ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ κατακόρυφος και οριζόντια

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ κατακόρυφος και οριζόντια"

Transcript

1 ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ κατακόρυφος και οριζόντια ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΕΣΩΤΕΡΙΚΩΝ ΧΩΡΩΝ: ΧΩΡΟΙ ΨΥΧΑΓΩΓΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΣΑΡΡΗ ΕΥΤΥΧΙΑ & ΖΟΥΡΟΥΔΗ ΕΙΡΗΝΗ

2 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Μια ματιά στην κατακόρυφο Ο οριζόντιος άξονας Η δύναμη της κολώνας στον χώρο Βιβλιογραφία 2

3 1. ΕΙΣΑΓΩΓΗ Ο χώρος δημιουργείται και δομείται από στοιχεία από τα αντικείμενα που τον κατοικούν. Αυτό σημαίνει ότι οι όγκοι των κτιρίων και οι αποστάσεις μεταξύ τους, καθώς και τα σχήματα, τα όρια και οι άξονες τους οργανώνουν τους χώρους κατοικίας του ανθρώπου εσωτερικά και εξωτερικά. Η σύλληψη του χώρου ως ένα αντικειμενικά υπαρκτό πλαίσιο δεν αποτελεί μόνο ένα αντιληπτικό εφεύρημα, αλλά μια πραγματικότητα που στηρίζεται σε φυσικά γεγονότα θεμελιώδους σημασίας. Μεταξύ αυτών είναι οι επιδράσεις του ηλίου, της σελήνης και των καιρικών συνθηκών. Κι όμως ακόμα και αυτά τα αντικείμενα και οι δυνάμεις είναι δυνατόν να περιγραφούν ως συνιστώσες ιδιαίτερων συμπλεγμάτων, που προσδιορίζουν τον δομικό σκελετό του συγκεκριμένου χώρου που βιώνουμε. Ο άνθρωπος βιώνει τον χώρο στον οποίο ζει ως ασυμμετρικό. Μεταξύ των άπειρων κατευθύνσεων τρισδιάστατου χώρου, στις οποίες μπορεί θεωρητικά να κινηθεί, μια κατεύθυνση διακρίνεται καθαρότερα από τις άλλες εξαιτίας της έλξης της βαρύτητας: η κατακόρυφη. Η κατακόρυφη ενεργεί ως άξονας και πλαίσιο αναφοράς για όλες τις υπόλοιπες κατευθύνσεις. Η ασυμμετρία του αντιληπτού χώρου οφείλεται στους αισθητηριακούς περιορισμούς του ανθρώπου. Εάν είχαμε την ικανότητα να αντιληφθούμε λεπτότερες διακρίσεις, θα παρατηρούσαμε ότι οι κατακόρυφες σε διαφορετικά σημεία δεν τρέχουν παράλληλα, αλλά συγκλίνουν προς ένα κοινό κέντρο, το κέντρο της γης. Γεωμετρικά και οι τρεις συντεταγμένες του Καρτεσιανού χωρικού συστήματος είναι ίσες ως προς τον χαρακτήρα και τη σπουδαιότητα. Ο γήινος χώρος μας όμως διαπερνάτε από την έλξη της βαρύτητας, η οποία ξεχωρίζει την κατακόρυφη ως τη βασική κατεύθυνση. κάθε άλλος χωρικός προσανατολισμός γίνεται αντιληπτός με βάση τη σχέση του προς την κατακόρυφη. Το ενσωματωμένο πρότυπο της κατακόρυφης διεύθυνσης δεν μπορεί κανείς να το παραβεί. Χρειάζεται ένα περιβάλλον με σταθερή 3

4 οπτική κλίση για να παραπλανήσει κάποιον, ώστε να πιστέψει ότι η έλξη στο σώμα του στοχεύει προς μια πλάγια κατεύθυνση. 4

5 2. ΜΙΑ ΜΑΤΙΑ ΣΤΗΝ ΚΑΤΑΚΟΡΥΦΟ Στο χωρικό μας σύστημα η κατακόρυφη κατεύθυνση ορίζει το οριζόντιο επίπεδο ως το μόνο για το οποίο η κατακόρυφος χρησιμεύει ως άξονας συμμετρίας. Είναι το μόνο επίπεδο στο οποίο μπορεί κανείς να κινείται ελεύθερα προς κάθε κατεύθυνση χωρίς να αισθάνεται ότι ανεβαίνει ή κατεβαίνει. Ως εκ τούτου καμία κατεύθυνση στο επίπεδο του εδάφους δεν ξεχωρίζει χωρικά. Ο Christian Noeberg-Schulz έγραψε ότι " οι οριζόντιες κατευθύνσεις αντιπροσωπεύουν τον συγκεκριμένο κόσμο της ανθρώπινης δράσης. Υπό μία έννοια όλες οι οριζόντιες κατευθύνσεις είναι ίσες και διαμορφώνουν ένα επίπεδο άπειρης έκτασης. Το απλούστερο μοντέλο του ανθρώπινου υπαρξιακού χώρου είναι ως εκ τούτου ένα οριζόντιο επίπεδο που διατρυπιέται από έναν κατακόρυφο άξονα''. Από την ασυμμετρία του χώρου συνάγεται ότι η ύπαρξη βιώνεται ουσιαστικά ως κατακορυφότητα. Το να περιέχεται κανείς στην κατάσταση της ύπαρξης σημαίνει να αποσπά τον εαυτό του από τη γη, είτε μέσα από την οργανική ανάπτυξη των φυτών είτε μέσα από την προς τα άνω ώθηση των βουνών, είτε μέσα από το ανθρώπινο ισοδύναμό τους, το κτίριο. Στην καθημερινή οπτική εμπειρία ένα πράγμα ή ένα πλάσμα εμφανίζεται με την ανύψωσή του από το έδαφος και ο κατακόρυφος άξονας αποτελεί μια ιδιαίτερα χαρακτηριστική άποψη του σχήματός του. Γύρω από το κεντρικό στέλεχος ενός τέτοιου άξονα ο όγκος του αντικειμένου τείνει να διατάσσεται συμμετρικά, σε συμφωνία με το γεγονός ότι στο οριζόντιο επίπεδο όλες οι κατευθύνσεις είναι ισοδύναμες. Οι σχέσεις μεταξύ ορθίων αντικειμένων εκλαμβάνονται ως παράλληλες. Δεν κάνουμε άμεσους διασταυρούμενους συσχετισμούς μεταξύ τους, όπως κάνουμε όταν αντιλαμβανόμαστε σχέσεις μέσα σε ένα μοναδικό αντικείμενο. Σε ένα βασικά κατακόρυφο σχήμα βλέπουμε κάθε οριζόντιο στοιχείο πρώτα απ' όλα στη θέση του μέσα στην κατακόρυφη τάξη. Μόνο εντασσόμενο μέσα σε αυτό το γενικό πλαίσιο μπορεί να συγκριθεί με μια παρόμοια λεπτομέρεια ενός γειτονικού αντικειμένου. 5

6 Εάν συγκρίνουμε την εμφάνιση ενός συμμετρικού αντικειμένου όταν είναι τοποθετημένο πρώτα κατακόρυφα και ύστερα οριζόντια αντιλαμβανόμαστε ότι η συμμετρία παρατηρείται πιο άμεσα σε όρθια θέση παρά σε κεκλιμένη. Το κατακόρυφο σχήμα υποτάσσεται στον κυρίαρχο άξονα του χώρου και όλα τα στοιχεία της συμμετρικής διάταξης γίνονται ορατά με τον κανονικό συσχετισμό τους. Πολλές φορές παρατηρούμε σε κτίρια στα οποία "στοιβάζονται οι όροφοι ότι ο τρόπος τοποθέτησης τους πάει αντίθετα με τα νερά της αίσθησης της όρασης, όταν ο κυρίαρχος άξονας είναι κατακόρυφος. Αυτό προβάλλει αντίσταση στη συνήθεια του ματιού να συνδυάζει τους ορόφους σε ένα ενιαίο σύνολα υπό την κατακόρυφη έννοια. Αυτό αντισταθμίζεται με την τοποθέτηση κατακόρυφων κολώνων ή με την κατακόρυφη ευθυγράμμιση των παραθύρων. Μια λύση σε αυτό αποτελεί το να τονίσει κανείς αυτήν την οριζόντια ως κυρίαρχη διάσταση του κτιρίου. Όταν γίνεται αυτό, τα πατώματα ακολουθούν την κατεύθυνση που προσδιορίζεται από τη γενικώς χαμηλά επικρεμάμενη δομή και η κατακόρυφη ενοποίηση, παρότι πάντοτε απαραίτητη, καθίσταται δευτερεύουσα. Η εύκολη κίνηση στο οριζόντιο επίπεδο γίνεται το κυρίαρχο χαρακτηριστικό όλου του κτιρίου. το ελεύθερα εκτεινόμενο επίπεδο του εδάφους επαναλαμβάνεται σε κάθε επίπεδο και το κτίριο "συμμορφώνεται" σε αυτό που ο Frank Lloyd Wright αποκάλεσε " τη γήινη γραμμή της ανθρώπινης ζωής ( τη γραμμή ηρεμίας)". Το οριζόντιο στυλ ζωής ενθαρρύνει την αλληλεπίδραση, την ελεύθερη κινητικότητα από μέρος σε μέρος και την ευκολία της κίνησης, ενώ κατακόρυφα προσανατολισμένη ζωή τονίζει την ιεραρχία, την απομόνωση, τη φιλοδοξία και τον ανταγωνισμό. Ο κυρίαρχος άξονας ενός κατά βάση κατακόρυφου κτιρίου συναντά το έδαφος υπό ορθή γωνία και μια και τα γραμμικά σχήματα έχουν τη δυναμική ιδιότητα να δημιουργούν μια οπτική συνέχεια, εκτός και εάν με κάποιο τρόπο η πορεία τους ανακοπεί, ένα τέτοιο κτίριο μοιάζει σαν να συνεχίζεται μέσα στο έδαφος. Αυτή η οπτική εντύπωση προσδίδει έρεισμα στη βιολογική μεταφορά ότι το κτίριο βγαίνει από το χώμα, όπως τα φυτά. Όταν ένα σχήμα 6

7 φαίνεται ατελές και όταν η ατέλεια αυτή γεννά μια αρκετά ισχυρή τάση προς ολοκλήρωση, επέρχεται η εντύπωση της διείσδυσης. Τα στερεά όπως ο κύλινδρος, η πυραμίδα, ο κώνος κτλ. είναι ασαφή υπό την έννοια ότι μπορεί να δείχνουν είτε ολοκληρωμένα είτε ανολοκλήρωτα, ανάλογα με τον περίγυρο. Αυτό είναι ένας από τους οπτικούς λόγους που οι κλασσικοί κίονες έχουν βάσεις και κιονόκρανα. Αυτά τα στοιχεία τελείωσης εμποδίζουν την επέκταση των κιόνων προς τα επάνω εμποδίζουν την επέκταση των κιόνων προς τα επάνω και προς τα κάτω. Οι αποσβεστήρες εκπληρώνουν τη λειτουργία τους μόνο όταν γίνονται αντιληπτοί σαν να ανήκουν στον κίονα και όχι στο δάπεδο. Το ίδιο ισχύει και στο άλλο άκρο. Τα κιονόκρανα πρέπει να πρέπει να ιδωθούν με ως μέρη των κιόνων και όχι του επιστυλίου. Οι μοντέρνες κολώνες είναι καθαροί κύλινδροι και διαπερνούν οπτικά τα δάπεδα και τις οροφές, διότι με το σχήμα τους δεν υποδεικνύουν ολοκλήρωση ούτε είναι εφοδιασμένες με αποσβεστήρες. Υπό ορισμένες συνθήκες η εντύπωση αυτή μπορεί να ανταποκρίνεται στον σκοπό του αρχιτέκτονα. Αυτός μπορεί να θέλει τα στηρίγματα να γίνονται ορατά σαν να ανυψώνονται διαπερνώντας το κτίριο, χωρίς να εμποδίζονται από τα δάπεδα τα οποία διασχίζουν. Η διείσδυση στο έδαφος μεταβάλλει την αρχιτεκτονική σύνθεση του κτιρίου. Οι συνολικές αναλογίες και η κατανομή βάρους επηρεάζονται κατ' ανάγκη από το εάν το κτίριο πάνω από το έδαφος γίνεται ορατό ως ολοκληρωμένο ή ανολοκλήρωτο. οποιαδήποτε ασάφεια γύρω από το θέμα αυτό δημιουργεί αρχιτεκτονικό πρόβλημα. Τα περισσότερα κτίρια περιβάλλονται από ίσιους τοίχους και για το λόγο αυτό η έννοια της διείσδυσης είναι ασαφής. επειδή, από τη μια ο κύλινδρος, ο κύβος και η πυραμίδα φαίνονται ως σχήματα αρκετά ολοκληρωμένα, ώστε να γίνονται ορατά σαν να στέκονται πάνω στο έδαφος, ενώ από την άλλη οι κατακόρυφοι τοίχοι τείνουν να συνεχίζουν μέσα στο έδαφος, εκτός και αν κάτι τους σταματήσει. Παρότι η τελευταία αυτή εντύπωση είναι συχνά ανεπιθύμητη, είναι εξίσου εμφανές ότι ένα εκθεσιακό κτίριο σε σχήμα σφαίρας ή πυραμίδας στηριζόμενο πάνω σε μια κορυφή 7

8 μοιάζει σαν να μην είναι αγκυρωμένο επαρκώς. δεν αναγνωρίζει την έλξη της βαρύτητας και είναι έτοιμο να απογειωθεί. 8

9 3. Ο ΟΡΙΖΟΝΤΙΟΣ ΑΞΟΝΑΣ Σε κτίρια που εκτείνονται βασικά κατά την οριζόντια διεύθυνση η αίσθηση του ότι ανήκουν στο έδαφος επέρχεται όχι λόγω της διείσδυσης υπό ορθή γωνία, αλλά λόγω της παραλληλίας, η οποία δημιουργεί μια εύκολη αρμονία. Το κτίριο αγκαλιάζει το έδαφος και ταιριάζει με ευκολία στο τοπίο. Τα αναγεννησιακά κτίρια προσφέρουν πολλές αριστοτεχνικές λύσεις σε σχέση με αυτό. Μια συμμετρική πρόσοψη για παράδειγμα τονίζει έντονα την κατακόρυφη διεύθυνση, επειδή δημιουργεί ένα κατακόρυφο άξονα. Τα παράθυρα και οι πόρτες τείνουν να είναι σαν όρθια παραλληλόγραμμα, το καθένα από τα οποία αποτελεί ένα στοιχείο αντίστιξης προς την οριζοντιότητα του όλου κτιρίου. Όταν τα διαστήματα μεταξύ των παραθύρων είναι μεγάλα, η συνοχή των οριζόντιων ζωνών αδυνατίζει. Δεν υπάρχει μία και μοναδική βέλτιστη λύση που να ισχύει για όλους. Η αναλογία μεταξύ ανύψωσης και ηρεμίας, ελαφράδας και βάρους, ανεξαρτησίας και εξάρτησης, βρίσκεται μέσα στον ίδιο τον πυρήνα της ανθρώπινης αίσθησης του τι είναι και τι θα έπρεπε να είναι η ζωή και κατά συνέπεια αποτελεί μια βασική μεταβλητή του ύφους. Υπό μια γενικότερη έννοια η σχέση μεταξύ της κατακόρυφης και της οριζόντιας διάστασης δεν προσδιορίζει μόνο το συγκεκριμένο σχήμα του τοίχου, αλλά διασφαλίζει αντιληπτικά ότι πρόκειται πράγματι για τοίχο. κάθε οπτικό αντικείμενο εμφανίζεται σαν μια διαμόρφωση οπτικών δυνάμεων. Η διαμόρφωση αυτή είναι το οπτικό αντικείμενο και συνεπώς αυτό που αποκαλούμε "τοίχο" είναι, σε ότι αφορά τη δισδιάστατη επέκταση, η ιδιαίτερη εκείνη αλληλενέργεια κατακορυφότητας και οριζοντιότητας που κεντρίζεται στο νευρικό μας σύστημα, όταν το κατάλληλο ερέθισμα χτυπήσει το μάτι. Η έλλειψη ευαισθησίας της επιφάνειας του τοίχου έχει περιστασιακά παρατηρηθεί στο παρελθόν και έχει αντιμετωπιστεί με δυσπιστία. 9

10 4. Η ΔΥΝΑΜΗ ΤΗΣ ΚΟΛΩΝΑΣ ΣΤΟ ΧΩΡΟ Η θέση ενός αρχιτεκτονικού στοιχείου επηρεάζει όχι μόνο το οπτικό του βάρος αλλά επίσης και την έλξη ή την άπωση που από αυτό το στοιχείο εξασκεί στα χαρακτηριστικά της αρχιτεκτονικής σύνθεσης γύρω του. Όλες οι εντυπώσεις της οπτικής κατεύθυνσης είναι επαμφοτερίζουσες. Μπορούν να εκληφθούν με δύο τρόπους που σημαίνει στην προκειμένη περίπτωση τόσο προς τα πάνω όσο και προς τα κάτω. Σε μια απλή ευθεία γραμμή σχεδιασμένη στο χαρτί η κίνηση πηγαίνει προς οποιαδήποτε από τις δυο κατευθύνσεις δεδομένου ότι δεν είναι αγκυρωμένη σε κάποιο άκρο της. Οι δυνάμεις ενός κτιρίου λειτουργούν και προς τις δύο κατευθύνσεις. Η κίνηση προς τα πάνω προτιμάται γιατί το κτίριο είναι αγκυρωμένο στο έδαφος και έχει ένα ελεύθερο άκρο στην κορυφή. Αλλά υπάρχουν πολύ ισχυρά κίνητρα και προς την αντίθετη κατεύθυνση, με κυρίαρχο το οπτικό βάρος ολόκληρου του κτιρίου που πιέζει προς τα κάτω, προς το κέντρο της βαρύτητας. Η αλληλεπίδραση αυτή επαναλαμβάνεται στα συστατικά μέρη του κτιρίου, καταλήγοντας σε μια πολυσύνθετη δυναμική κατάσταση. Εφόσον η κολώνα είναι ουσιαστικά ένα γραμμικό αντικείμενο, τα δυναμικά διανύσματα που διαπερνούν τρέχουν κατά το μεγαλύτερο μέρος τους κατά μήκος της κατακόρυφου και προς τις δύο κατευθύνσεις τόσο προς τα πάνω όσο και προς τα κάτω. Η ιδιαίτερη φύση αυτής της αλληλεπίδρασης εξαρτάται σε κάθε περίπτωση από το σχήμα και τις αναλογίες της κολώνας καθεαυτής, καθώς και από τα αρχιτεκτονικά στοιχεία που την περιβάλλουν. Ένας προφανής καθοριστικός παράγοντας είναι το ύψος της κολώνας σε σχέση με τις υπόλοιπες διαστάσεις του κτιρίου. Οι κοντές κολώνες φαίνονται συγκριτικά σαν παθητικοί αποδέκτες των πιέσεων που εξασκούνται εκ των άνω από το φορτίο της στέγης και από κάτω, από την αντίσταση και την προς τα πάνω ώθηση της βάσης. Τέτοιες κολώνες μοιάζουν να συμπιέζονται μεταξύ των δύο κύριων δυνάμεων και επομένως δεν εκλαμβάνονται ως στατικοί λίθινοι κύλινδροι, αλλά ως αγωγοί 10

11 ανταγωνιστικών δυνάμεων που προέρχονται τόσο από πάνω όσο και από κάτω. Καθώς όλες οι οπτικές διαστάσεις είναι σχετικές η δυναμική εντύπωση του ύψους της κολώνας εξαρτάται από τη σχέση μεταξύ ύψους και πάχους. Το πάχος αυξάνει την οπτική μάζα και κατά συνέπεια και την εντύπωση βάρους της κολώνας, αλλά επίσης αποδυναμώνει την κατακόρυφη γραμμικότητα και κατά συνέπεια μειώνει τη δυναμική απήχηση και προς τις δύο κατευθύνσεις, Όσο μεγαλύτερο είναι το πάχος της κολώνας, τόσο μεγαλύτερη είναι και η εντύπωση αδράνειας που δημιουργεί σε κατάσταση ηρεμίας. 11

12 5. Βιβλιογραφία 1. Οπτική Σκέψη, Rudolf Arheim 2. Η δυναμική της αρχιτεκτονικής μορφής, Rudolf Arheim 12

Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή

Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή Γ Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή Η χρήση των ηλεκτρονικών υπολογιστών στο τεχνικό σχέδιο, και ιδιαίτερα στο αρχιτεκτονικό, αποτελεί πλέον μία πραγματικότητα σε διαρκή εξέλιξη, που επηρεάζει

Διαβάστε περισσότερα

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & ΟΙΚΟΔΟΜΙΚΗΣ Σύνταξη κειμένου: Μαρία Ν. Δανιήλ, Αρχιτέκτων

Διαβάστε περισσότερα

Σχεδιασμός αρχιτεκτονικών σχεδίων

Σχεδιασμός αρχιτεκτονικών σχεδίων 4. Σχεδιασμός αρχιτεκτονικών σχεδίων ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ Σαμίρ Μπαγιούκ Για να κάνουμε αντιληπτό ένα αντικείμενο στον χώρο, μπορούμε να χρησιμοποιήσουμε τη φωτογράφιση με πολλαπλές λήψεις από διάφορες

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά

1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά 1. Σημειώστε με Σ τις σωστές και με Λ τις λανθασμένες προτάσεις. a. Οταν ένα σώμα κινείται και δεν ασκείται καμία δύναμη επάνω του τότε το σώμα μετά από ορισμένο χρονικό δiάστημα θα σταματήσει. b. Ενα

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

ΦΥΣ. 111 Κατ οίκον εργασία # 6 - Επιστροφή Τετάρτη 25/10/2017. Οι ασκήσεις στηρίζονται στο κεφάλαιο 7 και 8 των βιβλίων των Young και Serway

ΦΥΣ. 111 Κατ οίκον εργασία # 6 - Επιστροφή Τετάρτη 25/10/2017. Οι ασκήσεις στηρίζονται στο κεφάλαιο 7 και 8 των βιβλίων των Young και Serway ΦΥΣ. 111 Κατ οίκον εργασία # 6 - Επιστροφή Τετάρτη 25/10/2017 Οι ασκήσεις στηρίζονται στο κεφάλαιο 7 και 8 των βιβλίων των Young και Serway 1. Ένα τούβλο πάγου µάζας 6.0kg βρίσκεται αρχικά σε! ηρεµία πάνω

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Φυσικά Μεγέθη Μονάδες Μέτρησης

Φυσικά Μεγέθη Μονάδες Μέτρησης ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΤΑΞΗ: Α Λυκείου Προσανατολισμού 1,3,4. ΚΕΦΑΛΑΙΑ ΕΝΟΤΗΤΕΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΑΝΤΙΣΤΟΙΧΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 55 ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Α. ΠΡΟΣΘΕΣΗ ΔΥΝΑΜΕΩΝ ΝΟΜΟΣ ΤΟΥ HOOKE 1. Να σχεδιάσετε δύο αντίρροπες δυνάμεις F 1=5N και F 2=15N με κλίμακα 1cm/2,5N και να βρείτε την συνισταμένη τους. (Απ.: 10

Διαβάστε περισσότερα

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%] 1. Μικρή σφαίρα Σ1, μάζας 2 kg που κινείται πάνω σε λείο επίπεδο με ταχύτητα 10 m/s συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Σ2 μάζας 8 kg. Να υπολογίσετε: α) τις ταχύτητες των σωμάτων μετά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων

2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2.1 Όπως είναι γνωστό, όταν σε κάποιο σώμα ενεργούν δυνάμεις, ένα από τα αποτελέσματά τους μπορεί να είναι να αλλάξει η κατάσταση

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ Δυνάμεις Δυναμική Ανάλυση Δυνάμεις παράγονται από τον άνθρωπο για να ωθήσουν το σώμα ή ένα όργανο Η κατανόηση ενός αθλήματος ή μιας κίνησης απαιτεί την κατανόηση των δυνάμεων που ασκούνται Η αξιολόγηση

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 1. Ένα αυγό µάζας 0.250kgr πέφτει από ένα ύψος 2.0 στο έδαφος. (α) Υπολογίστε την ώθηση που εξασκεί η δύναµη της βαρύτητας στο αυγό κατά τη διάρκεια της πτώσης του στο έδαφος. (β)

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις

Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις Θέμα Α 1) Δύο σώματα ρίχνονται την ίδια χρονική στιγμή από το ίδιο σημείο με οριζόντιες ταχύτητες υ 1 και υ 2, με υ 1 > υ 2. Τα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ 15 Α. ΝΟΜΟΣ ΤΟΥ COULOMB ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ 1. Στο χλωριούχο νάτριο (NaCl) η ελάχιστη απόσταση μεταξύ του ιόντος Να + και του ιόντος του Cl - είναι 2,3.10-10 m. Πόση είναι η

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα)

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) 4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) Άσκηση 1 (10 μονάδες) A) Ένα βλήμα μάζας m που κινείται με ταχύτητα v διαπερνά τη σφαίρα ενός εκκρεμούς μάζας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.

Διαβάστε περισσότερα

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ισορροπία - Γ Νόμος Newton 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ζεύγος σωμάτων που αλληλεπιδρούν Δράση - Αντίδραση 2) Να βρεθούν οι δυνάμεις που εξασκούνται

Διαβάστε περισσότερα

1.3 Τα φυσικά μεγέθη και οι μονάδες τους

1.3 Τα φυσικά μεγέθη και οι μονάδες τους ΚΕΦΑΛΑΙΟ ο ΕΙΣΑΓΩΓΗ. Τα φυσικά μεγέθη και οι μονάδες τους. Τι είναι μέγεθος; Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί.. Τι είναι μέτρηση; Είναι η διαδικασία σύγκρισης ίδιων μεγεθών.. Τι είναι

Διαβάστε περισσότερα

β. Το μέτρο της ταχύτητας u γ. Την οριζόντια απόσταση του σημείου όπου η μπίλια συναντά το έδαφος από την άκρη Ο του τραπεζιού.

β. Το μέτρο της ταχύτητας u γ. Την οριζόντια απόσταση του σημείου όπου η μπίλια συναντά το έδαφος από την άκρη Ο του τραπεζιού. 1. Μια μικρή μπίλια εκσφενδονίζεται με οριζόντια ταχύτητα u από την άκρη Ο ενός τραπεζιού ύψους h=8 cm. Τη στιγμή που φθάνει στο δάπεδο το μέτρο της ταχύτητας της μπίλιας είναι u=5 m/sec. Να υπολογίσετε

Διαβάστε περισσότερα

6. Το µέγεθος που χρησιµοποιούµε για να συγκρίνουµε τις αδράνειες των σωµάτων είναι α. η µάζα β. η ταχύτητα γ. το βάρος δ. ο όγκος

6. Το µέγεθος που χρησιµοποιούµε για να συγκρίνουµε τις αδράνειες των σωµάτων είναι α. η µάζα β. η ταχύτητα γ. το βάρος δ. ο όγκος Β ΓΥΜΝΑΣΙΟΥ ΥΝΑΜΕΙΣ ΝΟΜΟΙ ΝΕΥΤΩΝΑ 4. Ένα σώµα ισορροπεί ως προς ένα σύστηµα αναφοράς όταν: α. είναι ακίνητο. β. έχει σταθερή επιτάχυνση. γ. έχει σταθερή ταχύτητα. δ. η συνισταµένη των δυνάµεων που ασκούνται

Διαβάστε περισσότερα

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s;

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s; 1. Αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με σταθερή φορά και το ταχύμετρο του (κοντέρ) δείχνει συνεχώς 36 km/h. α) Τι είδους κίνηση κάνει το αυτοκίνητο; β) Να μετατρέψετε την ταχύτητα του αυτοκινήτου

Διαβάστε περισσότερα

(Μαθιουλάκης.) Q=V*I (1)

(Μαθιουλάκης.) Q=V*I (1) (Μαθιουλάκης.) Φυσικός Αερισµός Κτιρίων Φυσικό αερισµό κτιρίων ονοµάζουµε την είσοδο του ατµοσφαιρικού αέρα σε αυτά µέσω κατάλληλων ανοιγµάτων, χωρίς τη χρήση φυσητήρων, µε σκοπό τον έλεγχο της θερµοκρασίας

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~ Διάρκεια: 3 ώρες ~~

Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~ Διάρκεια: 3 ώρες ~~ Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~ Διάρκεια: 3 ώρες ~~ Θέμα Α 1. Σε χορδή έχει δημιουργηθεί στάσιμο κύμα. Δύο σημεία Α και Β που δεν είναι δεσμοί απέχουν μεταξύ τους απόσταση

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ α) Ειρήνη Χρυσοβαλάντη Ρουμπάνη β) Μαρία Πανακάκη «Το τοπίο είναι αντικείμενα σε διάφορες αποστάσεις, που χαρακτηρίζονται με χρώματα, σε διάφορες πλάκες, οριζόντιες,

Διαβάστε περισσότερα

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ 1) Συμπαγής κύλινδρος μάζας m και ακτίνας R δέχεται μια αρχική μεγάλη και στιγμιαία ώθηση προς τα πάνω σε κεκλιμένο επίπεδο γωνίας θ και μετά αφήνεται ελεύθερος. Κατά την παύση της ώθησης,

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Νεοκλασική μορφολογία και βασικές αρχές δόμησης

Νεοκλασική μορφολογία και βασικές αρχές δόμησης Νεοκλασική μορφολογία και βασικές αρχές δόμησης Βασικές αρχές της αρχιτεκτονικής του νεοκλασικισμού 1. Το δομικό σύστημα που χρησιμοποιείται είναι αυτό της «δοκού επί στύλου», δηλ. κατακόρυφοι φέροντες

Διαβάστε περισσότερα

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7) 3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5 1. Ένα κιβώτιο µάζας 60kg συγκρατείται από ένα ελατήριο σταθεράς k=4.00 10 3 Ν/m) το οποίο είναι συµπιεσµένο οριζόντια κατά ένα µήκος 1.5m. Το κιβώτιο αφήνεται ελεύθερο τη χρονική

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο Θέμα Α 1) Μέτρο της αδράνειας των σωμάτων είναι: i) Η ταχύτητα. ii) Η επιτάχυνση. iii) Το βάρος. iv) Η μάζα.

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

THE JEWISH MUSEUM BERLIN

THE JEWISH MUSEUM BERLIN ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤ0ΝΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΟΑΚΟΥΣΤΙΚΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΠΟΛΗΣ ΔΙΔΑΣΚΩΝ: Γ.ΠΑΠΑΚΩΣΤΑΝΤΙΝΟΥ THE JEWISH MUSEUM BERLIN ΈΝΑ FILM ΤΩΝ: STAN NEUMANN KAI RICHARD COPANS

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Στις ερωτήσεις Α1-Α4, να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Στις ερωτήσεις Α1-Α4, να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Α & Β ΑΡΣΑΚΕΙΩΝ ΤΟΣΙΤΣΕΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ ΑΠΡΙΛΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Στις ερωτήσεις

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ 1. Σφαίρα μάζας m 1 =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1 =8m /s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας =3 kg που κινείται προς τα αριστερά με ταχύτητα

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ - ΤΡΙΒΗ 1ος νόμος του Νεύτωνα ή νόμος της αδράνειας της ύλης. «Σε κάθε σώμα στο οποίο δεν ενεργούν δυνάμεις ή αν ενεργούν έχουν συνισταμένη μηδέν δεν μεταβάλλεται η κινητική του κατάσταση.

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 1. Ένα αυγό µάζας 0.250kg πέφτει από ένα ύψος 2.0 m στο έδαφος. (α) Υπολογίστε την ώθηση που εξασκεί η δύναµη της βαρύτητας στο αυγό κατά τη διάρκεια της πτώσης του στο έδαφος. (β)

Διαβάστε περισσότερα

Περι - Φυσικής. Θέµα Α. Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Ονοµατεπώνυµο: S.I. δίνεται από την σχέση υ = 4t

Περι - Φυσικής. Θέµα Α. Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Ονοµατεπώνυµο: S.I. δίνεται από την σχέση υ = 4t Ονοµατεπώνυµο: Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση (4 5 = 20 µονάδες ) Α.1. Ενα αυτοκίνητο κινείται

Διαβάστε περισσότερα

ΟΣΧΕ ΙΑΣΜΟΣ ΤΟΥ ΧΑΡΤΗ. 10/7/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1

ΟΣΧΕ ΙΑΣΜΟΣ ΤΟΥ ΧΑΡΤΗ. 10/7/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 ΟΣΧΕ ΙΑΣΜΟΣ ΤΟΥ ΧΑΡΤΗ 10/7/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 Τοποθέτηση του προβλήµατος Ο σχεδιασµός είναι δηµιουργία -- οσχεδιασµός του χάρτη είναι µια δηµιουργική και όχι τυποποιηµένη διαδικασία

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 131 Τελική Εξέταση: 11-Δεκεµβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής

ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής Σκοπός Στόχοι Άσκησης Οι μαθητές να: Αναγνωρίζουν τις δυνάμεις που ασκούνται στα σώματα και αντιλαμβάνονται τις σχέσεις μεταξύ τους,

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ 16114 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές ταχύτητες εκτελώντας οριζόντια

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου ΤΥΠΟΙ ΦΕΡΟΝΤΩΝ ΤΟΙΧΩΝ ΚΑΤΑ EC6 Μονόστρωτος τοίχος : τοίχος χωρίς ενδιάμεσο κενό ή συνεχή κατακόρυφο αρμό στο επίπεδό του. Δίστρωτος τοίχος : αποτελείται από 2 παράλληλες στρώσεις με αρμό μεταξύ τους (πάχους

Διαβάστε περισσότερα

ΘΕΜΑ ΈΡΕΥΝΑΣ: Η ΣΧΕΣΗ ΑΝΑΜΕΣΑ ΣΤΗ

ΘΕΜΑ ΈΡΕΥΝΑΣ: Η ΣΧΕΣΗ ΑΝΑΜΕΣΑ ΣΤΗ Μαθήτρια: Αίγλη Θ. Μπορονικόλα Καθηγητής : Ιωάννης Αντ. Παπατσώρης ΜΑΘΗΜΑ: ΈΡΕΥΝΑ & ΤΕΧΝΟΛΟΓΙΑ ΘΕΜΑ ΈΡΕΥΝΑΣ: Η ΣΧΕΣΗ ΑΝΑΜΕΣΑ ΣΤΗ ΓΩΝΙΑ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΚΑΙ ΤΗ ΔΥΝΑΜΗ ΕΛΞΗΣ ΓΙΑ ΝΑ ΙΣΟΡΡΟΠΗΣΕΙ ΕΝΑ ΣΩΜΑ

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ A Λυκείου Θεωρητικό Μέρος A Λυκείου 21 Απριλίου 2007 Θέμα 1 ο 1. Η διαστατική ανάλυση είναι μια σημαντική τεχνική στη φυσική η οποία μας επιτρέπει να ελέγξουμε την ορθότητα μιας εξίσωσης. Αν οι διαστάσεις στα δύο

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Έργο Δύναμης Έργο σταθερής δύναμης

Έργο Δύναμης Έργο σταθερής δύναμης Παρατήρηση: Σε όλες τις ασκήσεις του φυλλαδίου τα αντικείμενα θεωρούμε ότι οι δυνάμεις ασκούνται στο κέντρο μάζας των αντικειμένων έτσι ώστε αυτά κινούνται μόνο μεταφορικά, χωρίς να μπορούν να περιστραφούν.

Διαβάστε περισσότερα

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες

Διαβάστε περισσότερα

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ 11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ Το βάρος ενός σώματος: Μια εξ αποστάσεως ή εξ επαφής δύναμη που ασκεί η γη στο σώμα Το βάρος ενός σώματος είναι δύναμη και μετρείται κι αυτό σε νιούτον. Είναι

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <.

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <. Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 3: Τοπολογικές και προβολικές σχέσεις στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Βασικές σχέσεις

Διαβάστε περισσότερα