Αριθμοθεωρητικοί Αλγόριθμοι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμοθεωρητικοί Αλγόριθμοι"

Transcript

1 Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος είναι πολυωνυμικού χρόνου εάν ο χρόνος εκτέλεσης είναι πολυωνυμικός ως προς το

2 Σύνολο ακεραίων Σύνολο φυσικών Έστω ακέραιοι. Συμβολισμός: - ο διαιρεί τον Πρώτος αριθμός : μοναδικοί διαιρέτες του: π.χ. Θεώρημα της διαίρεσης Έστω ακέραιοι και. Τότε υπάρχουν μοναδικοί ακέραιοι και τέτοιοι ώστε και

3 Θεώρημα της διαίρεσης Έστω ακέραιοι και. Τότε υπάρχουν μοναδικοί ακέραιοι και τέτοιοι ώστε και πηλίκο υπόλοιπο Κλάση ισοδυναμίας modulo n κλάση ισοδυναμίας του π.χ. Για απλότητα γράφουμε όπου υπονοείται

4 Κοινοί διαιρέτες Έστω και. Τότε για οποιαδήποτε μέγιστος κοινός διαιρέτης των Θεώρημα Έστω το σύνολο των γραμμικών συνδυασμών δύο ακεραίων όπου τουλάχιστον ένας είναι. Τότε Απόδειξη Έστω και έστω Έχουμε Αφού, πρέπει Ομοίως, πρέπει. Επομένως

5 Κοινοί διαιρέτες Έστω και. Τότε για οποιαδήποτε μέγιστος κοινός διαιρέτης των Θεώρημα Έστω το σύνολο των γραμμικών συνδυασμών δύο ακεραίων όπου τουλάχιστον ένας είναι. Τότε Απόδειξη Όμως και Επομένως Προηγουμένως δείξαμε ότι, άρα συνεπάγεται

6 Ιδιότητες και για οποιοδήποτε μη αρνητικό και

7 Αμοιβαία Πρώτοι Ακέραιοι π.χ. για κάποιους Θεώρημα Αν και τότε Θεώρημα Έστω πρώτος αριθμός. Αν τότε ή (ή και τα δύο).

8 Θεώρημα Μοναδικής Παραγοντοποίησης Οποιοσδήποτε σύνθετος ακέραιος ως γινόμενο της μορφής μπορεί να γραφτεί με έναν και μόνο τρόπο όπου τα είναι πρώτοι αριθμοί,, και τα θετικοί ακέραιοι. Η παραγοντοποίηση σύνθετων ακέραιων είναι δύσκολο πρόβλημα, (ειδικά για αριθμούς της μορφής όπου μεγάλοι πρώτοι αριθμοί)

9 Μέγιστος Κοινός Διαιρέτης Έστω θετικοί ακέραιοι με παραγοντοποίηση σε πρώτους αριθμούς και Τότε

10 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι int Euclid(int a, int b) { if b==0 return a; return Euclid(b, a%b); } Παράδειγμα Euclid (128,40)= Euclid (40,8)= Euclid (8,0)= 8 Ευκλείδης (300 πχ)

11 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Απόδειξη Έστω Έχουμε και Ευκλείδης (300 πχ)

12 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Απόδειξη Έστω Έχουμε και Ευκλείδης (300 πχ)

13 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Ιδιότητα: Αν τότε 0 a mod b b a/2 a Απόδειξη: Ευκλείδης (300 πχ) 0 a/2 b a a mod b

14 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Ιδιότητα: Αν τότε 0 b a/2 a Ευκλείδης (300 πχ) a mod b χρειάζονται αναδρομικές κλήσεις 0 a/2 b a κλήσεις για αριθμούς των bits a mod b

15 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Λήμμα: Αν και ο αλγόριθμος του Ευκλείδη πραγματοποιεί αναδρομικές κλήσεις, τότε και, όπου οι αριθμοί Fibonacci Ευκλείδης (300 πχ) Απόδειξη Με επαγωγή ως προς. Βάση Τότε

16 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Λήμμα: Αν και ο αλγόριθμος του Ευκλείδη πραγματοποιεί αναδρομικές κλήσεις, τότε και, όπου οι αριθμοί Fibonacci Ευκλείδης (300 πχ) Απόδειξη Επαγωγικό βήμα.. Επιπλέον

17 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Λήμμα: Αν και ο αλγόριθμος του Ευκλείδη πραγματοποιεί αναδρομικές κλήσεις, τότε και, όπου οι αριθμοί Fibonacci Ευκλείδης (300 πχ) Απόδειξη Επαγωγικό βήμα.. Επιπλέον Άρα

18 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Θεώρημα του Lame Για οποιοδήποτε ακέραιο, αν και, τότε ο αλγόριθμος του Ευκλείδη πραγματοποιεί αναδρομικές κλήσεις Ευκλείδης (300 πχ)

19 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη Βασίζεται στον κανόνα όπου είναι θετικοί ακέραιοι Θεώρημα του Lame Για οποιοδήποτε ακέραιο, αν και, τότε ο αλγόριθμος του Ευκλείδη πραγματοποιεί αναδρομικές κλήσεις Ευκλείδης (300 πχ) Χειρότερη περίπτωση:

20 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη - Επέκταση Υπολογίζει τους συντελεστές του γραμμικού συνδυασμού Ευκλείδης (300 πχ)

21 Μέγιστος Κοινός Διαιρέτης Αλγόριθμος του Ευκλείδη - Επέκταση Υπολογίζει τους συντελεστές του γραμμικού συνδυασμού Ευκλείδης (300 πχ) Άρα

22 Πρόσθεση modulo n

23 Ομάδα σύνολο στοιχείων διμελής πράξη επί του Ιδιότητες 1. Κλειστότητα: Για όλα τα ισχύει 2. Ουδέτερο στοιχείο: Υπάρχει τέτοιο ώστε 3. Προσεταιριστικότητα: Για όλα τα, ισχύει ότι 4. Αντίστροφο στοιχείο: Για κάθε υπάρχει μοναδικό τέτοιο ώστε

24 Ομάδα σύνολο στοιχείων διμελής πράξη επί του Ιδιότητες 1. Κλειστότητα: Για όλα τα ισχύει 2. Ουδέτερο στοιχείο: Υπάρχει τέτοιο ώστε 3. Προσεταιριστικότητα: Για όλα τα, ισχύει ότι 4. Αντίστροφο στοιχείο: Για κάθε υπάρχει μοναδικό τέτοιο ώστε Αβελιανή Ομάδα: Ικανοποιεί επιπλέον 5. Αντιμεταθετικότητα: Για όλα τα ισχύει

25 Ομάδα σύνολο στοιχείων διμελής πράξη επί του Ιδιότητες 1. Κλειστότητα: Για όλα τα ισχύει 2. Ουδέτερο στοιχείο: Υπάρχει τέτοιο ώστε 3. Προσεταιριστικότητα: Για όλα τα, ισχύει ότι 4. Αντίστροφο στοιχείο: Για κάθε υπάρχει μοναδικό τέτοιο ώστε Αβελιανή Ομάδα: Ικανοποιεί επιπλέον 5. Αντιμεταθετικότητα: Για όλα τα ισχύει Πεπερασμένη Ομάδα:

26 Ομάδες επί του Έστω και Έχουμε Πρόσθεση modulo n : προσθετική ομάδα modulo n Είναι πεπερασμένη ομάδα με Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα

27 Ομάδες επί του Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα Ιδιότητες 1. Κλειστότητα: 2. Ουδέτερο στοιχείο: 3. Προσεταιριστικότητα: 4. Αντίστροφο στοιχείο: 5. Αντιμεταθετικότητα:

28 Ομάδες επί του Έστω και Έχουμε Πολλαπλασιασμός modulo n : όπου πολλαπλασιαστική ομάδα modulo n Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα

29 Ομάδες επί του Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα Ιδιότητες 1. Κλειστότητα: 2. Ουδέτερο στοιχείο: 3. Προσεταιριστικότητα: 4. Αντίστροφο στοιχείο: 5. Αντιμεταθετικότητα:

30 Ομάδες επί του Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα Ιδιότητες 4. Αντίστροφο στοιχείο: π.χ. έχουμε άρα Διαίρεση στο : π.χ. πολλαπλασιαστικό αντίστροφο του

31 Ομάδες επί του Θεώρημα Το σύστημα είναι πεπερασμένη αβελιανή ομάδα Συνάρτηση φ του Euler π.χ. Για πρώτο αριθμό : Για σύνθετο αριθμό :

32 Ομάδες επί του Απλοποιημένες αναπαραστάσεις

33 Υποομάδες Ομάδα Σύστημα Αν το είναι ομάδα τότε λέμε ότι το είναι υποομάδα του Θεώρημα Αν το είναι πεπερασμένη ομάδα και τέτοιο ώστε για όλα τα, τότε το είναι υποομάδα του π.χ. και

34 Υποομάδες Ομάδα Σύστημα Αν το είναι ομάδα τότε λέμε ότι το είναι υποομάδα του Θεώρημα Αν το είναι πεπερασμένη ομάδα και τέτοιο ώστε για όλα τα, τότε το είναι υποομάδα του Θεώρημα του Lagrange Αν είναι πεπερασμένη ομάδα και είναι υποομάδα της τότε το είναι διαιρέτης του

35 Υποομάδες Ομάδα Σύστημα Αν το είναι ομάδα τότε λέμε ότι το είναι υποομάδα του Θεώρημα Αν το είναι πεπερασμένη ομάδα και τέτοιο ώστε για όλα τα, τότε το είναι υποομάδα του Θεώρημα του Lagrange Αν είναι πεπερασμένη ομάδα και είναι υποομάδα της τότε το είναι διαιρέτης του Γνήσια υποομάδα Πόρισμα Αν είναι πεπερασμένη ομάδα και είναι γνήσια υποομάδα της τότε

36 Υποομάδες που γεννώνται από στοιχεία Ομάδα Παίρνουμε όλα τα στοιχεία που παράγονται μέσω της πράξης που έχουμε επιλέξει από ένα π.χ. τότε για έχουμε την ακολουθία

37 Υποομάδες που γεννώνται από στοιχεία Ομάδα Παίρνουμε όλα τα στοιχεία που παράγονται μέσω της πράξης που έχουμε επιλέξει από ένα Από την προσεταιριστικότητα της έχουμε Υποομάδα που γεννάται από το : π.χ. στο

38 Υποομάδες που γεννώνται από στοιχεία Ομάδα Παίρνουμε όλα τα στοιχεία που παράγονται μέσω της πράξης που έχουμε επιλέξει από ένα Από την προσεταιριστικότητα της έχουμε Υποομάδα που γεννάται από το : π.χ. στο

39 Υποομάδες που γεννώνται από στοιχεία Ομάδα Παίρνουμε όλα τα στοιχεία που παράγονται μέσω της πράξης που έχουμε επιλέξει από ένα Από την προσεταιριστικότητα της έχουμε Υποομάδα που γεννάται από το : Τάξη του : δηλαδή ο μικρότερος θετικός ακέραιος που δίνει το ουδέτερο στοιχείο Θεώρημα Έστω πεπερασμένη ομάδα και. Τότε

40 Υποομάδες που γεννώνται από στοιχεία Θεώρημα Έστω πεπερασμένη ομάδα και. Τότε Απόδειξη Έστω άρα Συνεπάγεται ότι για κάθε υπάρχει τέτοιο ώστε Επομένως Απομένει να δείξουμε ότι τα στοιχεία είναι όλα διαφορετικά Έστω όπου. Τότε ισχύει οπότε για έχουμε Όμως άρα πρέπει, δηλαδή καταλήγουμε σε άτοπο

41 Υποομάδες που γεννώνται από στοιχεία Θεώρημα Έστω πεπερασμένη ομάδα και. Τότε Πόρισμα Η ακολουθία Δηλαδή είναι περιοδική με περίοδο Ορίζουμε Πόρισμα Έστω πεπερασμένη ομάδα και. Τότε

42 Υπολοιπικές Γραμμικές Εξισώσεις Δίνονται ακέραιοι όπου Θέλουμε να βρούμε όλες τις λύσεις της εξίσωσης

43 Υπολοιπικές Γραμμικές Εξισώσεις Δίνονται ακέραιοι όπου Θέλουμε να βρούμε όλες τις λύσεις της εξίσωσης Υπό ποιες προϋποθέσεις υπάρχει λύση; Έστω η υποομάδα της που γεννάται από το Παρατηρούμε ότι επομένως για να υπάρχει λύση πρέπει

44 Υπολοιπικές Γραμμικές Εξισώσεις Δίνονται ακέραιοι όπου Θέλουμε να βρούμε όλες τις λύσεις της εξίσωσης Έστω η υποομάδα της που γεννάται από το. Πρέπει Θεώρημα Έστω, όπου θετικοί ακέραιοι. Τότε και επομένως

45 Υπολοιπικές Γραμμικές Εξισώσεις Θεώρημα Έστω, όπου θετικοί ακέραιοι. Τότε και επομένως Απόδειξη Έστω η τριάδα που επιστρέφει η κλήση Άρα

46 Υπολοιπικές Γραμμικές Εξισώσεις Θεώρημα Έστω, όπου θετικοί ακέραιοι. Τότε και επομένως Απόδειξη Έστω η τριάδα που επιστρέφει η κλήση Άρα Απομένει να δείξουμε Έστω. Τότε υπάρχουν ακέραιοι τέτοιοι ώστε και. Όμως και άρα

47 Υπολοιπικές Γραμμικές Εξισώσεις Θεώρημα Έστω, όπου θετικοί ακέραιοι. Τότε και επομένως Πόρισμα Η εξίσωση είναι επιλύσιμη ως προς το εάν και μόνο εάν Πόρισμα Η εξίσωση είτε έχει διαφορετικές λύσεις modulo n είτε καμία

48 Υπολοιπικές Γραμμικές Εξισώσεις Θεώρημα Έστω, και ακέραιοι τέτοιοι ώστε Εάν τότε μια από τις λύσεις της εξίσωσης είναι η Θεώρημα Έστω, και μια λύση της εξίσωσης Τότε αυτή η εξίσωση έχει ακριβώς λύσεις, modulo n, οι οποίες δίνονται από τη σχέση

49 Υπολοιπικές Γραμμικές Εξισώσεις Πόρισμα Για οποιοδήποτε, εάν, τότε η εξίσωση έχει μοναδική λύση, modulo n. Πόρισμα Για οποιοδήποτε, εάν, τότε η εξίσωση έχει μοναδική λύση, modulo n. Σε αντίθετη περίπτωση δεν έχει καμία λύση. Εάν η εξίσωση έχει λύση τότε η μοναδική λύση της είναι ο πολλαπλασιαστικός αντίστροφος του Έστω Τότε

50 Το Κινέζικο Θεώρημα Υπολοίπου Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Η απεικόνιση όπου και είναι 1-προς-1 αντιστοιχία (ισομορφισμός) Οι πράξεις που εκτελούνται στα στοιχεία του στις -αδες εκτελούμενες ανεξάρτητα. μπορούν να μεταφερθούν Δηλαδή, εάν και τότε

51 Το Κινέζικο Θεώρημα Υπολοίπου Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Η απεικόνιση όπου και είναι 1-προς-1 αντιστοιχία (ισομορφισμός) Οι πράξεις που εκτελούνται στα στοιχεία του στις -αδες εκτελούμενες ανεξάρτητα. μπορούν να μεταφερθούν Μετασχηματισμός : Πραγματοποιείται εύκολα με διαιρέσεις

52 Το Κινέζικο Θεώρημα Υπολοίπου Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Η απεικόνιση όπου και είναι 1-προς-1 αντιστοιχία (ισομορφισμός) Οι πράξεις που εκτελούνται στα στοιχεία του στις -αδες εκτελούμενες ανεξάρτητα. μπορούν να μεταφερθούν Μετασχηματισμός : Θέτουμε για : Για άρα έχουμε: ενώ

53 Το Κινέζικο Θεώρημα Υπολοίπου Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Η απεικόνιση όπου και είναι 1-προς-1 αντιστοιχία (ισομορφισμός) Οι πράξεις που εκτελούνται στα στοιχεία του στις -αδες εκτελούμενες ανεξάρτητα. μπορούν να μεταφερθούν Πόρισμα Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Τότε για οποιουσδήποτε ακέραιους το σύνολο των εξισώσεων έχει μοναδική λύση modulo n για τον άγνωστο

54 Το Κινέζικο Θεώρημα Υπολοίπου Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Η απεικόνιση όπου και είναι 1-προς-1 αντιστοιχία (ισομορφισμός) Οι πράξεις που εκτελούνται στα στοιχεία του στις -αδες εκτελούμενες ανεξάρτητα. μπορούν να μεταφερθούν Πόρισμα Έστω όπου τα είναι αμοιβαία πρώτοι ανά δύο αριθμοί. Τότε για οποιουσδήποτε ακέραιους εάν και μόνο εάν

55 Δυνάμεις ενός στοιχείου Ακολουθία δυνάμεων Π.χ. υποομάδα της που γεννάται από το με επαναληπτικό πολλαπλασιασμό τάξη του στο

56 Δυνάμεις ενός στοιχείου Ακολουθία δυνάμεων Π.χ. υποομάδα της που γεννάται από το με επαναληπτικό πολλαπλασιασμό τάξη του στο Εάν τότε το είναι γεννήτορας (ή αρχική ρίζα) του Εάν το έχει γεννήτορα τότε ονομάζεται κυκλική ομάδα

57 Δυνάμεις ενός στοιχείου Ακολουθία δυνάμεων υποομάδα της που γεννάται από το με επαναληπτικό πολλαπλασιασμό τάξη του στο Εάν τότε το είναι γεννήτορας (ή αρχική ρίζα) του Εάν το έχει γεννήτορα τότε ονομάζεται κυκλική ομάδα Θεώρημα Οι τιμές του για τις οποίες η ομάδα είναι κυκλική είναι οι και για κάθε πρώτο αριθμό και κάθε θετικό ακέραιο

58 Δυνάμεις ενός στοιχείου Ακολουθία δυνάμεων υποομάδα της που γεννάται από το με επαναληπτικό πολλαπλασιασμό τάξη του στο Θεώρημα του Euler Για οποιοδήποτε ακέραιο για κάθε Θεώρημα του Fermat (Fermat s little theorem) Εάν ο είναι πρώτος αριθμός, τότε για κάθε

59 Διακριτός Λογάριθμος (Discrete Logarithm) Έστω ένας γεννήτορας του. Ο διακριτός λογάριθμος ή δείκτης του είναι ένας αριθμός που ικανοποιεί τη σχέση διακριτός λογάριθμος του στη βάση Θεώρημα του διακριτού λογαρίθμου Έστω ένας γεννήτορας του. Τότε η ισότητα ισχύει εάν και μόνο εάν Απόδειξη Έχουμε

60 Διακριτός Λογάριθμος (Discrete Logarithm) Έστω ένας γεννήτορας του. Ο διακριτός λογάριθμος ή δείκτης του είναι ένας αριθμός που ικανοποιεί τη σχέση διακριτός λογάριθμος του στη βάση Θεώρημα του διακριτού λογαρίθμου Έστω ένας γεννήτορας του. Τότε η ισότητα ισχύει εάν και μόνο εάν Απόδειξη Έχουμε έχει περίοδο. Επομένως άρα η ακολουθία δυνάμεων του

61 Διακριτός Λογάριθμος (Discrete Logarithm) Έστω ένας γεννήτορας του. Ο διακριτός λογάριθμος ή δείκτης του είναι ένας αριθμός που ικανοποιεί τη σχέση διακριτός λογάριθμος του στη βάση Θεώρημα Αν ο είναι περιττός πρώτος αριθμός και τότε οι μοναδικές λύσεις της εξίσωσης είναι Απόδειξη Έστω γεννήτορας του Τότε Έχουμε άρα υπάρχουν 2 λύσεις

62 Διακριτός Λογάριθμος (Discrete Logarithm) Αν και ικανοποιεί την εξίσωση τότε ο είναι μη τετριμμένη τετραγωνική ρίζα του Πόρισμα Εάν υπάρχει μη τετριμμένη τετραγωνική ρίζα του είναι σύνθετος τότε ο αριθμός Το παραπάνω πόρισμα χρησιμοποιείται για τον έλεγχο αν ο είναι πρώτος

63 Υπολογισμός δύναμης με επαναληπτικό τετραγωνισμό Γρήγορος υπολογισμός του Έστω η δυαδική αναπαράσταση του Πριν την κάθε επανάληψη του βρόχου

64 Κρυπτογράφηση κρυπτογράφηση αποκρυπτογράφηση Bob Eavesdropper Alice

65 Κρυπτοσύστημα Δημόσιου Κλειδιού κρυπτογράφηση αποκρυπτογράφηση Bob Eavesdropper Alice Κάθε συμμετέχων έχει ένα δημόσιο κλειδί και ένα κρυφό κλειδί

66 Κρυπτοσύστημα Δημόσιου Κλειδιού Προμηθεύεται το δημόσιο κλειδί της Alice Bob Υπολογίζει το κρυπτογράφημα Στέλνει το στην Alice Λαμβάνει το Alice Εφαρμόζει το κρυφό της κλειδί Υπολογίζει το αρχικό μήνυμα

67 Ψηφιακή Υπογραφή υπογραφή επαλήθευση αποδοχή Alice Bob Κάθε συμμετέχων έχει ένα δημόσιο κλειδί και ένα κρυφό κλειδί

68 Ψηφιακή Υπογραφή Θέλει να στείλει ένα ψηφιακά υπογεγραμμένο μήνυμα Alice Υπολογίζει την ψηφιακή της υπογραφή Στέλνει το ζεύγος μήνυμα/υπογραφή Προμηθεύεται το δημόσιο κλειδί της Alice Bob Υπολογίζει τo Εάν τότε αποδέχεται το μήνυμα

69 Κρυπτοσύστημα RSA (Rivest, Shamir and Adleman) Διαδικασία υπολογισμού δημόσιου κλειδιού και κρυφού κλειδιού 1. Επιλέγει τυχαία δύο μεγάλους πρώτους αριθμούς 2. Υπολογίζει το γινόμενο 3. Επιλέγει μικρό περιττό ακέραιο αμοιβαία πρώτο με το 4. Υπολογίζει το πολλαπλασιαστικό αντίστροφο του 5. Δημοσιοποιεί ως προσωπικό δημόσιο κλειδί το ζεύγος 6. Κρατάει μυστικό ως προσωπικό κρυφό κλειδί το ζεύγος Κρυπτογράφηση : Αποκρυπτογράφηση :

70 Κρυπτοσύστημα RSA (Rivest, Shamir and Adleman) Θεώρημα (Ορθότητα συστήματος RSA) Οι εξισώσεις και ορίζουν αντίστροφους μετασχηματισμούς στο :

71 Κρυπτοσύστημα RSA (Rivest, Shamir and Adleman) Θεώρημα (Ορθότητα συστήματος RSA) Οι εξισώσεις και ορίζουν αντίστροφους μετασχηματισμούς στο : Απόδειξη Έχουμε όπου για κάποιον ακέραιο. Έστω. Τότε Όμως, άρα

72 Κρυπτοσύστημα RSA (Rivest, Shamir and Adleman) Θεώρημα (Ορθότητα συστήματος RSA) Οι εξισώσεις και ορίζουν αντίστροφους μετασχηματισμούς στο : Απόδειξη Έχουμε όπου για κάποιον ακέραιο. Έστω. Τότε Όμως, άρα Έστω. Τότε και πάλι

73 Κρυπτοσύστημα RSA (Rivest, Shamir and Adleman) Θεώρημα (Ορθότητα συστήματος RSA) Οι εξισώσεις και ορίζουν αντίστροφους μετασχηματισμούς στο : Απόδειξη Έχουμε όπου για κάποιον ακέραιο. Άρα δείξαμε ότι για κάθε Ομοίως έχουμε, για κάθε Από το κινέζικο θεώρημα υπολοίπου συνεπάγεται

74 Έλεγχος Πρώτευσης Πως μπορούμε να ελέγξουμε αποδοτικά εάν ένας ακέραιος είναι πρώτος; Συνάρτηση κατανομής πρώτων αριθμών πλήθος πρώτων αριθμών Θεώρημα των πρώτων αριθμών Ένας τυχαία επιλεγμένος αριθμός έχει πιθανότητα να είναι πρώτος Απλοϊκός έλεγχος πρώτευσης : Επιχειρούμε να διαιρέσουμε το ακέραιο με κάθε

75 Έλεγχος Ψευδοπρώτευσης Εάν ο Εάν ο είναι πρώτος τότε είναι σύνθετος αλλά ικανοποιεί την σχέση τότε ονομάζεται ψευδοπρώτος ως προς βάση Εάν για κάθε είναι πρώτος Γρήγορος έλεγχος : Επιλέγουμε και ελέγχουμε αν Αν δεν ισχύει δηλώνουμε ότι Διαφορετικά δηλώνουμε ότι σύνθετος πρώτος

76 Έλεγχος Ψευδοπρώτευσης Εάν ο Εάν ο είναι πρώτος τότε είναι σύνθετος αλλά ικανοποιεί την σχέση τότε ονομάζεται ψευδοπρώτος ως προς βάση Εάν για κάθε είναι πρώτος Γρήγορος έλεγχος : Επιλέγουμε και ελέγχουμε αν υπάρχει (μικρή) πιθανότητα σφάλματος Αν δεν ισχύει δηλώνουμε ότι Διαφορετικά δηλώνουμε ότι σύνθετος πρώτος

77 Έλεγχος Ψευδοπρώτευσης Εάν ο Εάν ο είναι πρώτος τότε είναι σύνθετος αλλά ικανοποιεί την σχέση τότε ονομάζεται ψευδοπρώτος ως προς βάση Εάν για κάθε είναι πρώτος Αριθμοί Carmichael : Σύνθετοι αριθμοί που ικανοποιούν για κάθε

78 Έλεγχος Πρώτευσης Miller-Rabin όπου και περιττός ακέραιος Εκτελεί την ακόλουθη ρουτίνα για τυχαίες τιμές του Η παραπάνω ρουτίνα ελέγχει αν ο αποδεικνύει ότι ο είναι σύνθετος

79 Έλεγχος Πρώτευσης Miller-Rabin όπου και περιττός ακέραιος Εκτελεί την ακόλουθη ρουτίνα για τυχαίες τιμές του Η παραπάνω ρουτίνα ελέγχει αν ο αποδεικνύει ότι ο είναι σύνθετος Αν καμία κλήση δεν επιστρέψει τότε ο είναι πρώτος με μεγάλη πιθανότητα

80 Έλεγχος Πρώτευσης Miller-Rabin Αν μια τιμή του δεν αποτελεί τεκμήριο ότι ο είναι σύνθετος τότε Επιπλέον μπορεί να δειχθεί ότι όπου υποομάδα της Άρα από το θεώρημα του Lagrange Επομένως, η πιθανότητα ο να μην αποτελεί τεκμήριο ότι ο είναι σύνθετος είναι, άρα μετά από δοκιμές τυχαίων τιμών του

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

F 5 = (F n, F n+1 ) = 1.

F 5 = (F n, F n+1 ) = 1. Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών

Στοιχεία Θεωρίας Αριθμών Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Διαιρετότητα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Ακέραια διαίρεση. Διαιρετότητα. ΜΚΔ: χρήσιμες ιδιότητες

Διαιρετότητα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Ακέραια διαίρεση. Διαιρετότητα. ΜΚΔ: χρήσιμες ιδιότητες Διαιρετότητα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών H διαιρετότητα

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Χρήστος Κούτρας Γιώργος

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ). ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Αλγεβρικές Δομές και Αριθμοθεωρία

Αλγεβρικές Δομές και Αριθμοθεωρία Κεφάλαιο 9 Αλγεβρικές Δομές και Αριθμοθεωρία 9.1 Εισαγωγή Θα παρουσιάσουμε κάποια στοιχεία από Θεωρία Αριθμών και ελάχιστα από Θεωρία Ομάδων. Οι γνώσεις αυτές είναι οι ελάχιστες απαραίτητες για την κατανόηση

Διαβάστε περισσότερα

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Το Θεώρημα CHEVALLEY-WARNING

Το Θεώρημα CHEVALLEY-WARNING Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΧΡΗΣΗ CAMENISCH- LYSYANSKAYA ΨΗΦΙΑΚΩΝ ΥΠΟΓΡΑΦΩΝ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΩΝ ΠΡΩΤΟΚΟΛΛΩΝ ΜΗΔΕΝΙΚΗΣ ΓΝΩΣΗΣ ΣΕ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ

ΧΡΗΣΗ CAMENISCH- LYSYANSKAYA ΨΗΦΙΑΚΩΝ ΥΠΟΓΡΑΦΩΝ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΩΝ ΠΡΩΤΟΚΟΛΛΩΝ ΜΗΔΕΝΙΚΗΣ ΓΝΩΣΗΣ ΣΕ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΧΡΗΣΗ CAMENISCH- LYSYANSKAYA ΨΗΦΙΑΚΩΝ ΥΠΟΓΡΑΦΩΝ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΩΝ ΠΡΩΤΟΚΟΛΛΩΝ ΜΗΔΕΝΙΚΗΣ ΓΝΩΣΗΣ ΣΕ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ του Θεόφιλου Κανακάρη Μεταπτυχιακό Μάθημα : Διπλωματική Εργασία Επιβλέποντες Καθηγητές

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία Κωνσταντινίδης Ορέστης Σ.Ε.Μ.Φ.Ε. Επιβλέπων καθηγητής: Άρης Παγουρτζής

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματ

Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματ Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματα Βασίζεται στο πρόβλημα του διακριτού λογαρίθμου Αυξημένη

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 1 Το Κρυπτοσύστηµα RSA Η ιδέα της κρυπτογραφίας δηµοσίου κλειδιού παρουσιάσθηκε για πρώτη φορά το 1976 από τους Dffe και Hellman Ένα χρόνο αργότερα, οι R L Rvest, A Shamr

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 2η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας:

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Υπολογισμός της δύναμης z=x b modn

Υπολογισμός της δύναμης z=x b modn Υπολογισμός της δύναμης z=x b modn 1.Γράφουμε τον εκθέτη b στο δυαδικό σύστημα αρίθμησης i b = b i όπου i= 0 bi {0,1} I==0,1,,l-1.Εφαρμόζουμε έπειτα τον εξής αλγόριθμο: z=1 for I=l-1 downto 0 do z=z modn

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα