωρά στον κύλινδρο. Δέστε το με ένα νήμα και βυθίστε το μέσα στο νερό κρατώντας την ελεύθερη άκρη του νήματος. c) Σημειώστε στον πίνακα Ε τη νέα ένδειξη που αντιστοιχεί στην ελεύθερη επιφάνεια του νερού στον κύλινδρο, με την ίδια ακρίβεια. d) Με βάση τις δύο ενδείξεις υπολογίστε τον όγκο του κομματιού της πλαστελίνης και γράψτε το αποτέλεσμα στον πίνακα Ε. Όγκος νερού (cm 3 ): ΠΙΝΑΚΑΣ Ε Όγκος νερού και πλαστελίνης (cm 3 ): Όγκος πλαστελίνης (cm 3 ): 3) Μετρήστε με το διαστημόμετρο σε cm, τη διάμετρο Δ του σφαιριδίου, με ακρίβεια τριών σημαντικών ψηφίων. Υπολογίστε τον όγκο του σφαιριδίου σε cm 3 (με ακρίβεια τριών σημαντικών ψηφίων). Δ= cm Όγκος σφαιριδίου V= cm 3 4) Υπολογίστε τον όγκο του ίδιου σφαιριδίου με τη βοήθεια του ογκομετρικού κυλίνδρου. Να συγκρίνετε το αποτέλεσμα με το αποτέλεσμα τους βήματος 3. Όγκος σφαιριδίου V = cm 3 k_pm 9

ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή

ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Η εικόνα έχει ληφθεί από τον ιστότοπο: http://www.vbhelper.co/vbgptoc.ht Πώς θα μετρήσουμε

Διαβάστε περισσότερα

Πειράματα Φυσικής Β Γυμνασίου

Πειράματα Φυσικής Β Γυμνασίου ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β - Εισαγωγή ΕΙΣΑΓΩΓΗ 1. Πείραμα και θεωρία Πειράματα Φυσικής Β Γυμνασίου Η Φυσική είναι η επιστήμη που διαμόρφωσε και συνεχίζει

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

Βασικές έννοιες: Όγκος σώματος - Ογκομετρικός κύλινδρος

Βασικές έννοιες: Όγκος σώματος - Ογκομετρικός κύλινδρος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 Ονομ/μο:.. Τμήμα: Βασικές έννοιες: Όγκος σώματος - Ογκομετρικός κύλινδρος Παρατηρώ - Πληροφορούμαι - Γνωρίζω Σε αυτή την άσκηση θα ασχοληθούμε με τη μέτρηση του όγκου υγρών και στερεών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ 14 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ και ΝΕΑΣ ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 05 Δεκεμβρίου 2015 Μαθητές Σχολείο 1. 2. 3. ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΦΥΣΙΚΗΣ ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή

ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Πώς θα μετρήσουμε την επιφάνεια ενός θρανίου, ενός φύλλου, ή του πουκάμισου που φοράμε; Την έννοια της «επιφάνειας» τη συναντάμε στα αντικείμενα της καθημερινότητάς

Διαβάστε περισσότερα

Ε Ρ ΓΑ Σ Τ Η Ρ Ι Α Κ Ο Σ Ο Δ Η Γ Ο Σ. Νικόλαος Αντωνίου Παναγιώτης Δημητριάδης Κωνσταντίνος Καμπούρης Κωνσταντίνος Παπαμιχάλης Λαμπρινή Παπατσίμπα

Ε Ρ ΓΑ Σ Τ Η Ρ Ι Α Κ Ο Σ Ο Δ Η Γ Ο Σ. Νικόλαος Αντωνίου Παναγιώτης Δημητριάδης Κωνσταντίνος Καμπούρης Κωνσταντίνος Παπαμιχάλης Λαμπρινή Παπατσίμπα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Ε Ρ ΓΑ Σ Τ Η Ρ Ι Α Κ Ο Σ Ο Δ Η Γ Ο Σ Νικόλαος Αντωνίου Παναγιώτης Δημητριάδης Κωνσταντίνος Καμπούρης Κωνσταντίνος Παπαμιχάλης Λαμπρινή

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 941205 ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 2 Εισαγωγή Ευχαριστούμε που χρησιμοποιείτε την ενότητα για την έρευνα της μέτρησης. Ελπίζουμε πως το πακέτο και τα βιβλία εργασίας θα σας ικανοποιήσουν. Αν έχετε οποιεσδήποτε

Διαβάστε περισσότερα

Τοπικός διαγωνισμός EUSO2017

Τοπικός διαγωνισμός EUSO2017 ΕΚΦΕ Νέας Ιωνίας ΕΚΦΕ Χαλανδρίου Τοπικός διαγωνισμός EUSO2017 Πειραματική δοκιμασία Φυσικής Στα «αχνάρια» του Αρχιμήδη! 10 Δεκεμβρίου 2016 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ: ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1) 2). 3).. ΛΙΓΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ.

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. 1 Συγγραφική ομάδα Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. Φυσικής Επεξεργασία εικόνων Θεόφιλος Χατζητσοπάνης

Διαβάστε περισσότερα

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος 7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός

Διαβάστε περισσότερα

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ 4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα

ΦΥΣΙΚΗ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ «ΠΑΝΕΚΦE» 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 15 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός Λευκάδα 6-1-14 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ:. ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:.

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή. Φυσική Β Γυμνασίου

Κεφάλαιο 1 Εισαγωγή. Φυσική Β Γυμνασίου Κεφάλαιο 1 Εισαγωγή Φυσική Β Γυμνασίου Απαντήσεις ερωτήσεων σχολικού βιβλίου σχ. βιβλίο (σ.σ. 18-19) Γυμνάσιο: 9.000 μαθήματα με βίντεο-διδασκαλία για όλο το σχολικό έτος μόνο με 150 ευρώ! Μελέτη όπου,

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή

Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Όπως θα μάθεις αναλυτικότερα στη Β και Γ γυμνασίου: Η μέτρηση είναι πρωταρχική και σημαντική διαδικασία για τη φυσική

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 0 ΦΥΣΙΚΗ 0 - Δεκεμβρίου - 0 η ραστηριότητα Μέτρηση της πυκνότητας στερεού σώµατος Σκοπός της άσκησης Ο σκοπός στη άσκηση αυτή είναι η πειραµατική εύρεση της πυκνότητας ενός µεταλλικού

Διαβάστε περισσότερα

1.3 Τα φυσικά μεγέθη και οι μονάδες τους

1.3 Τα φυσικά μεγέθη και οι μονάδες τους ΚΕΦΑΛΑΙΟ ο ΕΙΣΑΓΩΓΗ. Τα φυσικά μεγέθη και οι μονάδες τους. Τι είναι μέγεθος; Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί.. Τι είναι μέτρηση; Είναι η διαδικασία σύγκρισης ίδιων μεγεθών.. Τι είναι

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ

ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ Γυμνάσιο Βουλιαγμένης Σχολικό Έτος 2016-2017 ΧΗΜΕΙΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΗ ΜΑΖΑΣ & ΟΓΚΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΠΥΚΝΟΤΗΤΑΣ Έννοιες και φυσικά μεγέθη Όγκος, Μάζα & Πυκνότητα Στερεών & Υγρών Στόχοι Να χειρίζεσαι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 015 ΦΥΣΙΚΗ 6 -Δεκεμβρίου - 014 Στογιάννος Χριστόφορος Φυσικός 1 6 Αυγούστου 014 Μετά από ένα μακρύ δεκαετές ταξίδι κυνηγώντας το στόχο

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 03-4 Τοπικός διαγωνισμός στη Φυσική 07--03 Σχολείο: Ονόματα των μαθητών της ομάδας: ) ) 3) Ιδανικά αέρια: o νόμος του Boyle Κεντρική ιδέα της άσκησης Στην άσκηση αυτή

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Πολλές από τις φυσικές ιδιότητες του ελαιόλαδου ήταν γνωστές στους αρχαίους Έλληνες και τις χρησιμοποιούσαν για να ελέγχουν την ποιότητά

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009 ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΦΩΤΟΣ ASER ΥΛΙΚΑ ΚΑΙ ΟΡΓΑΝΑ Επιπρόσθετα με τα υλικά 1), 2) και 3), αναμένεται να χρησιμοποιήσετε τα ακόλουθα: 4) Φακός ενσωματωμένος μέσα σε

Διαβάστε περισσότερα

Επισημάνσεις από τη θεωρία

Επισημάνσεις από τη θεωρία 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ Ν.ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη Φυσική 13 Δεκεμβρίου2014 α. β. γ. Ονοματεπώνυμο μαθητών Επισημάνσεις από τη θεωρία Σχολείο Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική

Διαβάστε περισσότερα

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου; Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη

Διαβάστε περισσότερα

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν

Διαβάστε περισσότερα

Πειραματική διαδικασία:

Πειραματική διαδικασία: 2 ο Γυμνάσιο Κερατσινίου Εργαστήριο Φυσικής Υπεύθυνος: Μηναΐδης Ι. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. Β 1 η Εργαστηριακή άσκηση ΤΜΗΜΑ : ΘΕΩΡΙΑ Μάζα (m) είναι η ποσότητα της ύλης που έχει ένα σώμα. Όγκος (V) είναι ο χώρος

Διαβάστε περισσότερα

Μαθαίνοντας από το σφάλμα ή ζώντας με την αβεβαιότητα

Μαθαίνοντας από το σφάλμα ή ζώντας με την αβεβαιότητα Μαθαίνοντας από το σφάλμα ή ζώντας με την αβεβαιότητα Μουρούζης Παναγιώτης Φυσικός Ρ/Η, Υπεύθυνος Ε.Κ.Φ.Ε. Κέρκυρας ekfe1@otenet.gr Περίληψη Η μεθοδολογία των Φυσικών Επιστημών βασίζεται στη δημιουργία

Διαβάστε περισσότερα

1.5 Γνωριμία με το εργαστήριο Μετρήσεις

1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1. Το μήκος, ο χρόνος, η μάζα, η θερμοκρασία κτλ. είναι ποσότητες που τις χρησιμοποιούμε για να περιγράφουμε τα φαινόμενα. Οι ποσότητες αυτές ονομάζονται φυσικά

Διαβάστε περισσότερα

Ο ΝΟΜΟΣ ΤΟΥ HOOKE ΣΤΟΧΟΙ

Ο ΝΟΜΟΣ ΤΟΥ HOOKE ΣΤΟΧΟΙ Ο ΝΟΜΟΣ ΤΟΥ HOOKE ΣΤΟΧΟΙ Να αποδείξεις πειραματικά ότι η επιμήκυνση ενός ελατηρίου είναι ανάλογη της δύναμης που την προκαλεί. Να υπολογίσεις την σταθερά k (σκληρότητα) του ελατηρίου. Να γίνει κατανοητή

Διαβάστε περισσότερα

Πειραματική μελέτη λεπτών σφαιρικών φακών

Πειραματική μελέτη λεπτών σφαιρικών φακών Πειραματική μελέτη λεπτών σφαιρικών φακών Τάξη - Τµήµα: Ονόµατα µαθητών οµάδας: ) 2).. 3) 4) Πειραματική μελέτη λεπτών σφαιρικών φακών Στόχοι της εργαστηριακής άσκησης ) Μέτρηση των γεωµετρικών χαρακτηριστικών

Διαβάστε περισσότερα

ΧΗΜΕΙΑ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα

ΧΗΜΕΙΑ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ «ΠΑΝΕΚΦE» 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός Λευκάδα 06-12-2014 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ:. ΥΠΕΥΘΥΝΟΣ

Διαβάστε περισσότερα

Σχολείο... Ονοματεπώνυμο Τάξη.

Σχολείο... Ονοματεπώνυμο Τάξη. Σχολείο...... Οδηγίες Γράψτε τα στοιχεία σας μέσα στο παραπάνω πλαίσιο. Χρησιμοποιείστε ένα από τα φύλλα εργασίας που σας δίνονται ως πρόχειρο και ένα ως καλό που θα παραδώσετε συμπληρωμένο. Συνεργαστείτε

Διαβάστε περισσότερα

8 ος Πειραματικός ιαγωνισμός των Γυμνασίων στις Φυσικές Επιστήμες ΕΚΦΕ Χαλανδρίου. Σχολείο:

8 ος Πειραματικός ιαγωνισμός των Γυμνασίων στις Φυσικές Επιστήμες ΕΚΦΕ Χαλανδρίου. Σχολείο: 8 ος Πειραματικός ιαγωνισμός των Γυμνασίων στις Φυσικές Επιστήμες ΕΚΦΕ Χαλανδρίου Σχολείο: Ονοματεπώνυμα: 1 2 3 8 ος Πειραματικός διαγωνισμός Γυμνασίων ΕΚΦΕ Χαλανδρίου 1 1 Η ΠΕΙΡΑΜΑΤΙΚΗ ΡΑΣΤΗΡΙΟΤΗΤΑ -

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική 16-01-010 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) ) 3) Σκοπός και κεντρική ιδέα της άσκησης Ο βασικός

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Μετρήσεις σε ράβδους γραφίτη.

Μετρήσεις σε ράβδους γραφίτη. 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,

Διαβάστε περισσότερα

) d=m/v=400/500=0,8g/cm 3 3) d=m/v m=d*v=0,8*600=480 g

) d=m/v=400/500=0,8g/cm 3 3) d=m/v m=d*v=0,8*600=480 g ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων- Λύσεις A τάξης Γυμνασίου 2/4/2017 ΘΕΜΑ 1 ο Α1) Έστω ότι διαθέτεις ένα κομμάτι πλαστελίνης, κλωστή, νερό, ηλεκτρονική ζυγαριά ακριβείας και ογκομετρικό

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας.

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας. ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ 1. Τίτλος Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας. Θα γίνουν δύο σειρές μετρήσεων. Μία στο (πραγματικό) εργαστήριο (συνοδευόμενη από το αντίστοιχο φύλλο

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

Τι είναι η Πυκνότητα;

Τι είναι η Πυκνότητα; ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ Φύλλο Εργασίας Μέτρηση Πυκνότητας Τι είναι η Πυκνότητα; Ένας κόκκος πλαστελίνης έχει την ίδια πυκνότητα με ένα μεγάλο κομμάτι από το ίδιο υλικό. Ένα ρίνισμα σιδήρου έχει την ίδια πυκνότητα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ)

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) ΚΕΦΑΛΑΙΟ : Κατηγορία Α ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) 1. Ποια στάση και ποιο άξονα θα επιλέγατε για να δώσετε στο σώμα σας τη μικρότερη ροπή αδρανείας; Τη μεγαλύτερη;. Οι κύλινδροι του σχήματος

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2013 ΕΚΦΕ ΠΕΙΡΑΙΑ ΝΙΚΑΙΑΣ ΣΑΒΒΑΤΟ 8/12/2012 «ΦΥΣΙΚΗ» Σχολείο:.. Ονομ/επώνυμα μαθητών:

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2013 ΕΚΦΕ ΠΕΙΡΑΙΑ ΝΙΚΑΙΑΣ ΣΑΒΒΑΤΟ 8/12/2012 «ΦΥΣΙΚΗ» Σχολείο:.. Ονομ/επώνυμα μαθητών: EUROPEAN UNION SCIENCE OLYMPIAD EUSO 013 1 ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 013 ΕΚΦΕ ΠΕΙΡΑΙΑ ΝΙΚΑΙΑΣ ΣΑΒΒΑΤΟ 8/1/01 «ΦΥΣΙΚΗ» Σχολείο:.. Ονομ/επώνυμα μαθητών: 1).. ).. 3).. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ

Διαβάστε περισσότερα

Α2) Να συμπληρώσετε τον παρακάτω πίνακα που αφορά στο ίδιο υλικό.

Α2) Να συμπληρώσετε τον παρακάτω πίνακα που αφορά στο ίδιο υλικό. ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων A τάξης Γυμνασίου 2/4/2017 ΘΕΜΑ 1 ο Α1) Έστω ότι διαθέτεις ένα κομμάτι πλαστελίνης, κλωστή, νερό, ηλεκτρονική ζυγαριά ακριβείας και ογκομετρικό

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

1.Παρατηρώντας τις παρακάτω εικόνες, αντιστοίχισε ποιες εκφράζουν

1.Παρατηρώντας τις παρακάτω εικόνες, αντιστοίχισε ποιες εκφράζουν 1.Παρατηρώντας τις παρακάτω εικόνες, αντιστοίχισε ποιες εκφράζουν φυσικά μεγέθη και ποιες μη μετρήσιμα φυσικά μεγέθη και συμπλήρωσε τον παρακάτω πίνακα: α). β). γ). δ). ε). στ). ζ). η). θ). Εικόνες Φυσικά

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ εργαστηριακές οδηγίες (για τον καθηγητή)

ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ εργαστηριακές οδηγίες (για τον καθηγητή) Έννοιες και φυσικά μεγέθη Στόχοι ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ εργαστηριακές οδηγίες (για τον καθηγητή) Πυκνότητα Όγκος Όγκος εκτοπιζόμενου υγρού Βάρος Άνωση Να δείχνεις πειραματικά ότι: Τα υγρά ασκούν δύναμη

Διαβάστε περισσότερα

ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ

ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ 9 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 28 Απριλίου, 2013 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο (πέντε σελίδες) αποτελείται από δέκα (10) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ 5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2.. 3.. ΜΟΝΑΔΕΣ: Το πρόβλημα Μελέτη οπτικών ιδιοτήτων διαφανούς υλικού με τη βοήθεια πηγής φωτός laser Είστε στο δωμάτιό

Διαβάστε περισσότερα

1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά

1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά 1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά από ορισμένο χρονικό δiάστημα θα σταματήσει. b. Ενα

Διαβάστε περισσότερα

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι

Διαβάστε περισσότερα

Συγγραφέας: Νικόλαος Παναγιωτίδης

Συγγραφέας: Νικόλαος Παναγιωτίδης Τίτλος: Β Νόμος του Newton. Τάξη: Α Λυκείου Συγγραφέας: Νικόλαος Παναγιωτίδης e-mail: ekfe@dide.ioa.sch.gr ΕΚΦΕ: Ιωαννίνων 1 Υλικά: 1. Αμαξίδιο, 2. Τροχαλία, 3. Νήμα, 4. Κυλινδρικές μάζες 200 g με γάντζο,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

1. Μέτρηση μήκους 2. Μέτρηση επιφάνειας και όγκου 3. Μάζα των σωμάτων 4. Η πυκνότητα ενός υλικού 5. Ατμοσφαιρική πίεση 6. Μεταβολές των αερίων

1. Μέτρηση μήκους 2. Μέτρηση επιφάνειας και όγκου 3. Μάζα των σωμάτων 4. Η πυκνότητα ενός υλικού 5. Ατμοσφαιρική πίεση 6. Μεταβολές των αερίων 1. Μέτρηση μήκους 2. Μέτρηση επιφάνειας και όγκου 3. Μάζα των σωμάτων 4. Η πυκνότητα ενός υλικού 5. Ατμοσφαιρική πίεση 6. Μεταβολές των αερίων 187 Βοηθητικό Θέμα 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και

Διαβάστε περισσότερα

Μηχανική Στερεού Σώματος

Μηχανική Στερεού Σώματος Μηχανική Στερεού Σώματος 1. Ο ομογενής οριζόντιος δίσκος ακτίνας R και μάζας Μ, περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του με γωνιακή ταχύτητα ω 1. Μυρμήγκι μάζας m= 2 M που αρχικά

Διαβάστε περισσότερα

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Σχολείο: Τάξη/Τμήμα: Εξεταστικό Κέντρο:

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Σχολείο: Τάξη/Τμήμα: Εξεταστικό Κέντρο: Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Σχολείο: Τάξη/Τμήμα: Εξεταστικό Κέντρο: Μαθητές της Α τάξης ενός Γυμνασίου πειραματίζονται με μια συμπαγή σφαίρα (μπάλα) από σκληρό λάστιχο για να μελετήσουν

Διαβάστε περισσότερα

Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή

Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή Α. Ερωτήσεις θεωρίας με απαντήσεις 1. Τι είναι τα φυσικά μεγέθη; Τα φυσικά μεγέθη είναι μετρήσιμες ποσότητες που υπεισέρχονται στα διάφορα φυσικά φαινόμενα

Διαβάστε περισσότερα

κριτήρια αξιολόγησης

κριτήρια αξιολόγησης A ΓΥΜΝΑΣΙΟΥ Γιάννης Κανελλόπουλος, Ευαγγελία Κανελλοπούλου κριτήρια αξιολόγησης ΦΥΣΙΚΗ Ανακεφαλαίωση της θεωρίας και μεθοδολογία επίλυσης των ασκήσεων Διαγωνίσματα σε κάθε Θεματική ενότητα Διαγωνίσματα

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 1ο και 2ο ΕΚΦΕ Ηρακλείου ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 Σάββατο 3 Δεκεμβρίου 2016 Διαγωνισμός στη Φυσική (Διάρκεια 1 ώρα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΩΝ 1)... 2)...

Διαβάστε περισσότερα

21ο Μάθημα ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ

21ο Μάθημα ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ 21ο Μάθημα ΥΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ Μια πίεση που ασκεί το υγρό στον πυθμένα και στα τοιχώματα του δοχείου Σε προηγούμενο μάθημα (13ο) γνωρίσαμε την έννοια της πίεσης που ασκούν τα στερεά σώματα. Τώρα είναι η

Διαβάστε περισσότερα

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ Εισαγωγή ΚΕΦΑΛΑΙΟ Β ΓΥΜΝΑΣΙΟΥ . Οι Φυσικές επιστήμες και η μεθοδολογία τους. Τι ονομάζουμε φαινόμενα; Φαινόμενα ονομάζουμε τις μεταβολές που συμβαίνουν γύρω μας, π.χ. το λιώσιμο των πάγων, η βροχή, ο κεραυνός

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

Φύλλο Εργασίας Οριζόντια βολή. Ονοματεπώνυμο Τμήμα Ημερομηνία

Φύλλο Εργασίας Οριζόντια βολή. Ονοματεπώνυμο Τμήμα Ημερομηνία Ενότητα Καμπυλόγραμμες κινήσεις Φύλλο Εργασίας Οριζόντια βολή Φυσική Β Λυκείου Γενικής Παιδείας Ονοματεπώνυμο Τμήμα Ημερομηνία Στόχοι και σκοποί της άσκησης : Να επαληθεύσετε ότι η οριζόντια βολή είναι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΚΕΡΑΤΣΙΝΙ

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ

Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Στόχοι. Σχεδιασµός, συναρµολόγηση και λειτουργία απλών πειραµατικών

Διαβάστε περισσότερα

Προκριµατικός διαγωνισµός για την 11 th EUSO 2013 στην Φυσική ΑΙΓΑΛΕΩ. Ονοµατεπώνυµα. Σχολείο: Ηµεροµηνία: Σάββατο 8/12/2012.

Προκριµατικός διαγωνισµός για την 11 th EUSO 2013 στην Φυσική ΑΙΓΑΛΕΩ. Ονοµατεπώνυµα. Σχολείο: Ηµεροµηνία: Σάββατο 8/12/2012. Ε.Κ.Φ.Ε. ΑΙΓΑΛΕΩ Προκριµατικός διαγωνισµός για την 11 th EUSO 2013 στην Φυσική Ονοµατεπώνυµα µελών οµάδας 1) 2) 3) ιάρκεια: 45 λεπτά Σχολείο: Ηµεροµηνία: Σάββατο 8/12/2012 Ο νόµος του Hooke Θεωρητικές

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ ΕΚΦΕ ΝΕΑΣ ΙΩΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο N T=ηmgσυνθ mgηµθ θ Σχήµα1 mg Κατά τη διεξαγωγή της άσκησης θα µάθεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

Β.2. Για το αυτοκίνητο που κινείται με σταθερή ταχύτητα να υπολογίσετε το μέτρο της.

Β.2. Για το αυτοκίνητο που κινείται με σταθερή ταχύτητα να υπολογίσετε το μέτρο της. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στην 10η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2012 Σάββατο 21 Ιανουαρίου 2012 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στην 10η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2012 Σάββατο 21 Ιανουαρίου 2012 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στην 10η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2012 Σάββατο 21 Ιανουαρίου 2012 ΦΥΣΙΚΗ Σχολείο: 1) Ονομ/επώνυμα μαθητών: 2)... 3) 1 Μελέτη της σχέσης αγωγιμότητας

Διαβάστε περισσότερα