LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII"

Transcript

1 LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII Tema lucrării: 1) Determinarea puterii rotatorii specifice a zahărului 2) Determinarea concentraţiei unei soluţii de zahăr 3) Determinarea dispersiei de rotaţie a unei lame de cuarţ. Aparate: Polarimetru cu penumbră, lampă cu vapori de mercur, filtre (galben - 597,0 nm; verde - 546,1 nm; albastru - 435,8 nm), sticle cu soluţii de zahăr de concentraţii diferite, lamă de cuarţ tăiată perpendicular pe axa optică. 81

2 Consideraţii teoretice Dacă între doi polarizori în cruce (doi polarizori care au secţiunile principale perpendiculare între ele) se aşază o lamă de cuarţ tăiată perpendicular pe axa optică, câmpul analizorului se luminează (fig. 9.1). Polarizor Analizor Sursă Lamă de cuarţ Fig.9.1 Schema dispozitivului experimental Deoarece lumina se propagă de-a lungul axei optice a cristalului, birefrigerenţa şi apariţia luminii eliptic polarizate sunt excluse. Pentru a obţine din nou întuneric, trebuie rotit analizorul cu un anumit unghi. Valoarea unghiului nu se modifică dacă rotim lama de cuarţ în jurul fasciculului luminos. Fenomenul care apare în lama de cuarţ se poate explica în felul următor: lumina liniar polarizată de la polarizor trece prin lama de cuarţ şi rămâne tot liniar polarizată, dar lama roteşte planul de vibraţie al luminii cu un anumit unghi. Acesta se numeşte unghi de rotaţie al planului de vibraţie a luminii şi este măsurat prin unghiul de rotaţie al analizorului (necesar să se obţină extincţie în prezenţa lamei de cuarţ). Fenomenul care apare se numeşte polarizare rotatorie. Materialele care prezintă acest fenomen se numesc optic active. Materialele optic active pot să fie dextrogire sau levogire după cum un observator care priveşte lumina, ce vine spre el, trebuie să rotească analizorul spre a obţine extincţie (minim), spre dreapta (dextrogir) sau spre stânga (levogir). Cuarţul prezintă ambele varietăţi: dextrogir şi levogir. Pentru o lungime de undă λ dată, unghiul de rotaţie al planului de vibraţie este proporţional cu grosimea lamei cristaline: = [ ] d (9.1) Constanta [ ] se numeşte putere rotatorie şi este un coeficient de proporţionalitate ce depinde de natura substanţei, de lungime de undă şi de temperatură. Acest coeficient reprezintă unghiul cu care a fost rotit planul de vibraţie al luminii de către lama având grosimea egală cu unitatea. 82

3 Fenomenul de rotaţie al planului de vibraţie a luminii se întâlneşte şi la unele corpuri necristalizate de ex. lichide pure, terebentină sau soluţii apoase a unor substanţe care în stare solidă sunt cristalizate (soluţii apoase de zahăr). Substanţele optic active sunt de obicei substanţe organice. Activitatea optică apare dacă moleculele substanţei nu sunt superpozabile printr-o mişcare de translaţie sau de rotaţie cu imaginea lor în oglindă. Această proprietate se numeşte chiralitate şi moleculele respective chirale. În cazul soluţiilor, Biot a stabilit următoarea lege: pentru o lungime de undă λ dată, unghiul de rotaţie al planului de vibraţie este direct proporţional cu grosimea stratului de soluţie l şi cu concentraţia soluţiei c. [ ] l c = (9.2) Constanta [ ] se numeşte putere rotatorie specifică şi reprezintă unghiul cu care se roteşte planul de vibraţie al luminii la trecerea printr-un strat de soluţie de grosimea l cm şi concentraţie 100 g/cm 3. Dacă exprimăm concentraţia în procente formula (9.2) devine: [ ] iar puterea rotatorie specifică va fi dată de relaţia: l c = (9.3) = (9.4) l c [ ] Din legea lui Biot se poate deduce concentraţia unei soluţii, dacă se cunoaşte puterea rotatorie specifică a substanţei optic active dizolvate. Fresnel a dat următoarea interpretare teoretică fenomenului de polarizare rotatorie: el consideră că o undă liniar polarizată care se propagă într-un mediu optic activ se poate descompune în două unde circular polarizate de sensuri de rotaţie contrarii. Acestea se propagă însă cu viteze diferite. În cazul unei substanţe dextrogire viteza de propagare a undei circular polarizate dreapta v d este mai mare decât viteza de propagare a undei circular polarizate stânga v s. Pentru o substanţă levogiră situaţia este inversă. de relaţia: Unghiul cu care se roteşte unda liniară la trecerea prin lama cristalină este dată π = d (n d n s ) (9.5) λ Măsurarea unghiurilor de rotaţie se face de obicei cu polarimetrul. 83

4 În principiu un polarimetru este format din două părţi principale: polarizorul şi analizorul, (polarizorul este fix, iar analizorul poate fi rotit). Lumina monocromatică de la o sursă cade sub forma unui fascicul paralel pe polarizorul P, trece prin substanţa optică activă, apoi prin analizorul A. Un astfel de polarimetru nu permite însă măsurători precise, ochiul neputând aprecia cu exactitate momentul extincţiei (câmpul întunecat). Ţinând seama de proprietatea ochiului de a aprecia cu destul de mare precizie egalitatea de iluminare a două suprafeţe alăturate, s-au construit aşa zisele polarimetre cu penumbră. La aceste polarimetre se caută poziţiile de iluminare egală a două jumătăţi ale câmpului vizual. Sunt mai multe soluţii posibile pentru realizarea unui polarimetru cu penumbră. Una dintre ele este dată de Lippich care introduce după polarizorul P un al doilea polarizor P' ce ocupă o parte din câmp (fig.9.2). Planul de vibraţie al celui de al doilea polarizor face un unghi 2β cu planul de vibraţie al polarizorului P. Valoarea unghiului β se poate modifica la aparatul cu care se lucrează cu ajutorul manetei de reglaj. Câmpul vizual este observat cu un vizor (o mică lunetă) reglată în aşa fel încât imaginea muchiei prismei P' care reprezintă linia de separare dintre cele două jumătăţi ale câmpului să fie cât mai clară. P P' β Fig.9.2 Dispozitivul Lippich Dacă se reglează analizorul A în aşa fel încât direcţia de vibraţie să fie perpendiculară pe bisectoarea unghiului făcut de direcţiile de vibraţie dintre P şi P', ambele câmpuri sunt egal luminate, dar slab (penumbră), iar linia de separare practic dispare. Se mai poate obţine iluminarea egală a celor două câmpuri, dacă direcţia de vibraţie din analizor este paralelă cu bisectoarea unghiului dintre direcţiile de vibraţie ale polarizorilor P şi P', iar în acest caz cele două jumătăţi sunt tot egale, dar intens 84

5 luminate. Această poziţie nu se foloseşte pentru determinările experimentale pentru că ochiul nu este sensibil la iluminări mari. Descrierea aparaturii Polarimetrul este format dintr-un stativ metalic pe care este montat un tub orizontal, la capetele căruia sunt montate polarizorul (spre sursă) şi analizorul (spre ocular). Între polarizor şi analizor se aşază tubul cu soluţie de zahăr (sau lama de cuarţ). Analizorul se poate roti cu ajutorul unei manete care are la un capăt un şurub de strângere. Reglajul fin se face cu şurubul micrometric orizontal, după ce maneta de blocare a fost strânsă în prealabil. Citirea unghiului se face, cu ajutorul celor două lupe reglabile, de pe vernierele care se găsesc la extremităţile unuia din diametrele discului gradat, solidar legat cu analizorul. Cea mai mică diviziune de pe discul gradat reprezintă 0,25 0, iar vernierul are 25 diviziuni, deci precizia de citire cu ajutorul vernierului este de 0,01 0. Mersul lucrării: 1) Determinarea puterii rotatorii specifice a zahărului Se conectează lampa cu vapori de mercur şi se pune filtrul galben. Între polarizor şi analizor se introduce un tub de porţelan gol, închis la ambele capete cu două plăcuţe de sticlă plan-paralele. Se reglează ocularul vizorului în aşa fel încât să se vadă clar linia de separare a câmpului vizual, respectiv imaginea muchiei prismei P'. Cu ajutorul manetei de reglaj se roteşte încet analizorul până când cele două jumătăţi ale câmpului vizual sunt egal iluminate, dar slab (penumbră). Reglajul fin se face cu ajutorul şurubul micrometric orizontal în timp ce şurubul de blocaj a fost strâns. Atenţie: maneta de reglaj se manevrează numai dacă şurubul de blocaj este destrâns. Poziţia de penumbră a analizorului se citeşte pe cele două verniere cu ajutorul lupelor. Fie 0I şi 0II valorile unghiurilor citite cu cele două verniere. Se roteşte analizorul într-un sens şi apoi se aduce din nou în poziţie de penumbră şi se citesc din nou cele două unghiuri. Această operaţie se repetă de cel puţin trei ori pentru a calcula valoarea medie a poziţiei iniţiale a analizorului 85 0I şi Observaţie: se va ţine seama de sensul în care este divizat discul gradat. 0II. Se umple tubul cu soluţia de zahăr de o concentraţie cunoscută. Pentru umplere se aşează tubul vertical, se scoate una din plăcuţele de sticlă şi umplerea se face în aşa

6 fel, încât să nu rămână bule de aer în interiorul tubului. Se fixează plăcuţa superioară şi se şterg bine extremităţile tubului. După ce se introduce tubul cu soluţia de zahăr între polarizor şi analizor, cele două jumătăţi ale câmpului au iluminări diferite. Se roteşte încet analizorul spre dreapta (în cazul zahărului) până când cele două jumătăţi ale câmpului au iluminări egale (penumbră). Fie 1I şi 1II unghiurile corespunzătoare citite pe cele două verniere. Operaţia se repetă şi în acest caz de cel puţin trei ori şi se calculează valoarile medii acelaşi vernier. I = 1I 0I şi 0I 0II. Se face diferenţa citirilor de pe II = 1II 0II pentru cele două poziţii ale analizorului şi se obţine unghiul ( I şi II ) cu care a fost rotit planul de vibraţie al luminii la trecerea prin soluţia de zahăr. Se calculează media celor două valori: I + = II 2 Se măsoară lungimea tubului l în cm. Puterea rotatorie specifică a zahărului se calculează cu ajutorul relaţiei (9.4) unde unghiul se exprimă în grade, lungimea l în cm şi concentraţia c în g/cm 3. Se repetă măsurătorile pentru toate concentraţiile cunoscute. Observaţie: după fiecare determinare tubul se spală cu grijă cu apă. Rezultatele experimentale şi calculele se trec în tabelul 9.1. Tabelul c l I II I II I II [ ] [] [] g/cm 3 cm grd grd grd grd grd grd grd grd cm 2 /g grd cm 2 /g grd cm 2 /g (grad cm 2 /g) [ ] =[ ] ± [ ] 2) Determinarea concentraţiei unei soluţii de zahăr Se procedează la fel ca la determinarea anterioară turnând în tub soluţia de concentraţie necunoscută. Concentraţia soluţiei se calculează cu ajutorul formulei: c = [ ] l ţinând seama de valoarea lui [ ] din tabelul

7 Rezultatele se trec în tabelul 9.2. Tabelul [] l I II I II I II c c c grd cm 2 /g cm grd grd grd grd grd grd grd g/cm 3 g/cm 3 g/cm 3 c = c ± c 3) Determinarea dispersiei de rotaţie a unei lame de cuarţ În locul tubului cu soluţie se aşează o lamă de cuarţ tăiată perpendicular pe axa optică. Aşezând pe rând filtrele corespunzătoare se determină unghiul de rotaţie al planului de vibraţie al luminii la trecerea prin lama de cuarţ pentru următoarele lungimi de undă: λ=579,0 nm (galben) λ=546,1 nm (verde) λ=435,8 nm (albastru) Cunoscând grosimea d (2,66 mm) a lamei de cuarţ se calculează puterea rotatorie a cuarţului corespunzătoare fiecărei lungimi de undă cu relaţia: [ ] = unde d este grosimea lamei de cuarţ (în mm), iar unghiul de rotaţie al planului de vibraţie al luminii (în grade). d Fiecare determinare se repetă de cel puţin trei ori şi se calculează valorile medii ale unghiului de rotaţie ca la punctul 1 pentru fiecare lungime de undă. Rezultatele experimentale şi calculele se trec în tabelul 9.3. Tabelul d λ I II I II I II [ ] [] [] mm nm grd grd grd grd grd grd grd grd/mm grd/mm grd/mm Se reprezintă grafic: [ ] = [ ] ( λ) Observaţie: este important ca lama de cuarţ să fie riguros perpendiculară pe direcţia razelor de lumină ce vin de la polarizor. În caz contrar intervine şi birefringenţa lamei şi nu se mai obţine egalitatea câmpurilor analizorului. 87

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

LUCRAREA NR. 3 DETERMINAREA DISTANŢEI FOCALE A OGLINZILOR SFERICE

LUCRAREA NR. 3 DETERMINAREA DISTANŢEI FOCALE A OGLINZILOR SFERICE LUCRAREA NR. 3 DETERMINAREA DISTANŢEI FOCALE A OGLINZILOR SFERICE Tema lucrării: 1) Determinarea distanţei focale a unei oglinzi concave ) Determinarea distanţei focale a unei oglinzi convexe 3) Studiul

Διαβάστε περισσότερα

STUDIUL DIFRACŢIEI LUMINII

STUDIUL DIFRACŢIEI LUMINII LUCRAREA NR. 10 STUDIUL DIFRACŢIEI LUMINII Tema lucrării: 1) Etalonarea tamburului unei fante reglabile. Difracţia Fraunhofer 2) Studiul difracţiei Fraunhofer prin mai multe fante paralele. 3) Studiul

Διαβάστε περισσότερα

Reflexia şi refracţia luminii.

Reflexia şi refracţia luminii. Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular

Διαβάστε περισσότερα

MĂSURAREA INDICILOR DE REFRACŢIE CU INTERFEROMETRUL JAMIN

MĂSURAREA INDICILOR DE REFRACŢIE CU INTERFEROMETRUL JAMIN LUCRAREA NR. 12 MĂSURAREA INDICILOR DE REFRACŢIE CU INTERFEROMETRUL JAMIN Tema lucrării: 1) Etalonarea compensatorului interferometrului 2) Determinarea variaţiei indicelui de refracţie al aerului cu presiunea

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina

Διαβάστε περισσότερα

Difractia de electroni

Difractia de electroni Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

TOPOGRAFIE - CARTOGRAFIE LP. 5. Elemente de cartometrie

TOPOGRAFIE - CARTOGRAFIE LP. 5. Elemente de cartometrie TOPOGRAFIE - CARTOGRAFIE LP. 5 Elemente de cartometrie Cartometria este acea parte a cartografiei care se ocupă cu procedeele şi instrumentele necesare aprecierii cantitative a diferitelor obiecte sau

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE

STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE Scopul lucrării Vom studia aici propagarea undelor transersale şi a celor longitudinale într-o coardă, respecti un resort, urmărindu-se: (a)

Διαβάστε περισσότερα

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG UNIVESITATEA "POLITEHNICA" DIN BUCUEŞTI DEPATAMENTUL DE FIZICĂ LABOATOUL DE OPTICĂ BN - 10 B STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG 004-005 STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Modulul 5 OPTICĂ ONDULATORIE

Modulul 5 OPTICĂ ONDULATORIE 57 Modulul 5 OPTICĂ ONDULATORIE Conţinutul modulului: 5.1 Generalităţi 5. Reflexia şi refracţia luminii 5.3 Interferenţa luminii 5.4 Difracţia luminii 5.5 Difuzia luminii 5.6 Dispersia luminii 5.7 Polarizarea

Διαβάστε περισσότερα

Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE

Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE UNIVERSITATEA DIN CRAIOVA FACULTATEA DE MECANICĂ Laborator de Mecanisme Specializarea: TCM Lucrarea: MECANISME CU CAME SINTEZĂ: TRASAREA SPIRALEI LUI ARHIMEDE. Scopul lucrării a) Cunoaşterea unor profiluri

Διαβάστε περισσότερα

4. METODELE GEOMETRIEI DESCRIPTIVE

4. METODELE GEOMETRIEI DESCRIPTIVE 4. METODELE GEOMETRIEI DESCRIPTIVE 4.1. GENERALITĂŢI În general corpurile geometrice sunt în poziţii oarecare faţă de planele de proiecţie. Prin metodele geometriei descriptive proiecţiile acestor corpuri

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

2. CALCULE TOPOGRAFICE

2. CALCULE TOPOGRAFICE . CALCULE TOPOGRAFICE.. CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE... CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE DIN COORDONATE RECTANGULARE Distanţa în linie dreaptă dintre două puncte se poate calcula dacă

Διαβάστε περισσότερα

DETERMINAREA LUNGIMII DE UNDA A LUMINII MONOCROMATICE CU AJUTORUL DISPOZITIVULUI YOUNG

DETERMINAREA LUNGIMII DE UNDA A LUMINII MONOCROMATICE CU AJUTORUL DISPOZITIVULUI YOUNG UNIVERSITATEA "POLITEHNICA" DIN BUCURESTI CATEDRA DE FIZICA LABORATORUL DE OPTICÅ BN 121 DETERMINAREA LUNGIMII DE UNDA A LUMINII MONOCROMATICE CU AJUTORUL DISPOZITIVULUI YOUNG 1996 DETERMINAREA LUNGIMII

Διαβάστε περισσότερα

Optica este o ramură a fizicii care studiază proprietăţile şi natura luminii, modul de producere a acesteia, şi legile propagării şi interacţiunii

Optica este o ramură a fizicii care studiază proprietăţile şi natura luminii, modul de producere a acesteia, şi legile propagării şi interacţiunii Optica este o ramură a fizicii care studiază proprietăţile şi natura luminii, modul de producere a acesteia, şi legile propagării şi interacţiunii luminii cu substanţa. Optica geometrica este acea parte

Διαβάστε περισσότερα

SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE

SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE UNIVERSITATEA DIN CRAIOVA FACULTATEA DE MECANICĂ Laborator de Mecanisme SINTEZA MECANISMELOR CU CAME TRASAREA SPIRALEI LUI ARHIMEDE Obiectivele lucrării a. Cunoaşterea unor profiluri uzuale utilizate la

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

L6. PUNŢI DE CURENT ALTERNATIV

L6. PUNŢI DE CURENT ALTERNATIV niversitatea POLITEHNI din Timişoara epartamentul Măsurări şi Electronică Optică 6.1. Introducere teoretică L6. PNŢI E ENT LTENTIV Punţile de curent alternativ permit măsurarea impedanţelor. Măsurarea

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte

3. DINAMICA FLUIDELOR. 3.A. Dinamica fluidelor perfecte 3. DINAMICA FLUIDELOR 3.A. Dinamica fluidelor perfecte Aplicația 3.1 Printr-un reductor circulă apă având debitul masic Q m = 300 kg/s. Calculați debitul volumic şi viteza apei în cele două conducte de

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3 Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

- Optica Ondulatorie

- Optica Ondulatorie - Optica Ondulatorie *Proiect coordonat de Dna. Prof. Domisoru Daniela *Elevii participanti: Simion Vlad, Codreanu Alexandru, Domnisoru Albert-Leonard *Colegiul National Vasile Alecsandri GALATI *Concursul

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα

N 1 U 2. Fig. 3.1 Transformatorul

N 1 U 2. Fig. 3.1 Transformatorul SRSE ŞI CIRCITE DE ALIMETARE 3. TRASFORMATORL 3. Principiul transformatorului Transformatorul este un aparat electrotehnic static, bazat pe fenomenul inducţiei electromagnetice, construit pentru a primi

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Tipuri de celule sub microscopul optic

Tipuri de celule sub microscopul optic Tipuri de celule sub microscopul optic Termenul de celulă a fost introdus de R. Hooke în cartea sa Micrographia publicată în 1665 în care descrie observaţii făcute cu microscopul şi telescopul. Microscopul

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Amplitudinea sau valoarea de vârf a unui semnal

Amplitudinea sau valoarea de vârf a unui semnal Amplitudinea sau valoarea de vârf a unui semnal În curent continuu, unde valoarea tensiunii şi a curentului sunt constante în timp, exprimarea cantităńii acestora în orice moment este destul de uşoară.

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3 6.CONUL ŞI CILINDRUL 6.1.GENERALITĂŢI Conul este corpul geometric mărginit de o suprafaţă conică şi un plan; suprafaţa conică este generată prin rotaţia unei drepte mobile, numită generatoare, concurentă

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Laborator L3 3. Analiza microscopica prezentarea microscopului metalografic si a metodei de analiza

Laborator L3 3. Analiza microscopica prezentarea microscopului metalografic si a metodei de analiza Laborator L3 3. Analiza microscopica prezentarea microscopului metalografic si a metodei de analiza 3.1. Aspecte teoretice Microscopul metalografic este un microscop optic, la care se analizează în lumina

Διαβάστε περισσότερα

TEST DE EVALUARE SUMATIVA

TEST DE EVALUARE SUMATIVA TEST DE EVALUARE SUMATIVA Profesor: Merfea Romeo Institutia: COLEGIUL NATIONAL ROMAN-VODA Clasa a IX-a Disciplina: Fizica Continuturi vizate: Reflexia si refractia luminii Obiective: sa defineasca fenomenele

Διαβάστε περισσότερα

Capitolul FF.02 Polarizarea luminii

Capitolul FF.02 Polarizarea luminii FF..Polarizarea luminii Capitolul FF. Polarizarea luminii Cuvinte-cheie stare de polarizare liniară (plană), polarizare circulară, polarizare eliptică, polarizare circulară dreapta, polarizare circulară

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Interferenţa şi difracţia undelor electromagnetice

Interferenţa şi difracţia undelor electromagnetice 1 CAPITOLUL 3 Interferenţa şi difracţia undelor electromagnetice 3.1 Fenomenul de interferenţă. Surse coerente şi necoerente În descrierea proprietăţilor undelor am întâlnit diverse situaţii în care două

Διαβάστε περισσότερα

INTENSITATEA ŞI DIFRACŢIA RADIAŢIEI LASER

INTENSITATEA ŞI DIFRACŢIA RADIAŢIEI LASER UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN - 1 A INTENSITATEA ŞI DIFRACŢIA RADIAŢIEI LASER INTENSITATEA ŞI DIFRACŢIA RADIAŢIEI LASER 1. Scopul lucrării Lucrarea

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe

Διαβάστε περισσότερα