Feromagnetinis rezonansas feritiniame rutuliuke

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Feromagnetinis rezonansas feritiniame rutuliuke"

Transcript

1 VILNIAUS UNIVERSITETAS Rdiofiikos ktedr Ferognetinis reonnss feritinie rutuliuke Mikrobngų fiikos lbortorinis drbs Nr. 12 Pruošė doc. V. Klesinsks Vilnius 25

2 2 MIKROBANGŲ FIZIKOS LABORATORIJA Turinys Metodinii nurodyi... 4 NEAPGRĘŽIAMIEJI FERITINIAI MIKROBANGŲ ĮRENGINIAI... 5 Ferognetinis reonnss... 5 Mikrobngų feritinii filtri... 9 Litertūr... 1

3 Ferognetinis reonnss feritinie rutuliuke 3 Lbortorinis drbs Nr. 12 Ferognetinis reonnss feritinie rutuliuke Drbo tiksls. Susipžinti su nepgręžiųjų feritinių ikrobngų įrenginių veikio principis ir ištirti ferognetinį reonnsą feritinie rutuliuke. Drbo užduotis 1. Ištuoti ferognetinio reonnso rutuliuke džnio priklusoybę nuo išorinio gnetinio luko stiprio. Tyrius tlikti G džnių intervle. Apskičiuoti šią priklusoybę ki vidinio išgnetinnčiojo luko stipris yr A/. 2. Ištuoti ferognetinio reonnso juostos plotį. Mtvius tlikti vien ikrobngų džniui. Įvertinti reontorius kokybę. Pgl šį reulttą pskičiuoti gnetinio oento relkscijos trukę. Atsiskitnt pteikii šie reultti: 1. Ferognetinio reonnso džnio priklusoybės nuo gnetinio luko stiprio tvių ir skičivių grfiki. 2. Ferognetinio reonnso kreivės prie fiksuoto ikrobngų džnio tvių grfiks. 3. Reontorius kokybės ir gnetinio oento relkscijos trukės skičivių reultti. Litertūr 1. Специальный физический практикум. Ч. 3.под ред. А.А. Харламова. Москва: Моск. Унив С V. Ivšk. Elektrognetinii reiškinii gnetikuose. Vilnius: VU p. 3. А.Г. Гуревич. Ферриты на сверхвысоких частотах. - Москва: ГИФМЛ 196 С А.А. Преображенский Е.Г. Бишард. Магнитные материалы и элементы. Уч. Пособ. Москва: ВШ с. 5. А. Д. Григорьев. Электродинамика и техника СВЧ.- Москва: Высшая школа 199. С

4 4 MIKROBANGŲ FIZIKOS LABORATORIJA Metodinii nurodyi Mikrobngų genertorius Γ4-78 Feritinis reontorius su elektrognetu ir detektoriui Indiktorius C1-67 Φ 195 I 1 Grubus srovės šltinis TEC 88 I 2 Tikslus srovės šltinis Б5-45 1U pv. Struktūrinė tyrių įrenginio sche. Aukšto džnio signls (1U pv.) iš ikrobngų genertorius ptenk ždinnčiąją kilpelę (2U pv. ()) o suždints dėl įgnetinto feritinio rutuliuko A per stteną pirji kilpelę ntrinėje linijoje detektuojs detektoriui D ir jo gubtinė ptenk į indiktorių. Detektorius pkrovos vrž R = 1 kω. Mgnetinis luks kuris elektrognetu kurie yr dvi pvijos grubioji ir tikslioji. Kiekvieni jų itinti nudoji tskiri srovės šltinii. Apvijų sukurts luks = Luki yr tiesiški proporcingi pvijų srovės: 1 = k 1 I 1 2 = k 2 I 2 o k 1 = [1/]; k 2 = [1/]. Eksperientą tlieke tip. Sujungie prietisus ir įjungie indiktorių. Grubiąją srovę nusttoe 65 A o tiksliąją 1 A. Įjungie genertorių ir nusttoe ksilią glią. Keisdi džnį surnde ferognetinį reonnsą. Nusttoe reonnsinį džnį. Pirąją užduotį tlieke nudodi tikslųjį srovės šltinį I 2. Grubiojo šltinio srovė I 1 prenk tokiu būdu kd didinnt I 2 intervle nuo iki 5 A gutue iškų reonnsinio džnio kitią. Tokiu būdu gun priklusoybė ν = f( ). Pgl žinoą vidinio išgnetinnčiojo luko stiprį iš pskičiuoj teorinė reonnsinio džnio priklusoybė nuo gnetinio luko: ν = γ( - iš ). Antroji užduotis tliek psirinkus reonnsinį džnį ir srovę I 1 tokius kd keičint I 2. gutue reonnsinę kreivę pnšią į pteiktą 2U (b) pveikslėlyje: D P iš 1 P in A R Į indiktorių 5 ) re b) 2U pv. Feritinio rutuliuko ždinis () ir perduodos glios priklusoybė nuo įgnetinnčio luko stiprio (b). Iš gutos reonnsinės kreivės nustto ir pskičiuoj gnetinio oento relkscijos trukė τ =1/(αγ re ). Či =2α re iš kurios gune α= /(2 re ).

5 Ferognetinis reonnss feritinie rutuliuke 5 NEAPGRĘŽIAMIEJI FERITINIAI MIKROBANGŲ ĮRENGINIAI Šiuolikiniuose ikrobngų įrenginiuose plčii tikoos gnetinės edžigos - feriti (kristlinės struktūros etlų oksidų junginii). Jų įgnetėjio dydis (tūrio vieneto gnetinis oents) prikluso nuo etlo jonų elektronų gnetinių oentų sukopensvio. Trp šių elektronų vykst stipri pkitinė sąveik dėl kurios susidro tvrki gnetinių oentų orientcij ir tsirnd sviinis įgnetėjis. Mkroskopinės teorijos požiūriu feritų gnetinės svybės pnšios į ferognetikų svybes tčiu juose lisvųjų elektronų nėr ir dėl to jų svitoji vrž yr didelė ždug Ω c. (Plyginiui geležies svitoji vrž yr 1-5 Ω c). Kintsis elektrognetinis luks į feritus prsiskverbi krtų giliu negu į etlinius ferognetikus ir netgi ilietrini dipone sieki keletą centietrų. Dėl didelio įgnetėjio ir luko prsiskverbio gylio vykst stipri ikrobngų gnetinio luko sąveik su feritu. Šių edžigų pgrindu veiki vis eilė ikrobngų prietisų: 1) nepgręžiieji bngolidinii įrenginii pgrįsti nevienodo tiesioginės ir tglinės bngos sklidio sąlygois; 2) įrenginii su sprčii keičiis pretris (perjungiklii odulitorii perderinos reonnsinės sisteos). Visų šių įrenginių veikis pgrįsts niotropinėis įgnetinto ferito svybėis. Bngų sklidio sąlygos įgnetintuose ferituose prikluso nuo sklidio krypties ir nuoltinio gnetinio luko stiprio dėl to šis sąlygs gli keisti plčiose ribose. Ferognetinis reonnss Prieš prdėdi ngrinėti elektrognetinių bngų sklidią feritinėje plinkoje išsiiškinsie kip yr susieti kintojo luko gnetinė indukcij ir gnetinio luko stipris t.y. pibrėšie gnetinę skvrbą. T psinudosie įgnetėjio M judėjio lygtii kuri iš nlogijos su elektrono gnetinio oento judėjio lygtii užršo tip: či yr visų įgnetėjią veikinčių lukų su γ = M = γ M (1) t r B r s = e = [C/kg] elektrono sukinio girognetinis sntykis e elektrono krūvis elektrono sė = 4π 1-7 [/]. Pngrinėsie svuosius įgnetėjio virpesius beglinėje feritinėje plinkoje įgnetintoje iki soties vienlyčiu nuoltiniu luku. Nesnt gnetinio luko ši plink yr iotropinė. Psirinksie stčikpę koordinčių sisteą kurios šis nukreipt išilgi nuoltinio gnetinio luko (1 pv.). Likydi kd svieji virpesii nuo liko prikluso pgl hroninį dėsnį užršysie įgnetėjią toki for: iωt M = M + e (2)

6 6 MIKROBANGŲ FIZIKOS LABORATORIJA kurioje ω yr svitsis sisteos džnis; M - nuoltinis įgnetėjio snds; -kintsis įgnetėjio snds. Įsttę (2) išrišką į (1) gune dvi lygtis: M = ; iω = γ. (3) Piroji nusko pusiusvyros sąlygą M o ntroji - įgnetėjio svyrvius pie pusiusvyros pdėtį. Užršę (3) sisteos ntrosios lygties projekcijs koordinčių šyse gune lygčių sisteą: iω + γ x γ = x + iω y y = = (4) kurioje x y įgnetėjio kintojo sndo projekcijos koordinčių šyse. Iš (4) lygčių sisteos suderinuo sek svitojo džnio išrišk ω =. (5) γ Ją įsttę į vieną iš (4) sisteos lygčių gune sąryšį trp tskirų įgnetėjio sndų =. (6) y i x Iš (5) ir (6) sek kd įgnetėjio svuosius virpesius sudro dešininė ciklinė įgnetėjio vektorius M precesij pie nuoltinį luką. Jos džnis ω (1 pv.). M M M/ t y x 1 pv. Įgnetėjio vektorius precesij. Pngrinėsie žus priverstinius įgnetėjio svyrvius. Feritinę plinką veiki iωt kintsis ir nuoltinis gnetinii luki t. y. = + h e. Pprsti kintsis luko snds būn dug žesnis už nuoltinį. Pirosios lygties sprendinio ieškosie tokie

7 Ferognetinis reonnss feritinie rutuliuke 7 pvidle: M M + iωt = e. (7) Kintojo gnetinio luko sndo žus reiški kd h << << M. (1) lygtį spręsie tiesini prirtėjie (tesie žus ntros eilės dydžius ir h tžvilgiu). b h + išreiški tip [1]: = Tuoet kintojo gnetinio luko indukcij ( ) bx = hx + i hy by = hx + i hy b = h. Tigi kintosios gnetinės indukcijos sąryšis su luku gnetinės skvrbos tenoriui (8) b = ) h išreiškis nesietriniu ) = i i. (9) Aplink kurios gnetinė skvrb pršo (9) pvidlo tenoriui yr vdin girognetine. Jeigu įskitoi nuostolii tuoet tenorius sndi yr kopleksinii: = i = i = i. Prktiški džniusii psitiko tveji ki feritinės plinkos nuostolii yr lbi ži todėl tskiri tenorius ) sndi užršoi tip [2]: ω ωm = 1+ ω ωm = ωωm = 2ω ω ωmω = = = = ( ω ω + ω ) ( ω + ω + ω ) ( ω ω ω ) ( ω ω ω ) + 4ω ω. Či ω M = γ M ω = γ ω = γ = αω nuostolių koeficients išreiškis reonnsinės džnių juostos pločiu. Išvednt (1) pritikyt žų nuostolių sąlyg: ω << ω. Iš (1) lygčių toe kd gnetinio tenorius sndi prikluso nuo įgnetėjio M kintojo luko džnio ω nuoltinio gnetinio luko ir nuostolių koeficiento ω. Tenorius sndų priklusoybė nuo džnio esnt fiksuot nuoltini gnetini lukui (1)

8 8 MIKROBANGŲ FIZIKOS LABORATORIJA ir nuo nuoltinio gnetinio luko - esnt pstovi džniui turi reonnsinį pobūdį (2 pv.). Pstrsis tvejis turi didžiusią prktinę nudą kdngi leidži keisti gnetinio tenorius sndų vertes lbi plčie intervle keičint nuoltinio gnetinio luko stiprį. Iš (1) lygčių ir 2 pv. toe kd esnt ω = ω ω ω = γ (11) re 2 2 tenorius sndi turi tokis vertes: re ωm = 1 + 2ω ωm + i 2 ω = i. M re ω 2ω / / /1 5 A/ /1 5 A/ 2 pv. Mgnetinės skvrbos tenorius sndų priklusoybė nuo gnetinio luko stiprio. Lbi džni ferito kokybei pibūdinti nudojs reonnsinės kreivės plotis kuris pibrėžis kip gnetinio luko verčių skirtus pusinie ksilios vertės lygyje. Psinudoję = i (1) ir re išriškois gune ω =. γ Mikrobngų dipone nudojies ferits vertės svyruoj intervle nuo keleto dešitųjų iki kelių šitų Erstedų [1Oe=1 4 G] (polikristlinis ferits). Mikrobngų įrenginiuose nudojos įvirios ferito sąveikos su kintuoju elektrognetiniu luku sąlygos. Piriusii pngrinėsie sąveiką su pskritiinės ± ± poliricijos lukis h y = ± ihx či pliuso ženkls žyi kirinę o inuso dešininę poliriciją šies tžvilgiu t.y. luko tžvilgiu. Iš (8) sek gnetinės indukcijos išrišk ± ± ± ( ) h b = ± ib ± b = y x. (12) Tigi jeigu feritą veiki išorinis pskritiiški poliriuots luks ti gnetinė indukcij turės tą pčią pskritiinę poliriciją o gnetinė skvrb bus sklirinis dydis. Tčiu jos vertė kirinei ir dešininei luko poliriciji skirisi. Jeigu dešininei poliriciji

9 Ferognetinis reonnss feritinie rutuliuke 9 gnetinė skvrb yr + = + ir turi reonnsinę priklusoybę nuo nuoltinio luko ir džnio ti kirinei poliriciji yr = ir silpni prikluso nuo luko [1]. Tip yr todėl kd svituoju įgnetėjio virpesiu yr dešininė pskritiinė precesij ir todėl ji stiprii sąveikoj su dešininės poliricijos luku o su kirinės poliricijos luku silpni. Reonnso etu sugertosios luko energijos dydį lei enosios gnetinės skvrbos dydis. Ki ω = γ precesijos džnis sutp su išorinio luko džniu ir sąveik trp dešininės poliricijos luko ir įgnetėjio yr stipriusi o ferito sugert energij didžiusi. Kintojo ukšto džnio luko sugertis įgnetintuose ferituose yr vdin ferognetiniu reonnsu. Mikrobngų feritinii filtri Pgrindinis tokių filtrų eleents yr onokristlinis ferits džniusii itrio grnts. Kd būtų didesnė kokybė poliruoto pviršius ferits dros tikslios sferos rb disko foros. Tuoet jo reonnsinė kokybė sieki 1 4. Ferognetinio reonnso reiškinys kurio etu srkii išug įgnetėjio precesijos plitudė ir pdidėj sukupt ferite ikrobngos energij gli būti pnudotos sukurti reontoris kurių tenys nesusieti su elektrognetinių svyrvių bngos ilgiu o svsis džnis veikint feritą nuoltiniu gnetiniu luku keičisi plčiose ribose. Tokie reontorii sudro vldoų ikrobngų filtrų pgrindą. Tipinis feritinis reontorius ti yr rutulys rb disks kurio dietrs Disko ukštis dug žesnis už dietrą. Svoji reontorius kokybė nusko ferognetinio reonnso kreivės pločiu ir soties įgnetėjiu M s. Sferini reontoriui [3] 1 M s Q = 3 (19) 2 kur išorinio gnetinio luko stipris. Ryšys trp feritinio reontorius 1 ir perdvio linijos 2 sudros kilpos 3 pglb (3 pv.) rb ptlpinnt reontorių į perdvio linijos elektrognetinį luką (3b pv.). ) b) 3 pv. Feritinio reontorius ryšys su perdvio linij sudros kilpos () ir krštinio luko (b) pglb. 3 pv. pviduotuose įrenginiuose reonnso etu dlis energijos iš perdvio linijos ptenk į reontorių ir ten išsklido. Todėl tokius įrenginius gli ngrinėti kip užtvrinius (režektorinius) filtrus. Norint sukonstruoti juostinius filtrus reiki feritinio

10 1 MIKROBANGŲ FIZIKOS LABORATORIJA reontorius pglb susieti dvi perdvio linijs kurios nesnt reonnso trpusvyje nėr susietos. Tokio filtro konstrukcij prodyt 4 pv. P iš P in ) b) 4 pv. Juostinis feritinis filtrs ir jo džninė chrkteristik. Juostinį filtrą sudro dvi trpusvyje sttenos kilpos (4 pv. ) trp kurių norliois sąlygois nėr ryšio. Arti ferognetinio reonnso feritinie reontoriuje suždins pskritiinės poliricijos gnetinis luks dėl kurio tsirnd ryšys trp kilpų (perdvio linijų). Litertūr 1. А. Г. Гуревич. Ферриты на сверхвысоких частотах. - Москва: ГИФМЛ 196 С V. Ivšk. Elektrognetinii reiškinii gnetikuose. Vilnius: VU p. 3. А. Д. Григорьев. Электродинамика и техника СВЧ.- Москва: Высшая школа 199. С

Plokštumų nusakymas kristale

Plokštumų nusakymas kristale Kristlų struktūrinės nlizės metodi Plokštumų nuskyms kristle Kristlų nizotropij dro didelę įtką puslidininkinių prietisų prmetrms. Nuo puslidininkinių plokštelių kristlogrfinės orientcijos prikluso tokie

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Kengura Tarptautinio matematikos konkurso užduotys ir sprendimai. Junioras

Kengura Tarptautinio matematikos konkurso užduotys ir sprendimai. Junioras Kengur 013 Trptutinio mtemtikos konkurso užduotys ir sprendimi Juniors KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 013 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudrytojs

Διαβάστε περισσότερα

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199 AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA Statinio sienos bei pertvaros projektuojaos ūrinės iš piros kategorijos akytojo betono blokelių AEROC CLASSIC pagal standartą

Διαβάστε περισσότερα

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 6 tem. SĄLYGINĖS TAPATYBĖS IR NELYGYBĖS 009 0 Teorinę medžigą prengė ei šeštąją užduotį sudrė Vilnius pedgoginio universiteto doents Juos Šinkūns Įrodmo uždvinii r vieni

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα Κεφ. 7: Θεωρήματα κυκλωμάτων Προβλήματα 1 Πρόβλημα 1 Χρησιμοποιώντας το θεώρημα της υπέρθεσης, υπολογίστε το ρεύμα μέσω της στο κύκλωμα της παρακάτω εικόνας 1.0kΩ 2 V 1.0kΩ 3 V 2.2kΩ Λύση Απομακρύνουμε

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

692.66:

692.66: 1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....

Διαβάστε περισσότερα

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką. 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJAL hp_a*a n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

И. В. Яковлев Материалы по математике MathUs.ru. Задачник С1

И. В. Яковлев Материалы по математике MathUs.ru. Задачник С1 И В Яковлев Материалы по математике MathUsru Задачник С1 Здесь приведены задачи С1, которые предлагались на ЕГЭ по математике, а также на диагностических, контрольных и тренировочных работах МИОО начиная

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje V.Gineityt Gamtos moksluose teorijoms keliami du pagrindiniai uždaviniai: paaiškinti stebimų objektų savybes

Διαβάστε περισσότερα

pi r p p c i i c i (0) i c i (x) i c i, av i c i i C i i C i P i C i W i d d D i i D i p i D in D out e e F F = I c j i i J V k i k b k b = K ic i K id i n P m P Pe i i r si i r p R R = R T V W i x x X

Διαβάστε περισσότερα

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS Palmira Pečiuliauskienė Fizika Vadovėlis XI XII klasei lektra ir magnetizmas KAUNAS UDK 53(075.3) Pe3 Turinys Leidinio vadovas RGIMANTAS BALTRUŠAITIS Recenzavo mokytoja ekspertė ALVIDA LOZDINĖ, mokytojas

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. (α) Να βρεθεί η τιμή της σύνθετης αντίστασης Ζ(s) των τριών κυκλωμάτων στο σχήμα Π5. (β) Να βρεθούν οι πόλοι και τα μηδενικά της Ζ(s). (γ) Να βρεθεί

Διαβάστε περισσότερα

seka Suintegravus pagal x nuo 0 iki d gauname maksimalią injektuotos srovės tankį (erdvinio krūvio ribotą srovė EKRS)

seka Suintegravus pagal x nuo 0 iki d gauname maksimalią injektuotos srovės tankį (erdvinio krūvio ribotą srovė EKRS) Srovė dielektrike Krūvininų pernaša dielektrike skiriasi nuo pernašos puslaidininkyje, kur judantis krūvis yra neutralizuojamas pusiausvyrųjų krūvininkų greičiau negu nudreifuoja tarp elektrodų. Dielektrike

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

TEDDY Vartotojo vadovas

TEDDY Vartotojo vadovas TEDDY Vartotojo vadovas Jūsų PRESIDENT TEDDY ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä490. ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± œ ƒ ˆƒ 459

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä490. ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± œ ƒ ˆƒ 459 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 3.. 452Ä490 œ ˆƒ ˆ ƒ Ÿ ˆŸ. ƒ. ² ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ ±μ ±μ μ μ Ê É μ μ Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ˆ 452 ˆ Œ ˆ ƒ ˆ ˆŸ œ ƒ ˆƒ 459 ˆ Œ ˆ ƒ ˆ ˆŸ ˆ ˆ ˆ

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ

Διαβάστε περισσότερα

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ε Κάππος 4 εκεµβρίου 7 Περιεχόµενα Ασκήσεις στο µετασχηµατισµό Laplace Ασκήσεις στα Συστήµατα Εξισώσεων 5 3 Ασκήσεις Fourier

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Išorinės duomenų saugyklos

Išorinės duomenų saugyklos Išorinės duomenų saugyklos HDD, SSD, sąsajos 5 paskaita Išorinė atmintis Ilgalaikiam informacijos (programų ir duomenų) saugojimui kompiuteriuose naudojami: standieji diskai; lankstieji diskeliai (FDD);

Διαβάστε περισσότερα

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U Minion Pro Condensed Latin capitals A B C D E F G H I J K L M N O P Q R S T U V W X Y Z & Æ Ł Ø Œ Þ Ð Á Â Ä À Å Ã Ç É Ê Ë È Í Î Ï Ì İ Ñ Ó Ô Ö Ò Õ Š Ú Û Ü Ù Ý Ÿ Ž Ă Ā Ą Ć Č Ď Đ Ě Ė Ē Ę Ğ Ģ Ī Į Ķ Ĺ Ľ Ļ Ń

Διαβάστε περισσότερα

Μνήµη τής ευρέσεως τής τιµίας κεφαλής τού Αγίου Προφήτου, Προδρόµου καί Βαπτιστού Ιωάννου. 2. hlas Byz. / ZR Byzantská tradícia: Am, Vi

Μνήµη τής ευρέσεως τής τιµίας κεφαλής τού Αγίου Προφήτου, Προδρόµου καί Βαπτιστού Ιωάννου. 2. hlas Byz. / ZR Byzantská tradícia: Am, Vi 24.2. Μνήµη τής ευρέσεως τής τιµίας κεφαλής τού Αγίου Προφήτου, Προδρόµου καί Βαπτιστού Ιωάννου. Пeрво е и 3 вт о р0 е њ брё т ен і е чес т н hz гл авы2 п т eч евы. 2. hlas Byz. / ZR.. Η τών θείων εννοιών

Διαβάστε περισσότερα

PAPILDOMA INFORMACIJA

PAPILDOMA INFORMACIJA PAPILDOMA INFORMACIJA REKOMENDACIJOS, KAIP REIKIA ĮRENGTI, PERTVARKYTI DAUGIABUČIŲ PASTATŲ ANTENŲ ŪKIUS, KAD BŪTŲ UŽTIKRINTAS GEROS KOKYBĖS SKAITMENINĖS ANTŽEMINĖS TELEVIZIJOS SIGNALŲ PRIĖMIMAS I. BENDROSIOS

Διαβάστε περισσότερα

Riebalų rūgščių biosintezė

Riebalų rūgščių biosintezė Riebalų rūgščių biosintezė Riebalų rūgščių (RR) biosintezė Kepenys, pieno liaukos, riebalinis audinys pagrindiniai organai, kuriuose vyksta RR sintezė RR grandinė ilginama jungiant 2C atomus turinčius

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

TRUMAN. Vartotojo vadovas

TRUMAN. Vartotojo vadovas TRUMAN Vartotojo vadovas Jūsų PRESIDENT TRUMAN ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje)

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

2.153 Adaptive Control Lecture 7 Adaptive PID Control

2.153 Adaptive Control Lecture 7 Adaptive PID Control 2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Labojums MOVITRAC LTE-B * _1114*

Labojums MOVITRAC LTE-B * _1114* Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com

Διαβάστε περισσότερα

P μ²ö, ˆ. Ì μ. ƒ Š ˆ Ÿ

P μ²ö, ˆ. Ì μ. ƒ Š ˆ Ÿ P9-2017-13.. μ²ö, ˆ. Ì μ ˆ œ ƒ ˆ ƒ ƒ Š ˆ Ÿ ƒˆ 80 ŒÔ μ²ö.., Ì μ ˆ. P9-2017-13 Î É ²Ó μéμî μ μ ² μ μ μéμ μ μ Ê ±μ É ²Ö Ô 80 ŒÔ É ÉÓ ³μÉ μ ³μ μ ÉÓ ³ Ê²Ó μ μ Ê ±μ Ö ²Ó μ³ μ² μ μ μéμ μ μ Êα Éμ±μ³ I b =0,7

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 6: Η AC λειτουργία του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 6: Η AC λειτουργία του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 6: Η A λειτουργία του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Το μοντέλο μικρού σήματος του τρανζίστορ. Οι παράμετροι μικρού

Διαβάστε περισσότερα

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Παράρτημα Αʹ Ασκησεις Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Άσκηση 1. Συμβατικά στην περιοχή του ηλεκτρομαγνητικού ϕάσματος μακρινό υπέρυθρο (far infrared, FIR) έχουμε μήκος

Διαβάστε περισσότερα

(α) Στη στήλη «Θέσεις 1993» ο αριθμός «36» αντικαθίσταται. (β) Στη στήλη των επεξηγήσεων αναγράφεται η ακόλουθη

(α) Στη στήλη «Θέσεις 1993» ο αριθμός «36» αντικαθίσταται. (β) Στη στήλη των επεξηγήσεων αναγράφεται η ακόλουθη E.E. Παρ. Ι(Π) 1197 Ν. 63(11)/93 Αρ. 2842,10.12.93 Ο περί Πρϋπλγισμύ (Τρππιητικός) (Αρ. 6) Νόμς τυ 1993 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.

Διαβάστε περισσότερα

Handbook of Electrochemical Impedance Spectroscopy

Handbook of Electrochemical Impedance Spectroscopy Handbook of Electrochemical Impedance Spectroscopy Im Z u c T u c T Re Z CIRCUITS made of RESISTORS and INDUCTORS ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella Hosted by Bio-Logic @ www.bio-logic.info

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΔΙΑΛΕΙΠΤΟΥ ΠΑΡΟΧΗΣ ΙΣΧΥΟΣ

ΣΥΣΤΗΜΑΤΑ ΑΔΙΑΛΕΙΠΤΟΥ ΠΑΡΟΧΗΣ ΙΣΧΥΟΣ ΤΚΧΜΟΛΐΧΊΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΗΟΛΟΓΟΗ Ε ΑΡΗ(ΧΌΜ ΤΜΗΜΑ : ΗΛΕΚΤΡΟΛ(ΕΊΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΥΣΤΗΜΑΤΑ ΑΔΙΑΛΕΙΠΤΟΥ ΠΑΡΟΧΗΣ ΙΣΧΥΟΣ ΕΙΣΗΓΗΤΗΣ : Γ. ΚΥΡΑΝΑΣΤΑΣΗΣ ΗΠΑΚΡΑΤΣΑΣ Α. ΚαΝΣΤΑΝΤΙΝΟΣ Εκτύττωοη

Διαβάστε περισσότερα

(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC 60364-6 standartą TURINYS 1. Įžanga 2. Standartai 3. Iki 1000V įtampos skirstomojo tinklo sistemos 4. Kada turi būti atliekami bandymai?

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase

Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase Moo armonico: equazione del moo: d x ( ) = x ( ) soluzione: x ( ) = A s in ( + φ ) =π/ Τ T : periodo, = pulsazione A: ampiezza, φ : fase sposameno: x ( ) = X s in ( ) velocià: dx() v () = = X cos( ) accelerazione:

Διαβάστε περισσότερα

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά Τρώγοντας έξω : Στην είσοδο Θα ήθελα να κρατήσω ένα τραπέζι για _[αριθμός ατόμων]_ στις _[ώρα]_. (Tha íthela na kratíso éna trapézi ya _[arithmós atómon]_ στις _[óra]_.) Θα ήθελα να κρατήσω ένα τραπέζι

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įskymu Nr. V-97 MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS. Mtemtikos brndos egzmino progrmos (toliu Progrm)

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ.

Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ. ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 016 - Ενδιάμεση Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών

Διαβάστε περισσότερα

Thin Film Precision Chip Resistor-AR Series

Thin Film Precision Chip Resistor-AR Series hin Film Precision hip Resistor-R Series Features -hin Film Passivated ir Resistor -Very ight olerance from ±0.01%~1% -Extremely Low R from ±5~ PPM/ -ide R-Value onstruction Marking pplications -Medical

Διαβάστε περισσότερα

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį.

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. 1 Darbo tikslai Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. Užduotys 1. Atlikti gardelinio spektrometro kalibravimą. 2. Išmatuoti vandenilio dujų spinduliuotės spektro

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΗ 1η Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 α) f β) f 1 1 9 γ) f δ) f log 1 4 ημ ημ συν ε) f α) Για να ορίζεται η f() πρέπει και αρκεί + (1) Έχουμε: (1).(

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

201_ m... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE

201_ m... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE 2 priedo 5 priedėlis 201_ m....... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE 1. Bendrosios nuostatos 1.1. Technologinės patalpos patalpos,

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

1. Τριγωνοµετρικές ταυτότητες.

1. Τριγωνοµετρικές ταυτότητες. . Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =

Διαβάστε περισσότερα

ΟΙ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ ΟΙ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ιστορικό των µιγαδικών αριθµών Φαίνεται ότι, οι µιγαδικοί αριθµοί εισήχθησαν στα Μαθηµατικά, από τον Jo Wallis (673) Όµως, πολύ πριν απ αυτόν, το πρόβληµα του υπολογισµού τετραγωνικής

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 2 Νόμος του Ohm, Συνδέσεις αντιστάσεων σε σειρά Φ. Πλέσσας Βόλος 2015

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 31ης ΔΕΚΕΜΒΡΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 31ης ΔΕΚΕΜΒΡΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II Ν.4(Π)/98 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 9 της ης ΔΕΚΕΜΒΡΙΥ 998 ΝΜΘΕΣΙΑ ΜΕΡΣ περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 8) τυ 998 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα

Διαβάστε περισσότερα

1. Από την αρχική σελίδα του web site του ΙΚΑ http://www.ika.gr επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ.

1. Από την αρχική σελίδα του web site του ΙΚΑ http://www.ika.gr επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ. 1. Από την αρχική σελίδα του web site του ΙΚΑ http://www.ika.gr επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ. (Προτείνόμενοί φυλλομετρητές: Mozllla Firefox, Internet Explorer)

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

PRAKTINIO TAIKYMO VADOVAS ĮVADAS

PRAKTINIO TAIKYMO VADOVAS ĮVADAS STR.05.05:005 prieas PRAKTINIO TAIKYMO VADOVAS ĮVADAS Šiame praktinio nauojimo vaove yra pateikti reikalavimai pastatų ir statinių betonin ms ir gelžbetonin ms konstrukcijoms projektuoti iš sunkaus ir

Διαβάστε περισσότερα

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas 2750 515-137 lt, Red. 4 GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas Originali instrukcija Šiame dokumente pateikta informacija yra bendrojo pobūdžio ir neapima visų galimų

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 6 Θεώρημα Thevenin Λευκωσία, 2010 Εργαστήριο 6 Θεώρημα Thevenin Σκοπός: Σκοπός

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

s.s a a e !* : Β 3 Β. t Β. ε= α Η S < is *? A1=3 a ** 5 * 5 .Π % ** 5. II sr ο. " f-s ο < go< (5) D ^ X s ti3i "ε Ρ 5 Ρ Η. θ δ δ .

s.s a a e !* : Β 3 Β. t Β. ε= α Η S < is *? A1=3 a ** 5 * 5 .Π % ** 5. II sr ο.  f-s ο < go< (5) D ^ X s ti3i ε Ρ 5 Ρ Η. θ δ δ . Ε.Ε. Παρ. III(I) Κ.Δ.Π. /200 Αρ. 671,.1.200 Αριθμός ΠΕΡΙ ΠΛΕΔΜΙΑΣ ΚΑΙ ΧΩΡΤΑΞΙΑΣ ΝΜΣ (ΝΜΣ 90 ΤΥ 1972, 56 ΤΥ 1982, 7 ΤΥ 1990, 28 ΤΥ 1991, 91(1) ΤΥ 1992, 95(1) ΤΥ 199, 72(1) ΤΥ 1998, 59(1) ΚΑΙ 142(1) ΤΥ 1999)

Διαβάστε περισσότερα

E.E., Παρ. I, 729 Ν. 17/91 Αρ. 2576,

E.E., Παρ. I, 729 Ν. 17/91 Αρ. 2576, E.E., Πρ. I, 729 Ν. 17/91 Αρ. 2576, 8.2.91 περί Πρϋπλγισμύ τυ Τμείυ Θήρ*; Νόμς τυ 1990 εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ της Κυπρικής Δημκρτίς σύμφν με τ Άρθρ 52 τυ Συντάγμτς. Αριθμός 17 τυ 1991

Διαβάστε περισσότερα

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ΜΑΘΗΜΑ ο : ΟΙ ΓΡΑΜΜΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την ακόλουθη έκφραση στις καρτεσιανές συντεταγμένες του ευκλείδειου χώρου

Διαβάστε περισσότερα

10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K

Διαβάστε περισσότερα

Skaitmeninė HD vaizdo kamera

Skaitmeninė HD vaizdo kamera 4-447-519-12(1) Skaitmeninė HD vaizdo kamera Naudojimo instrukcija Žiūrėkite taip pat: http://www.sony.net/sonyinfo/support/ Turinys Nuo ko pradėti Įrašymas/atkūrimas Vaizdo įrašų ir vaizdų išsaugojimas,

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα