Κεφάλαιο 11. Συναρτήσεις με δύο συντελεστές. Συναρτήσεις παραγωγής. τεχνολογικά σύνολα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 11. Συναρτήσεις με δύο συντελεστές. Συναρτήσεις παραγωγής. τεχνολογικά σύνολα"

Transcript

1 Κεφάλαιο Συναρτήσεις παραγωγής Συναρτήσεις παραγωγής Η συνάρτηση παραγωγής μιας επιχείρησης για ένα προϊόν (q) δείχνει τη μέγιστη ποσότητα του αγαθού που μπορεί να παραχθεί με εναλλακτικούς συνδυασμούς κεφαλαίου () και εργασίας ( q f(, Η με περισσότερους συντελεστές παραγωγής (x,,..x n ) q f x,, x ) ( n Συναρτήσεις παραγωγής Ένα προϊόν, ένας συντελεστής παραγωγής Συναρτήσεις παραγωγής τεχνολογικά σύνολα Ένα προϊόν, ένας συντελεστής παραγωγής Προϊόν y y f(x) είναι ησυνάρτηση παραγωγής y f(x ) είναι το μέγιστο επίπεδο προϊόντος που μπορεί να αποκτηθεί με x μονάδες εισροών. προϊόν y Το τεχνολογικό σύνολο y x συντελεστής x 3 x εισροή x 4 Συναρτήσεις παραγωγής τεχνολογικά σύνολα Συναρτήσεις με δύο συντελεστές Ένα προϊόν, ένας συντελεστής παραγωγής προϊόν y y Τεχνικά αποτελεσματικά σχέδια Το τεχνολογικό σύνολο Τεχνικά αναποτελεσματικά σχέδια x εισροή x 5 Έστω ότι έχουμε y f( x, x) x /3 x /3. Με (x, ) (, 8), έχουμε /3 /3 /3 /3 y x 8 4. Με (x, ) (8, 8), έχουμε /3 /3 /3 /3 y x

2 Συναρτήσεις με δύο συντελεστές Οριακό φυσικό προϊόν Διαγραμματικά 7 Για να μελετήσουμε τη μεταβολή ενός συντελεστή, ορίζουμε ως οριακό φυσικό προϊόν το επιπλέον προϊόν που μπορεί να παραχθεί από την απασχόληση μιας επιπλέον μονάδας του συντελεστή, ενώ διατηρούμε τους άλλους συντελεστές σταθερούς. q οριακό φυσικό προϊόν του κεφαλαίου MP f q οριακό φυσικό προϊόν της εργασίας MP l l f l 8 Οριακό φυσικό προϊόν Με n συντελεστές έχουμε τη συνάρτηση y f x,, x ) ( n Το οριακό προϊόν του συντελεστή i είναι MP i y x i 9 Φθίνουσα οριακή παραγωγικότητα Το οριακό φυσικό προϊόν ενός συντελεστή εξαρτάται από την ποσότητα του συντελεστή χρησιμοποιείται. Γενικά, υποθέτουμε φθίνουσα οριακή παραγωγικότητα MP f MPl f f f < 0 f < 0 ll f l l 0 Φθίνουσα οριακή παραγωγικότητα Μέσο φυσικό προϊόν Λόγω της φθίνουσας οριακής παραγωγικότητας, ο οικονομολόγος του 9ου αιώνα Thomas Malthus ανησυχούσε για την επίπτωση που θα είχε ο αυξανόμενος πληθυσμός στην παραγωγικότητα της εργασίας Όμως, οι μεταβολές στην οριακή παραγωγικότητα της εργασίας διαχρονικά εξαρτάται και από τις μεταβολές άλλων συντελεστών, όπως π.χ. Το κεφάλαιο Γι αυτό πρέπει να εξετάζουμε το f l το οποίο είναι Η παραγωγικότητα της εργασίας μετράται συνήθως με τη μέση παραγωγικότητα προϊόν q f (, AP l εργασία l l Το AP l εξαρτάται από την απασχολούμενη ποσότητα κεφαλαίου συνήθως θετικό.

3 Συνάρτηση παραγωγής με δύο συντελεστές Συνάρτηση παραγωγής με δύο συντελεστές q f(, 600 l - 3 l 3 ΓιαναβρούμετοMP l και το AP l, πρέπει να υποθέσουμε μια τιμή για το Έστω ότι 0 Η συνάρτηση παραγωγής γίνεται q 60,000l -000l 3 3 Η οριακή παραγωγικότητα είναι MP l q/ l 0,000l l η οποία φθίνει καθώς το l αυξάνει Αυτό συνεπάγεται ότι το q έχει μια μέγιστη τιμή: 0,000l l 0 40l l l 40 Η εισροή εργασίας πάνω από l 40 μειώνει το προϊόν 4 Συνάρτηση παραγωγής με δύο συντελεστές Συνάρτηση παραγωγής με δύο συντελεστές Γιαναβρούμετημέσηπαραγωγικότητα, κρατούμε το 0 και επιλύοντας βρίσκουμε AP l q/l 60,000l - 000l Το AP l είναι μέγιστο όταν AP l / l 60, l 0 l 30 Πράγματι, όταν l 30, τότε το AP l και το MP l είναι ίσα με 900,000 Άρα, όταν το AP l είναι στο μέγιστο του, τότε τα AP l και MP l είναι ίσα 5 6 Χάρτης με καμπύλες ίσου προϊόντος Καμπύλες ίσου προϊόντος με δύο συντελεστές Για να απεικονίσουμε τη δυνατότητα υποκατάστασης ενός συντελεστή με έναν άλλο, μπορούμε να χρησιμοποιήσουμε το χάρτη με καμπύλες ίσου προϊόντος. Μια καμπύλη ίσου προϊόντος δείχνει εκείνους του συνδυασμούς των και l που μπορούν να παραγάγουν ένα συγκεκριμένο επίπεδο προϊόντος (q 0 ) Διαγραμματικά f(, q

4 Καμπύλες ίσου προϊόντος με δύο συντελεστές Απεικόνιση προϊόντος με δύο συντελεστές Οριακός λόγος τεχνικής υποκατάστασης (RTS) Ο Οριακός λόγος τεχνικής υποκατάστασης (RTS) δείχνει το λόγο στον οποίο η εργασία μπορεί να υποκαταστήσει το κεφάλαιο, ενώ διατηρούμε το προϊόν σταθερό κατά μήκος μιας καμπύλης ίσου προϊόντος d RTS ( l for ) dl q q0 9 0 Οριακός λόγος τεχνικής υποκατάστασης (RTS) Έστω η συνάρτηση παραγωγής y f( x, x). Μια μικρή μεταβολή (dx, d ) προκαλεί μια μεταβολή στο προϊόν ίση με y dy x dx + y x d. Οριακός λόγος τεχνικής υποκατάστασης (RTS) y dy x dx + y x d. Κατάμήκοςμιαςκαμπύληςίσουπροϊόντοςdy 0, και άρα y 0 + x dx y x dx. ή y x dx y x dx ή dx y x /. dx y/ x (RTS), Παράδειγμα με συνάρτηση Cobb- Douglas Έστω η συνάρτηση y f( x, x) x a x b Παραγωγίζοντας έχουμε y a b ax και y x bx a x b. x x Ο τεχνικός λόγος υποκατάστασης είναι a b dx y/ x ax x ax dx y x a b bx x bx. / (RTS), Παράδειγμα με συνάρτηση Cobb- Douglas /3 3 / y x ; a andb 3 3 ax x x TRS ( / 3) bx ( / 3) x x 3 x 4 4

5 (RTS), Παράδειγμα με συνάρτηση Cobb- Douglas 8 4 /3 3 / y x ; a andb 3 3 ax TRS bx x (/ 3) x x ( / 3) x 8 x4 5 RTS και οριακή παραγωγικότητα Αςπάρουμετοολικόδιαφορικόμιας συνάρτησης παραγωγής: f f dq dl + d MPl dl + MP l Κατάμήκοςμιαςκαμπύληςίσουπροϊόντοςdq 0, άρα MP dl MP d l d MPl RTS ( l για ) dl MP q q 0 d 6 RTS και οριακή παραγωγικότητα RTS και οριακή παραγωγικότητα Επειδή MP l και MP είναι και τα δύο μη αρνητικά, ο RTS είναι θετικός (ή μηδέν) Γενικά όμως, δεν είναι δυνατό να συναγάγουμε φθίνοντα RTS μόνο από την υπόθεση της φθίνουσας οριακής παραγωγικότητας Για να δείξουμε ότι οι καμπύλες ίσου προϊόντος είναι κυρτές, θα πρέπει να δείξουμε ότι d(rts)/dl < 0 Αφού RTS f l /f drts d( fl / f ) dl dl drts [ f ( f dl ll + f l d / d fl( f ( f ) l + f d / d] 7 8 RTS και οριακή παραγωγικότητα RTS και οριακή παραγωγικότητα Με δεδομένο ότι d/dl -f l /f κατάμήκοςμιαςκαμπύλης ίσου προϊόντος και το θεώρημα του Young (f l f l ) drts dl ( f f f f f ( ll l l 3 f ) + f f l Επειδή έχουμε υποθέσει ότι f > 0, ο παρονομαστής είναι θετικός Επειδή υποθέτουμε ότι τα f ll και f είναι αρνητικά, ο λόγος θα είναι αρνητικός αν το f l είναι θετικό. ) 9 Διαισθητικά, είναι λογικό να υποθέτουμε ότι τα f l f l πρέπει να είναι θετικά Αν οι εργάτες έχουν περισσότερο κεφάλαιο θα είναι πιο παραγωγικοί Ορισμένεςόμωςσυναρτήσειςπαραγωγήςέχουν το f l < 0 για κάποιο διάστημα Όταν υποθέτουμε φθίνοντα RTS, θεωρούμε ότι τα MP l και MP φθίνουν αρκετά γρήγορα για να αντισταθμίσουν κάθε δυνατή αρνητική σταυροειδή επίδραση της παραγωγικότητας 30 5

6 Φθίνων RTS Φθίνων RTS q f(, 600 l - 3 l 3 Γι αυτή τη συνάρτηση παραγωγής MP l f l 00 l -3 3 l MP f 00l -3 l 3 Οι οριακές αυτές παραγωγικότητες θα είναι θετικές για τιμές των και l για τις οποίες ισχύει ότι l < 400 Επειδή f ll l f 00l -6l 3 αυτή η συνάρτηση παραγωγής έχει φθίνουσες οριακές παραγωγικότητες των συντελεστών για επαρκώς μεγάλες τιμές των και l f ll και f < 0 αν l > Φθίνων RTS Φθίνων RTS Σταυροειδής διαφόριση είτε της μιας είτε τηςάλληςσυνάρτησηςοριακής παραγωγικότητας μας δίνει ότι f l f l 400l -9 l που είναι θετική μόνο για l < 66 Έτσι, γι αυτή τη συνάρτηση παραγωγής ο RTS είναι φθίνων για όλο το εύρος των και l που οι οριακές παραγωγικότητες είναι θετικές Για μεγαλύτερες τιμές των και l, οι φθίνουσες οριακές παραγωγικότητες είναι επαρκείς για να ξεπεράσουν την επίδραση μιας αρνητικής τιμής του f l ώστε να διασφαλιστεί η κυρτότητα των καμπυλών ίσης ποσότητας Κυρτότητα καμπύλης ίσου προϊόντος Κυρτότητα καμπύλης ίσου προϊόντος Κυρτότητα: Αν όλοι οι συνδυασμοί εισροών x και x δίνουν y μονάδες προϊόντος, τότε το μείγμα tx + (-t)x δίνει τουλάχιστο y μονάδες προϊόντος, για κάθε 0 < t <. y x x x 36 6

7 Κυρτότητα καμπύλης ίσου προϊόντος Κυρτότητα καμπύλης ίσου προϊόντος x ( tx t x tx t x ) + ( ), + ( ) y 00 x x 37 x ( tx t x tx t x ) + ( ), + ( ) y 0 y 00 x x 38 Κυρτότητα καμπύλης ίσου προϊόντος Αποδόσεις κλίμακας Η κυρτότητα συνεπάγεται ότι ο TRS αυξάνει (γίνεται λιγότερο αρνητικός) καθώς το x αυξάνει. Πώςαντιδράτοπροϊόνσεαυξήσειςόλωντων συντελεστώ μαζί; Έστωότιόλοιοισυντελεστέςδιπλασιάζονται. Θα διπλασιαστεί το προϊόν; Οι αποδόσεις κλίμακας έχουν προκαλέσει το ενδιαφέρον των οικονομολόγων από την εποχή του Adam Smith x x x Αποδόσεις κλίμακας Αποδόσεις κλίμακας ΟΑ. Smith εντοπίζει δύο δυνάμεις που λειτουργούν καθώς οι συντελεστές διπλασιάζονται Μεγαλύτερος καταμερισμός εργασίας και εξειδίκευση Απώλεια αποτελεσματικότητας επειδή η διοίκηση μπορεί να γίνει πιο δύσκολη όσο πιο μεγάλη η κλίμακα λειτουργίας της επιχείρησης 4 Αν η συνάρτηση παραγωγής είναι q f(, και όλες οι εισροές πολλαπλασιαστούν με τον ίδιο θετικό σταθερό αριθμό (t >), τότε Επίδραση στο προϊόν f(t,t tf(, f(t,t < tf(, f(t,t > tf(, Αποδόσεις κλίμακας Σταθερές Φθίνουσες Αύξουσες 4 7

8 Αποδόσεις κλίμακας Σταθερές αποδόσεις κλίμακας Είναι δυνατό μια συνάρτηση παραγωγής να παρουσιάζει σταθερές αποδόσεις κλίμακας για κάποια επίπεδα χρήσης συντελεστών και αύξουσες ή φθίνουσες αποδόσεις σε άλλα επίπεδα. Οι οικονομολόγοι αναφέρονται στο βαθμό των αποδόσεων κλίμακας με την έννοια ότι εξετάζεται ένα μικρό μόνο πεδίο μεταβολής στη χρήση των εισροών και του αντίστοιχου επιπέδου του προϊόντος 43 Οι συναρτήσεις παραγωγής με σταθερές αποδόσεις κλίμακας είναι ομογενείς πρώτου βαθμού ως προς τις εισροές. f(t,t t f(, tq Αυτό σημαίνει ότι οι συναρτήσεις οριακής παραγωγικότητας είναι ομογενείς βαθμού μηδέν. Αν μια συνάρτηση είναι ομογενής βαθμού, οι παράγωγοι του είναι συναρτήσεις ομογενείς βαθμού - 44 Σταθερές αποδόσεις κλίμακας Σταθερές αποδόσεις κλίμακας Η οριακή παραγωγικότητα κάθε συντελεστή εξαρτάται από το λόγο κεφαλαίου και εργασίας (όχι τα απόλυτα επίπεδα αυτών των συντελεστών) Ο RTS μεταξύ και l εξαρτάται μόνο από το λόγο του ως προς το l, όχι την κλίμακα λειτουργίας Η συνάρτηση παραγωγής θα είναι ομοθετική Γεωμετρικά. Όλες οι καμπύλες ίσης παραγωγής είναι η κάθε μια επέκταση της άλλης πάνω σε μια ακτίνα Σταθερές αποδόσεις κλίμακας Αποδόσεις κλίμακας Κατά μήκος μιας ακτίνας από την αρχή των αξόνων (σταθερό /, ο RTS είναι ο ίδιος για όλες τις καμπύλες ίσου προϊόντος ανά περίοδο q 3 q q Οι καμπύλες ίσου προϊόντος ισαπέχουν καθώς αυξάνεται το προϊόν Οι αποδόσεις κλίμακας μπορεί να γενικευτούν για μια συνάρτηση με n συντελεστές q f(x,,,x n ) Αν όλοι οι συντελεστές πολλαπλασιαστούν με μια θετική σταθερά t, έχουμε ότι f(tx,t,,tx n ) t f(x,,,x n )t q Αν, έχουμε σταθερές αποδόσεις κλίμακας Αν <, έχουμε φθίνουσες αποδόσεις κλίμακας Αν >, έχουμε αύξουσες αποδόσεις κλίμακας l ανά περίοδο

9 Αποδόσεις κλίμακας Αποδόσεις κλίμακας Ένας συντελεστής, ένα προϊόν Προϊόν y y f(x) Ένας συντελεστής, ένα προϊόν Προϊόν f(x ) y f(x) y Σταθερές αποδόσεις κλίμακας f(x ) f(x ) Φθίνουσες αποδόσεις κλίμακας x x x Συντελεστής 49 x x x Συντελεστής 50 Αποδόσεις κλίμακας Αποδόσεις κλίμακας Ένας συντελεστής, ένα προϊόν Προϊόν f(x ) Αύξουσες αποδόσεις κλίμακας y f(x) Ένας συντελεστής, ένα προϊόν Προϊόν Αύξουσες αποδόσεις κλίμακας y f(x) f(x ) f(x ) Φθίνουσες αποδόσεις κλίμακας x x x Συντελεστής Συντελεστής x 5 5 Ελαστικότητα υποκατάστασης Η Ελαστικότητα υποκατάστασης (σ) μετρά την ποσοστιαία μεταβολή στο /l σε σχέση με την ποσοστιαία μεταβολή στον RTS κατά μήκος μιας καμπύλης ίσου προϊόντος % Δ( / d( / RTS ln( / σ % ΔRTS drts / l lnrts Ητιμήτουσ θα είναι πάντα θετική επειδή /l και RTS κινούνται στην ίδια κατεύθυνση 53 Ελαστικότητα υποκατάστασης Αν σ μεγάλο, ο RTS δεν θ αλλάξει πολύ σε σχέση με το /l Η καμπύλη ίσου προϊόντος θα είναι σχετικά επίπεδη Αν σ μικρό, ο RTS θ αλλάξει πολύ καθώς το /l αλλάζει Η καμπύλη ίσου προϊόντος θα είναι πολύ κυρτή Είναι δυνατό το σ να αλλάζει κατά μήκος μιας καμπύλης ίσου προϊόντος ή καθώς αλλάζει η κλίμακα παραγωγής 54 9

10 Ελαστικότητα υποκατάστασης Γενικεύοντας την ελαστικότητα υποκατάστασης για την περίπτωση με πολλούς συντελεστές δημιουργούνται διάφορες περιπλοκές Αν ορίσουμε την ελαστικότητα υποκατάστασης μεταξύ δύο συντελεστών να είναι η ποσοστιαία μεταβολήστολόγοτωνδύοσυντελεστώνωςπρος την ποσοστιαία μεταβολή στον RTS, πρέπει να κρατήσουμε το προϊόν και τα επίπεδα των άλλων συντελεστών σταθερά Η γραμμική συνάρτηση παραγωγής Έστω η συνάρτηση παραγωγής q f(, a + bl Αυτή η συνάρτηση παρουσιάζει σταθερές αποδόσεις κλίμακας f(t,t at + btl t(a + b tf(, Όλες οι καμπύλες ίσου προϊόντος είναι ευθείες γραμμές. Ο RTS είναι σταθερός σ Η γραμμική συνάρτηση παραγωγής Σταθερές αναλογίες Κεφάλαιο και εργασία είναι τέλεια υποκατάστατα ανά περίοδο Ο RTS είναι σταθερός καθώς το /l μεταβάλλεται κλίση -b/a σ q min (a, b a,b > 0 Το κεφάλαιο και η εργασία πρέπει να χρησιμοποιούνται πάντα σε σταθερή αναλογία Η επιχείρηση λειτουργεί πάντα κατά μήκος μιας ακτίνας όπου το /l είναι σταθερό Επειδή το /l είναι σταθερό, σ 0 q q q 3 l ανά περίοδο Σταθερές αναλογίες Καμιά υποκατάσταση μεταξύ κεφαλαίου και εργασίας δεν είναι δυνατή /l είναι σταθερό στο b/a ανά περίοδο q 3 /a q q q 3 σ 0 Συνάρτηση παραγωγής Cobb-Douglas q f(, A a l b A,a,b > 0 Αυτή η συνάρτηση παραγωγής μπορεί να έχει αποδόσεις κλίμακας f(t,t A(t) a (t b At a+b a l b t a+b Αf(, Αν a + b σταθερές αποδόσεις κλίμακας Αν a + b > αύξουσες αποδόσεις κλίμακας if a + b < φθίνουσες αποδόσεις κλίμακας q 3 /b l ανά περίοδο

11 Συνάρτηση παραγωγής Cobb-Douglas Η συνάρτηση παραγωγής Cobb-Douglas, εκφρασμένη λογαριθμικά είναι γραμμική ln q ln A + a ln + b ln l a είναι η ελαστικότητα του προϊόντος σε σχέση με το b είναι η ελαστικότητα του προϊόντος σε σχέση με το l 6 Συνάρτηση παραγωγής CES q f(, [ ρ + l ρ ] γ/ρ ρ, ρ 0, γ > 0 γ > αύξουσες αποδόσεις κλίμακας γ < φθίνουσες αποδόσεις κλίμακας Γι αυτή τη συνάρτηση παραγωγής σ /(-ρ) ρ γραμμική συνάρτηση παραγωγής ρ - συνάρτηση παραγωγής με σταθερές αναλογίες ρ 0 συνάρτηση παραγωγής Cobb-Douglas 6 Γενικευμένη συνάρτηση παραγωγής Leontief Τεχνική πρόοδος q f(, + l + ( 0.5 Οι οριακές παραγωγικότητες είναι f + (/ -0.5 Άρα, fl RTS f f l + (/ ( / + ( / Οι μέθοδοι παραγωγής αλλάζουν διαχρονικά Αν ακολουθήσουμε ανώτερες τεχνικές παραγωγής, το ίδιο επίπεδο προϊόντος μπορεί να παραχθεί με λιγότερες ποσότητες συντελεστών Η καμπύλη ίσου προϊόντος μετατοπίζεται προς τα μέσα 64 Τεχνική πρόοδος Τεχνική πρόοδος q A(t)f(, όπου A(t) αντιπροσωπεύει όλες τις επιδράσεις που προσδιορίζουν το q εκτός από εκείνες των και l Μεταβολές στο A διαχρονικά αντιπροσωπεύουν τεχνική πρόοδο Το A παρουσιάζεται ως συνάρτηση του χρόνου (t) da/dt > 0 Διαφορίζοντας τη συνάρτηση παραγωγής σε σχέση με το χρόνο έχουμε dq da df (, f (, + A dt dt dt dq da q q f d f dl + + dt dt A f (, dt l dt 65 66

12 Τεχνική πρόοδος Τεχνική πρόοδος Διαιρώντας με q παίρνουμε dq / dt da / dt f / d f / l dl + + q A f (, dt f (, dt dq / dt da / dt f d / dt f l dl / dt + + q A f (, l f (, l Για κάθε μεταβλητή x, [(dx/dt)/x] είναι ο ποσοστιαίος ρυθμός μεταβολής του x Ας το συμβολίσουμε με G x Τότε, η πιο πάνω εξίσωση μπορεί να γραφεί ως εξής f f l Gq GA + G + Gl f (, l f (, Τεχνική πρόοδος Τεχνική πρόοδος σε συνάρτηση Cobb- Douglas Αφού f q f (, q f l q l l f (, l q e q, e q, l Gq GA + eq, G + eq, lg l q A(t)f(, A(t) α l -α Αν υποθέσουμε ότι η τεχνική πρόοδος λαμβάνει χώρα κατά ένα σταθερό εκθέτη (θ) τότε A(t) Ae θ-t q Ae θ-t α l -α Τεχνική πρόοδος σε συνάρτηση Cobb- Douglas Αν πάρουμε τους λογαρίθμους και διαφορίσουμε σε σχέση με το t παίρνουμε την εξίσωση lnq lnq q q t / t q t q G q Τεχνική πρόοδος σε συνάρτηση Cobb- Douglas (ln A + θt + αln + ( α)ln Gq t ln lnl θ + α + ( α) θ + αg t t + ( α) G l 7 7

13 Βραχυχρόνιες και μακροχρόνιες συναρτήσεις Βραχυχρόνιες και μακροχρόνιες συναρτήσεις Μακροχρόνια είναι η περίπτωση στην οποία η επιχείρηση δεν έχει περιορισμούς στη χρήση των ποσοτήτων όλων των συντελεστών. Μπορεί όμως να υπάρχουν πολλοί περιορισμού. Βραχυχρόνια είναι η περίπτωση στην οποία η επιχείρηση δεν μπορεί να μεταβάλει τις ποσότητες όλων των συντελεστών, αλλά μόνο ενός. Τι συνεπάγονται οι περιορισμοί βραχυχρόνια στην τεχνολογία της επιχείρησης; Έστω ότι ο βραχυχρόνιος περιορισμός σημαίνει το να θεωρηθεί σταθερή η ποσότητα του συντελεστή. Ο συντελεστής είναι επομένως σταθερός συντελεστής βραχυχρόνια. Ο συντελεστής παραμένει μεταβλητός Βραχυχρόνιες και μακροχρόνιες συναρτήσεις Βραχυχρόνιες και μακροχρόνιες συναρτήσεις y x x Βραχυχρόνιες και μακροχρόνιες συναρτήσεις Βραχυχρόνιες και μακροχρόνιες συναρτήσεις y y x 77 Τέσσερις βραχυχρόνιες συναρτήσεις παραγωγής 78 3

14 Βραχυχρόνιες και μακροχρόνιες συναρτήσεις /3 /3 y x Είναι η μακροχρόνια συνάρτηση παραγωγής ( x και είναι μεταβλητά). Η βραχυχρόνια συνάρτηση παραγωγής όταν / 3 / 3 / 3 y x x. Η βραχυχρόνια συνάρτηση παραγωγής όταν 0 Βραχυχρόνιες και μακροχρόνιες συναρτήσεις / 3 / 3 y x 0 / 3 / 3 y x 5 / 3 / 3 y x / 3 / 3 y x / 3 / 3 / 3 y x 0 5x Σημεία που πρέπει να προσέξετε Σημεία που πρέπει να προσέξετε Αν όλοι οι συντελεστές, εκτός από ένα, κρατούνται σταθεροί, μπορούμε να συναγάγουμε μια σχέση μεταξύ της μοναδικής μεταβλητής και του προϊόντος Οριακή φυσική παραγωγικότητα είναι η μεταβολή στο προϊόν, που προκύπτει από την αύξηση κατά μια μονάδα της χρήσης του συντελεστή Η παραγωγικότητα αυτή μειώνεται καθώς αυξάνει η χρήση του συντελεστή Η συνάρτηση παραγωγής μπορεί να απεικονιστεί από ένα χάρτη με καμπύλες ίσου προϊόντος Η κλίση της καμπύλης ίσου προϊόντος είναι ο οριακός λόγος τεχνικής υποκατάστασης (RTS) Δείχνει πως ο ένας συντελεστής μπορεί να αντικαταστήσει τον άλλο, ενώ διατηρείται σταθερό το προϊόν. Είναι ο λόγος των οριακών φυσικών παραγωγικοτήτων των δύο συντελεστών 8 8 Σημεία που πρέπει να προσέξετε Σημεία που πρέπει να προσέξετε Οι καμπύλες ίσου προϊόντος υποτίθεται ότι είναι, συνήθως, κυρτές Υπακούουν στην υπόθεση του φθίνοντος RTS Η υπόθεση αυτή δεν μπορεί να εξαχθεί αποκλειστικά από την υπόθεση της φθίνουσας οριακής παραγωγικότητας Πρέπει επίσης να ενδιαφερόμαστε για τις επιδράσεις της μεταβολής ενός συντελεστή στην οριακή παραγωγικότητα των άλλων συντελεστών Οι αποδόσεις κλίμακας που έχει μια συνάρτηση παραγωγής δείχνουν πως το προϊόν αντιδρά στις αναλογικές αυξήσεις όλων των συντελεστών Αν το προϊόν αυξάνει αναλογικά με τους συντελεστές, έχουμε σταθερές αποδόσεις κλίμακας

15 Σημεία που πρέπει να προσέξετε Σημεία που πρέπει να προσέξετε Η ελαστικότητα υποκατάστασης (σ) δίνει ένα μέτρο του πόσο εύκολα μπορούμε να υποκαταστήσουμε στην παραγωγή ένα συντελεστή με έναν άλλο. Υψηλή σ συνεπάγεται σχεδόν ευθείες καμπύλες ίσου προϊόντος Χαμηλή σ συνεπάγεται καμπύλες ίσου προϊόντος με σχήμα L Η τεχνική πρόοδος μετατοπίζει ολόκληρη τη συνάρτηση παραγωγής και το χάρτη καμπυλών ίσου προϊόντος Τεχνικές βελτιώσεις μπορεί να ανακύψουν από τη χρήση πιο παραγωγικών συντελεστών ή καλύτερων μεθόδων οικονομικής οργάνωσης

Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία

Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία Τεχνολογίες Διάλεξη 0 Τεχνολογία Τεχνολογία είναι µια διαδικασία µε την οποία εισροές µετατρέπονται σε εκροές. π.χ. εργασία, ένας υπολογιστής, ένας προβολέας, ηλεκτρισµός, κ.α. Συνδυάζονται για την παραγωγή

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 10: Τεχνολογία Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τεχνολογίες Τεχνολογία είναι μια

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα

Διαβάστε περισσότερα

Παραγωγική διαδικασία. Τεχνολογία

Παραγωγική διαδικασία. Τεχνολογία Σκοπός: Η μελέτη της σχέσης εισροών και εκροών Συντελεστές παραγωγής (Εισροές) Παραγωγική διαδικασία Παραγόμενο Προϊόν (Εκροές) Κεφαλαιουχικά αγαθά Εργασία Γή Επιχειρηματικές ή διοικητικές ικανότητες κλπ

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

Οικονομική της Διοίκησης Ι. Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός

Οικονομική της Διοίκησης Ι. Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός Οικονομική της Διοίκησης Ι Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός Έννοιες (1): Μέση και Οριακή Παραγωγικότητα ( σε συνέχεια της ενότητας -2-) Παραγωγικότητα είναι λέξη μαγική? Οι οικονομολόγοι

Διαβάστε περισσότερα

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).

Διαβάστε περισσότερα

Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις

Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις = 1 3 Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης) = ( ) =

Διαβάστε περισσότερα

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση Οικονοµικό κέρδος Διάλεξη Μεγιστοποίηση Μια επιχείρηση χρησιµοποιεί εισροές j,m για να παραγάγει n προϊόντα i, n. Τα επίπεδα του προϊόντος είναι,, n. Τα επίπεδα των εισροών είναι,, m. Οι τιµές των προϊόντων

Διαβάστε περισσότερα

Ελαχιστοποίηση κόστους

Ελαχιστοποίηση κόστους Ελαχιστοποίηση κόστους Διάλεξη Ελαχιστοποίηση κόστους Μια επιχείρηση ελαχιστοποιεί το κόστος της αν παράγει κάθε δεδοµένο επίπεδο προϊόντος 0 στο µικρότερο δυνατό κόστος. Η ) συµβολίζει το µικρότερο δυνατό

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων και λύσεων

Δεύτερο πακέτο ασκήσεων και λύσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες

Διαβάστε περισσότερα

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη.

Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Είδη κόστους Άμεσο Κόστος απάνες για αγορά ή μίσθωση ΣΠ Έμμεσο Κόστος Τεκμαιρόμενο κόστος

Διαβάστε περισσότερα

Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους

Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους Μορφές καµπυλών κόστους Διάλεξη 13 Καµπύλες κόστους Καµπύλη συνολικού κόστους είναι η γραφική απεικόνιση της συνάρτησης συνολικού κόστους. Καµπύλη µεταβλητού κόστους είναι η γραφική απεικόνιση της συνάρτησης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΘΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Κεφάλαιο 5. Σαρτζετάκης 1 Συνάρτηση παραγωγής Προσδιορίζει τις δυνατότητες παραγωγής ενός αγαθού ή υπηρεσίας (εκροής) ως συνάρτησης των παραγωγικών συντελεστών (εισροών) δεδομένης της τεχνολογίας.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

ΑΡΧΕΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ ΑΡΧΕΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Διάλεξη 9 Θεωρία Προσφοράς (2) 1 Έννοιες και ορισμοί Κόστος παραγωγής εισροή (συντελεστής παραγωγής): κάθε αγαθό ή υπηρεσία που χρησιμοποιείται για την παραγωγή προϊόντος μηχανήματα

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

/ P, παρά το γεγονός ότι στα διαγράµµατα συνεχίζουν

/ P, παρά το γεγονός ότι στα διαγράµµατα συνεχίζουν ΕΝΟΤΗΤΑ 4 4.1 ΟΡΙΣΜΟΣ ΤΗΣ ΠΡΟΣΦΟΡΑΣ ΚΑΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ατοµική καµπύλη προσφοράς Προσδιοριστικοί παράγοντες της προσφοράς Η καµπύλη προσφοράς αποτελεί το γεωµετρικό τόπο όλων των σηµείων που αντιστοιχούν

Διαβάστε περισσότερα

Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Θεωρία Παραγωγής και Κόστους

Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Θεωρία Παραγωγής και Κόστους Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται βασικά στοιχεία

Διαβάστε περισσότερα

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί ΕΠΑΝΑΛΗΠΤΙΚΟ test ΣΤΟ ΚΕΦΑΛΑΙΟ 3 Σημειώστε το Σ αν η φράση είναι σωστή και το Λ αν η φράση είναι λανθασμένη: 1. Βραχυχρόνια περίοδος είναι το χρονικό διάστημα μέσα στο οποίο η επιχείρηση δεν μπορεί να

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 23/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την

Διαβάστε περισσότερα

Α1. α. Λ β. Σ γ. Σ δ. Σ ε. Λ

Α1. α. Λ β. Σ γ. Σ δ. Σ ε. Λ Ενδεικτικές Απαντήσεις Γ Λυκείου Φεβρουάριος Αρχές Οικονοµικής Θεωρίας επιιλογής Α. α. Λ β. Σ γ. Σ δ. Σ ε. Λ ΟΜΑΔΑ ΠΡΩΤΗ Α. δ Α. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ Β. Σχολικό βιβλίο, σελ. 5: «Τα οικονομικά αγαθά και οι υπηρεσίες

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 28-29 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 ΝΟΜΟΣ ΠΡΟΣΦΟΡΑΣ Σύµφωνα

Διαβάστε περισσότερα

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία :

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Εισαγωγή Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : Συνειδητή προσπάθεια για το

Διαβάστε περισσότερα

6. Η καμπύλη του οριακού προϊόντος τέμνει πάντοτε την καμπύλη του μέσου προϊόντος από πάνω προς τα κάτω στη μέγιστη τιμή του.

6. Η καμπύλη του οριακού προϊόντος τέμνει πάντοτε την καμπύλη του μέσου προϊόντος από πάνω προς τα κάτω στη μέγιστη τιμή του. ΚΕΦΑΛΑΙΟ 3: Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΚΑΙ ΤΟ ΚΟΣΤΟΣ Να σημειώσετε με Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Σε μία παραγωγική διαδικασία το άθροισμα των τιμών του οριακού προϊόντος σε κάθε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 4 ο : Η Προσφορά των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Δίνονται τα διπλανά δεδομένα μιας επιχείρησης στη βραχυχρόνια περίοδο. i. Να κάνετε

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

1 Μερική παραγώγιση και μερική παράγωγος

1 Μερική παραγώγιση και μερική παράγωγος Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 5: Θεωρία της Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους

Διαβάστε περισσότερα

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ

Διαβάστε περισσότερα

6. Η ελαστικότητα της προσφοράς ορίζεται ως ο λόγος της μεταβολής της προσφερόμενης ποσότητας προς τη μεταβολή της τιμής.

6. Η ελαστικότητα της προσφοράς ορίζεται ως ο λόγος της μεταβολής της προσφερόμενης ποσότητας προς τη μεταβολή της τιμής. ΚΕΦΑΛΑΙΟ 4: Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ Να σημειώσετε με Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Η ελαστικότητα προσφοράς είναι μικρότερη στη μακροχρόνια περίοδο από ότι είναι στη βραχυχρόνια περίοδο.

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου

Διαβάστε περισσότερα

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας. Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ

Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας. Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ Προτεινόμενο διαγώνισμα στις Αρχές Οικονομικής Θεωρίας Ομάδα Α ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ- ΛΑΘΟΥΣ 1. Για ένα αγαθό όταν η σταθερά γ είναι ίση με το μηδέν τότε η καμπύλη προσφοράς διέρχεται από την αρχή των αξόνων.

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά.

ΑΠΑΝΤΗΣΕΙΣ. Α.4. Αν αυξηθεί η αμοιβή της εργασίας η καμπύλη του οριακού κόστους μετατοπίζεται προς τα επάνω και αριστερά. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

) = 2lnx lnx 2

) = 2lnx lnx 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Σεπτέµβριος 8 Τµήµα Οικονοµικών Επιστηµών Μάθηµα: Μικροοικονοµική Ι ιδάσκοντες: Β. Ράπανος-Ι Χειάς Εξέταση στη Μικροοικονοµική Ι Στην εξέταση αυτή δίνονται δύο σύνοα το Α και το Β.

Διαβάστε περισσότερα

Μάθηµα Τέταρτο-Πέµπτο -Ασκήσεις Μικροοικονοµικής (Προσφορά) Ασκήσεις

Μάθηµα Τέταρτο-Πέµπτο -Ασκήσεις Μικροοικονοµικής (Προσφορά) Ασκήσεις Μάθηµα Τέταρτο-Πέµπτο -Ασκήσεις Μικροοικονοµικής (Προσφορά) Ασκήσεις Άσκηση 1 Ένας παραγωγός καλλιεργεί 1 στρέµµα εδάφους µε τη χρησιµοποίηση 100 κιλών σπόρων. Το µέγεθος της παραγωγής µε πλήρη αξιοποίηση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/ ΟΜΑΔΑ ΠΡΩΤΗ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)/29.12.2015 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. α) Λάθος β) Σωστό γ) Λάθος δ)σωστό ε) Λάθος Α2. δ Α3. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.α) Το εισόδημα των καταναλωτών.

Διαβάστε περισσότερα

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων.

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Σωστό, Λάθος, Ο νόμος της φθίνουσας η μη ανάλογης απόδοσης:

ΘΕΜΑ 1ο Σωστό, Λάθος, Ο νόμος της φθίνουσας η μη ανάλογης απόδοσης: ΘΕΜΑ 1ο Για τις προτάσεις από 1 μέχρι και 15 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση είναι σωστή, και Λάθος, αν η πρόταση είναι λανθασμένη

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Σωστό β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό Α2. γ Α3. δ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1. Σχολικό βιβλίο σελ.16: «Τα στοιχεία που συντελούν

Διαβάστε περισσότερα

Η επιστήμη της επιλογής υπό περιορισμούς

Η επιστήμη της επιλογής υπό περιορισμούς ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΓΡΗΓΟΡΗ ΕΠΑΝΑΛΗΨΗ 26/2/2010 1 ΟΙΚΟΝΟΜΙΚΗ Η επιστήμη της επιλογής υπό περιορισμούς 26/2/2010 2 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η μελέτη των επιλογών τις οποίες κάνουν οι μικρο-μονάδες μιας οικονομίας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Τι πρέπει να κατανοήσει ο μαθητής Το κεφάλαιο εξετάζει την προσφορά των αγαθών, η οποία βασίζεται στη θεωρία παραγωγής και στη συμπεριφορά της επιχείρησης. Στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

45 Γ. 0 10 Β Χ 2. Η τεχνολογία βελτιώθηκε στην παραγωγή: β) Του Υ µόνο

45 Γ. 0 10 Β Χ 2. Η τεχνολογία βελτιώθηκε στην παραγωγή: β) Του Υ µόνο 3 Ασκήσεις πολλαπλής επιλογής στην 1 η ενότητα: Παραγωγικές δυνατότητες Χρησιµότητα Ζήτηση 1. Στην Οικονοµική επιστήµη ως οικονοµικό πρόβληµα χαρακτηρίζουµε: α) Την έλλειψη χρηµάτων που αντιµετωπίζει µια

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το

Διαβάστε περισσότερα

4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές

4.1 Ζήτηση εργασίας στο βραχυχρόνιο διάστημα - Ανταγωνιστικές αγορές 4. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Η ζήτηση εργασίας στο σύνολο της οικονομίας ορίζεται ως ο αριθμός εργαζομένων που οι επιχειρήσεις επιθυμούν να απασχολούν

Διαβάστε περισσότερα

συνήθως είναι η γη, η τεχνολογία, τα μηχανήματα, τα κτίρια και γενικά ο κεφαλαιουχικός εξοπλισμός.

συνήθως είναι η γη, η τεχνολογία, τα μηχανήματα, τα κτίρια και γενικά ο κεφαλαιουχικός εξοπλισμός. Α. Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ Η Ε Ν Ν Ο Ι Α Τ Η Σ Π Α Ρ Α Γ Ω Γ Η Σ Κ Α Ι Τ Α Χ Α Ρ Α Κ Τ Η Ρ Ι Σ Τ Ι Κ Α Τ Η Σ Παραγωγή Η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές μετατρέπονται σε αγαθά

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ 1 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α Α.1. ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε

Διαβάστε περισσότερα

Μεγιστοποίηση του Κέρδους

Μεγιστοποίηση του Κέρδους Μεγιστοποίηση του Κέρδους - Έστω η συνάρτηση παραγωγής: q = f ( x,..., x ). - Η τιμή του παραγόμενου προϊόντος είναι και οι τιμές των εισροών είναι w= ( w,..., w ). - Υπόθεση: Η επιχείρηση είναι αποδέκτης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑ Α Α κ ΙΑΓΩΝΙΣΜΑ Α Α. 1. Να χαρακτηρίσετε Σωστή ή Λάθος καθεµία από τις παρακάτω προτάσεις. α. Η αύξηση του εισοδήµατος των καταναλωτών θα αυξήσει και τη ζήτηση για

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Αρχές Οικονομικής Θεωρίας Γ λυκείου ο ι κονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Αρχές Οικονομικής Θεωρίας Γ λυκείου ο ι κονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 2 0 6 Αρχές Οικονομικής Θεωρίας Γ λυκείου ο ι κονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

Οικονομικά του Τουρισμού και του Πολιτισμού 2

Οικονομικά του Τουρισμού και του Πολιτισμού 2 Οικονομικά του Τουρισμού και του Πολιτισμού 2 Υπεύθυνοι μαθήματος Κ αθηγητής Μιχαήλ Ζ ουμπουλάκης Επίκουρος Καθηγητής Θεόδωρος Μεταξάς 1 Ο κλάδος παραγωγής τουριστικών προϊόντων Δραστηριότητες που παράγουν

Διαβάστε περισσότερα

Μεγιστοποίηση του Κέρδους

Μεγιστοποίηση του Κέρδους Μεγιστοποίηση του Κέρδους - Έστω η συνάρτηση παραγωγής: f( K, L). - Η τιμή του παραγόμενου προϊόντος είναι p, ητιμήτηςεργασίας είναι w και η τιμή του κεφαλαίου είναι r. - Υπόθεση: Η επιχείρηση είναι αποδέκτης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.3. Το μέσο μεταβλητό κόστος στην αρχή μειώνεται και μετά αυξάνεται.

ΑΠΑΝΤΗΣΕΙΣ. Α.3. Το μέσο μεταβλητό κόστος στην αρχή μειώνεται και μετά αυξάνεται. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη:, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1. Αν

Διαβάστε περισσότερα

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)

Διαβάστε περισσότερα

Προτιµήσεις-Υπενθύµιση

Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση ιάλεξη 4 Χρησιµότητα x y: To x προτιµάται σαφώς από το y. x y: Το x και το y προτιµούνται εξίσου. y: Το x προτιµάται τουλάχιστο όσο και το y. x f Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση

Διαβάστε περισσότερα

Μεγιστοποίηση της Χρησιμότητας

Μεγιστοποίηση της Χρησιμότητας Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Ελαστικότητα Ελαστικότητα Γενικά η ελαστικότητα μας δείχνει πως αντιδρά μια εξαρτημένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΚΑΙ ΤΟ ΚΟΣΤΟΣ

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΚΑΙ ΤΟ ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΚΑΙ ΤΟ ΚΟΣΤΟΣ 1. Τι πρέπει να κατανοήσει ο μαθητής Στο πρώτο μέρος του κεφαλαίου αναπτύσσεται η έννοια της παραγωγής, η κατανόηση της οποίας αποτελεί απαραίτητη

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 02/06/207

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 02/06/207 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 02/06/207 ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση είναι σωστή, και

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση Ι

Μικροοικονομική Ανάλυση Ι Μικροοικονομική Ανάλυση Ι Θεωρία της Παραγωγής Παραγωγή στη βραχυχρόνια περίοδο Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας

Διαβάστε περισσότερα

Ελαχιστοποίηση του Κόστους

Ελαχιστοποίηση του Κόστους Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης του κέρδους: (1) Επιτρέπει τη διατύπωση μιας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΟΜΑ Α ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΣΟΧΗ: Όσα θέματα είναι σκιασμένα με θαλασσί χρώμα είναι ΕΚΤΟΣ ΥΛΗΣ 2000 Α1 Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα