Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα"

Transcript

1 Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014

2 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική προσδοκία για την τιμή μιας μεταβλητής x την περίοδο t+1, βασισμένη στις διαθέσιμες πληροφορίες I στην περίοδο t, ορίζεται ως, x t+1 = E(x t+1 I t ) I είναι το σύνολο των διαθέσιμων πληροφοριών, το οποίο αποτελείται από την τρέχουσα και τις παλαιότερες τιμές της μεταβλητής x, καθώς και την τρέχουσα και τις παλαιότερες τιμές ενός συνόλου μεταβλητών z, οι οποίες ενδεχομένως βοηθούν στην πρόβλεψη των μελλοντικών τιμών της x. I t = {x t i,z t i,i = 0,1,2,..., } Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

3 Ορισμός των Ορθολογικών Προσδοκιών Oρίζουμε την ορθολογική προσδοκία για την τιμή μιας μεταβλητής x την περίοδο t+s, βασισμένη στις διαθέσιμες πληροφορίες I στην περίοδο t, ως, x t+s = E(x t+s I t ),s = 0,1,2,... Προκειμένου να ορίσουμε πιο συγκεκριμένα τις ορθολογικές προσδοκίες για μία μεταβλητή δεν αρκεί να γνωρίζουμε το σύνολο των πληροφοριών, αλλά και το υπόδειγμα του πώς προσδιορίζεται και εξελίσσεται στο χρόνο αυτή η μεταβλητή. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

4 Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Υποθέτουμε μία μεταβλητή x, η οποία ακολουθεί μία αυτοπαλίνδρομη στοχαστική διαδικασία πρώτου βαθμού, της μορφής, x t = (1 λ)x 0 + λx t 1 + ε t όπου, x 0 είναι μία σταθερά, -1<λ<1, και ε είναι μία στοχαστική διαδικασία λευκού θορύβου, με μέσο μηδέν και σταθερή διακύμανση. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

5 Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Θα ορίσουμε τη μεταβλητή x ως απόκλιση από το μέσο της, ως εξής, x^ t = x t x 0 Ως απόκλιση από το μέσο της, η μεταβλητή ακολουθεί, x^ t = λ x^ t 1+ ε t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

6 Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Μπορεί να δείξει κανείς με διαδοχικές αντικαταστάσεις ότι, x^ t+1 = λ x^ t, x^ t+2 = λ 2 x^ t,..., x^ t+s = λ s x^ t Η ορθολογική προσδοκία μίας αυτοπαλίνδρομης στοχαστικής διαδικασίας πρώτου βαθμού εξαρτάται μόνο από την τρέχουσα τιμή της, με συντελεστή που εξαρτάται από το λ. Εάν η στοχαστική διαδικασία είναι στάσιμη, δηλαδή εάν -1<λ<1, τότε η επίπτωση της τρέχουσας τιμής της μεταβλητής στην ορθολογική της προσδοκία βαίνει μειούμενη καθώς αυξάνεται το s. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

7 Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Καθώς το s τείνει στο άπειρο θα ισχύει, lim s x^ t+s = lim s λ s x^ t = 0 Κατά συνέπεια, lim s x t+s = x 0 Με την έννοια αυτή, ο μέσος της μεταβλητής x, ο οποίος αποτελεί το σημείο μακροχρόνιας ισορροπίας της, είναι και το όριο στο οποίο συγκλίνουν οι μελλοντικές προσδοκίες για την εξέλιξη μιας μεταβλητής που ακολουθεί μία στάσιμη στοχαστική διαδικασία. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

8 Ορθολογικές Προσδοκίες για Μη Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Εάν η διαδικασία δεν είναι στάσιμη αλλά τυχαίος περίπατος, δηλαδή εάν λ=1, τότε έχουμε, x^ t+1 = x^ t, x^ t+2 = x^ t, x^ t+3 = x^ t,..., x^ t+s = x^ t Στην περίπτωση αυτή, η ορθολογική προσδοκία για τη μελλοντική τιμή μιας μεταβλητής είναι η τρέχουσα τιμή της μεταβλητής, ανεξάρτητα από το s. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

9 Πρωτοβάθμια Υποδείγματα Ορθολογικών Προσδοκιών Ερχόμαστε τώρα στην επίλυση ενός γραμμικού υποδείγματος στο οποίο μία μεταβλητή εξαρτάται από την ορθολογική προσδοκία για τη μελλοντική της τιμή, και κάποια άλλη εξωγενή μεταβλητή. Το υπόδειγμα περιγράφεται από μία πρωτοβάθμια εξίσωση της μορφής, = a +1 + bx t Η υπόθεση των ορθολογικών προσδοκιών συνεπάγεται ότι οι οικονομικοί παράγοντες γνωρίζουν ότι η μεταβλητή y προσδιορίζεται από την εξίσωση αυτή. Υποθέτουμε επίσης ότι όλοι οι οικονομικοί παράγοντες έχουν στη διάθεσή τους το ίδιο σύνολο πληροφοριών. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

10 Μέθοδοι Επίλυσης Πρωτοβάθμιων Υποδειγμάτων Ορθολογικών Προσδοκιών Υπάρχουν μια σειρά από μέθοδοι για την επίλυση υποδειγμάτων όπως αυτό. Ολες οι μέθοδοι βασίζονται στον νόμο των επαναληπτικών προσδοκιών. Αυτός δεν λέει τίποτα άλλο παρά ότι η σημερινή προσδοκία για την αυριανή προσδοκία μιας μελλοντικής τιμής μιας μεταβλητής δεν είναι παρά η σημερινή προσδοκία της μελλοντικής τιμής της μεταβλητής. Δηλαδή, ότι, ( E x ) = E x t+1 t+s t t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

11 Η Μέθοδος των Διαδοχικών Αντικαταστάσεων Εφαρμόζοντας το νόμο των επαναληπτικών προσδοκιών, και αντικαθιστώντας διαδοχικά στην αρχική εξίσωση, E y = ae ( E y ) + be x = ae y + be x t t+1 t t+1 t+2 t t+1 t t+2 t t+1 = a ab x t+1 + bx t = a T +1 +T +1 + b T s=0 a i x t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

12 Η Θεμελιώδης Λύση του Πρωτοβάθμιου Υποδείγματος Εάν ισχύει ότι, lim T a T +1 +T +1 = 0 τότε μία λύση της αρχικής εξίσωσης δίνεται από, = b s=0 a i x t+s Η λύση αυτή μας υποδεικνύει ότι η τρέχουσα τιμή της ενδογενούς μεταβλητής y είναι το προεξοφλημένο άθροισμα των προσδοκώμενων μελλοντικών τιμών της εξωγενούς μεταβλητής x, με συντελεστή προεξόφλησης a<1. Η λύση αυτή συνήθως αποκαλείται η θεμελιώδης λύση. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

13 Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Η θεμελιώδης λύση δεν αποτελεί τη μοναδική λύση. Η θεμελιώδης λύση βασίζεται μόνο στον ελάχιστο αριθμό μεταβλητών (το x στην περίπτωσή μας), στα λεγόμενα θεμελιώδη. Υπάρχει και σωρεία άλλων, μη θεμελιωδών, λύσεων, οι οποίες όμως δεν ικανοποιούν τη συνθήκη, lim T a T +1 +T +1 = 0 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

14 Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Ας υποθέσουμε ότι υπάρχει μία εναλλακτική λύση του πρωτοβάθμιου υποδείγματος, η οποία συνίσταται από τη θεμελιώδη λύση σύν μία πρόσθετη μεταβλητή z. Η λύση αυτή λαμβάνει τη μορφή, = b Εάν η μεταβλήτη z ικανοποιεί, s=0 a i x t+s + z t z t = a z t+1 που συνεπάγεται ότι, z t+1 = 1 a z t τότε έχουμε μία επιπλέον λύση του πρωτοβάθμιου υποδείγματος. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

15 Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Ωστόσο, επειδή a<1, η μαθηματική προσδοκία του μελλοντικού z εκρήγνυται με την πάροδο του χρόνου. Αυτό μπορεί να αποδειχθεί αν λάβουμε το όριο της μαθηματικής προσδοκίας καθώς ο χρόνος τείνει προς το άπειρο., lim E z = 1 t t+s s a s z t = ± Λύσεις που βασίζονται σε μεταβλητές όπως το z αποκαλούνται φούσκες (bubbles), σε αντίθεση με λύσεις που βασίζονται μόνο στα θεμελιώδη. Στη συνέχεια θα επικεντρωθούμε μόνο σε θεμελιώδεις λύσεις αγνοώντας τις φούσκες. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

16 Ο Τελεστής των Μελλοντικών Μαθηματικών Προσδοκιών και η Μέθοδος της Παραγοντοποίησης Η δεύτερη μέθοδος επίλυσης υποδειγμάτων με ορθολογικές προσδοκίες είναι η μέθοδος της παραγοντοποίησης. Αυτή απαιτεί τη χρήση του τελεστή των μελλοντικών μαθηματικών προσδοκιών F, ο οποίος για μία μεταβλητή x, ορίζεται ως, Fx t = x t+1 F 2 x t = x t+2,..., F s x t = x t+s Επιπλεόν, ισχύει ότι ο τελεστής των μελλοντικών μαθηματικών προσδοκιών είναι το αντίστροφο του τελεστή των χρονικών υστερήσεων L F s x t = x t s = x t s = L s x t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

17 H Μέθοδος της Παραγοντοποίησης και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Το πρωτοβάθμιο υπόδειγμα των ορθολογικών προσδοκιών έχει τη μορφή, = a +1 + bx t Χρησιμοποιώντας τον τελεστή των μαθηματικών προσδοκιών, και υποθέτωντας ότι -1<a<1, το πρωτοβάθμιο υπόδειγμα μπορεί να γραφεί ως, = af + bx t = Αυτή είναι όμως η θεμελιώδης λύση. b 1 af x = b a s F s x = b a s E x t s=0 t s=0 t t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

18 H Μέθοδος των Μη Προσδιορισμένων Συντελεστών και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Η μέθοδος των μη προσδιορισμένων συντελεστών συνίσταται στο να χρησιμοποιηθεί μια εικαζόμενη μορφή της λύσης με μη προσδιορισμένους συντελεστές, να ληφθεί η μαθηματική προσδοκία της εικαζόμενης λύσης, η οποία, αφού αντικατασταθεί στο αρχικό υπόδειγμα θα οδηγήσει σε σύγκριση των συντελεστών μεταξύ της εικαζόμενης λύσης, και της εξίσωσης που θα προκύψει από την αντικατάσταση. Ετσι θα προσδιοριστούν οι αρχικά μη προσδιορισμένοι συντελεστές. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

19 H Μέθοδος των Μη Προσδιορισμένων Συντελεστών και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Η εικαζόμενη λύση είναι, = σ µ s s=0 x t+s όπου σ και μ είναι μη προσδιορισμένοι συντελεστές. Από τη λύση αυτή προκύπτει, +1 = σ µ s s=0 x t+1+s Αντικαθιστώντας στο αρχικό υπόδειγμα και συγκρίνοντας συντελεστές μεταξύ της εξίσωσης που προκύπτει και της εικαζόμενης λύσης, βρίσκουμε ότι σ=b και μ=a. Αυτό επιβεβαιώνει την εικασία μας, και η λύση είναι ακριβώς η ίδια όπως και με τις δύο άλλες μεθόδους. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

20 Παράδειγμα: Εξίσωση Αποδόσεων σε Μία Ανταγωνιστική Αγορά Κεφαλαίου Στο πρώτο μας παράδειγμα υποθέτουμε μία κεφαλαιαγορά στην οποία οι επενδυτές είναι ουδέτεροι απέναντι στον κίνδυνο. Οι επενδυτές επιλέγουν μεταξύ μιας μετοχής και μιας ασφαλούς τοποθέτησης με ποσοστό απόδοσης r. Στην ισορροπία, η προσδοκώμενη απόδοση της μετοχής θα ισούται με το ποσοστό απόδοσης της ασφαλούς τοποθέτησης. p t+1 p t p t + d t p t = r όπου p είναι η τιμή της μετοχής και d είναι το μέρισμα. Το ποσοστό απόδοσης της μετοχής ισούται με το προσδοκώμενο κεφαλαιακό κέρδος, συν το μέρισμα ως ποσοστό της τιμής της μετοχής. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

21 Ο Προσδιορισμός της Τιμής της Μετοχής Από την εξίσωση μεταξύ της απόδοσης της μετοχής με το πραγματικό επιτόκιο, το υπόδειγμα έχει τη μορφή του πρωτοβάθμιου υποδείγματος που αναλύσαμε, με a=b=1/(1+r)<1. Η θεμελιώδης λύση του είναι, p = 1 ( t 1+ r E p + d ) t t+1 t p t = 1 1+ r s= r Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, s d t+s Η τιμή της μετοχής είναι η παρούσα αξία των προσδοκώμενων μελλοντικών μερισμάτων, με συντελεστή προεξόφλησης που εξαρτάται από το ποσοστό απόδοσης της ασφαλούς τοποθέτησης.

22 Παράδειγμα: Ισορροπία στην Αγορά Χρήματος Στο δεύτερο μας παράδειγμα υποθέτουμε καταναλωτές και επιχειρήσεις που επιλέγουν μεταξύ της διακράτησης χρηματικών διαθεσίμων και αγαθών. Στην περίπτωση αυτή, η ζήτηση χρήματος είναι αρνητική συνάρτηση του προσδοκώμενου πληθωρισμού, και η ισορροπία στην αγορά χρήματος απαιτεί, = exp α P t+1 P t P t M t P t όπου M είναι η προσφορά χρήματος, P το επίπεδο τιμών και α>0 η ημι-ελαστικότητα της ζήτησης χρήματος σε σχέση με τον προσδοκώμενο πληθωρισμό. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

23 Προσδιορισμός του Επιπέδου Τιμών Λαμβάνοντας λογαρίθμους και στις δύο πλευρές, και υποδηλώνοντας με m το λογάριθμο της προσφοράς χρήματος και με p το λογάριθμό του επιπέδου τιμών, το υπόδειγμα μπορεί να γραφεί ως, m t p t = α( p t+1 p t ) Επιλύοντας ως προς p, p t = α 1+ α p t α m t Κατά συνέπεια, με ορθολογικές προσδοκίες, p t = 1 1+ α s=0 α 1+ α Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, s m t+s

24 Δευτεροβάθμια Δυναμικά Υποδείγματα Ορθολογικών Προσδοκιών Ερχόμαστε τώρα στις μεθόδους επίλυσης ενός δευτεροβάθμιου δυναμικού υποδείγματος. Στο υπόδειγμα αυτό, μία μεταβλητή εξαρτάται από τη μελλοντική προσδοκία για την εξέλιξή της, από το επίπεδο στο οποίο βρισκόταν την προηγούμενη περίοδο καθώς και από μία εξωγενή μεταβλητή. Αυτό το υπόδειγμα συνδυάζει ορθολογικές προσδοκίες για τη μελλοντική τιμή μιας μεταβλητής, με επιπτώσεις των τιμών της μεταβλητής με χρονική υστέρηση. Το υπόδειγμά μας είναι γραμμικό και έχει τη μορφή, = a +1 + b 1 + cx t όπου, a, b>0, a+b<1 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

25 Επίλυση με τη Μέθοδο της Παραγοντοποίησης = af + bf 1 + cx t ( 1 af bf 1 ) = cx t Πολλαπλασιάζοντας και τις δύο πλευρές με -F/a, F 2 1 a F + b a = c a Fx t F 2 1 a F + b a = (F λ)(f µ) = y ( t F 2 (λ + µ)f + λµ ) = c a Fx t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

26 Το Χαρακτηριστικό Πολυώνυμο και οι Ρίζες λ και μ είναι οι δύο ρίζες του χαρακτηριστικού πολυωνύμου της, F 2 1 a F + b a ισχύει ότι, λ+μ=1/a, λμ=b/a. Είναι απλό να δείξει κανείς ότι η μία ρίζα, είναι μικρότερη από τη μονάδα (θα υποθέσουμε ότι αυτή είναι η λ) και η άλλη (η μ) είναι μεγαλύτερη από τη μονάδα. Φ(φ) = φ 2 1 a φ + b a Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

27 Το Χαρακτηριστικό Πολυώνυμο και οι Ρίζες Φ(φ) = φ 2 1 a φ + b a Φ(0) = b a > 0, 1 a b Φ(1) = a Συνεπώς υπάρχει μία ρίζα λ μεταξύ μηδενός και μονάδας για την οποία Φ(λ)=0. Η δεύτερη ρίζα μ προσδιορίζεται από, μ=b/aλ. Θα έχουμε μ>1, εάν λ<b/a. Αυτό πράγματι ισχύει διότι, < 0 Φ b a = b(1 a b) a 2 < 0 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

28 Επίλυση του Δευτεροβάθμιου Υποδείγματος με Ορθολογικές Προσδοκίες (F λ)(f µ) = c a Fx t Διαιρώντας τις δύο πλευρές με F(F-μ), λαμβάνουμε, ( 1 λf 1 ) = c a 1 µ F x t = c 1 aµ 1 µ 1 F x t = λc b 1 1 µ 1 F x t Κατά συνέπεια, = λ 1 + λc b 1 1 µ 1 F x = λy + λc t t 1 b s=0 1 µ s x t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

29 Η Θεμελιώδης Λύση του Δευτεροβάθμιου Υποδείγματος με Ορθολογικές Προσδοκίες Η θεμελιώδης λύση του δευτεροβάθμιου υποδείγματος με ορθολογικές προσδοκίες υποδεικνύει ότι η τρέχουσα τιμή της ενδογενούς μεταβλητής y είναι το προεξοφλημένο άθροισμα των προσδοκώμενων μελλοντικών τιμών της εξωγενούς μεταβλητής x, με συντελεστή προεξόφλησης 1/μ<1, ενώ η τιμή της ενδογενούς μεταβλητής εξαρτάται και από την τιμή της την προηγούμενη περίοδο, με συντελεστή λ<1. Για την επίλυση γενικότερων γραμμικών υποδειγμάτων με ορθολογικές προσδοκίες βλ. Blanchard and Kahn (1980). Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική,

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τις µεθόδους επίλυσης υποδειγµάτων

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο. Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες

Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο. Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες Καθ. Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, Αθήνα, 2016 Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο

Διαβάστε περισσότερα

Ανεργία, Πληθωρισμός και Ορθολογικές Προσδοκίες. Καθ. Γιώργος Αλογοσκούφης

Ανεργία, Πληθωρισμός και Ορθολογικές Προσδοκίες. Καθ. Γιώργος Αλογοσκούφης Ανεργία, Πληθωρισμός και Ορθολογικές Προσδοκίες Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Καμπύλη Phillips H καμπύλη Phillips, η αρνητική σχέση μεταξύ ανεργίας

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 5 Μαθηµατικό Παράρτηµα Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις διαφορών

Διαβάστε περισσότερα

Το Νέο Κεϋνσιανο Υπόδειγμα. Ένα Δυναμικό Στοχαστικό Υπόδειγμα Γενικής Ισορροπίας με Κεϋνσιανά Χαρακτηριστικά

Το Νέο Κεϋνσιανο Υπόδειγμα. Ένα Δυναμικό Στοχαστικό Υπόδειγμα Γενικής Ισορροπίας με Κεϋνσιανά Χαρακτηριστικά Το Νέο Κεϋνσιανο Υπόδειγμα Ένα Δυναμικό Στοχαστικό Υπόδειγμα Γενικής Ισορροπίας με Κεϋνσιανά Χαρακτηριστικά Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Το Νέο Κεϋνσιανό Στοχαστικό Δυναμικό

Διαβάστε περισσότερα

Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής. Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας

Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής. Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Πληθωρισμός,

Διαβάστε περισσότερα

Νομισματική και Συναλλαγματική Πολιτική σε μια Μικρή Ανοικτή Οικονομία. Σταθερές ή Κυμαινόμενες Ισοτιμίες;

Νομισματική και Συναλλαγματική Πολιτική σε μια Μικρή Ανοικτή Οικονομία. Σταθερές ή Κυμαινόμενες Ισοτιμίες; Νομισματική και Συναλλαγματική Πολιτική σε μια Μικρή Ανοικτή Οικονομία Σταθερές ή Κυμαινόμενες Ισοτιμίες; Καθ. Γ. Αλογοσκούφης, Διεθνής Οικονομική και Παγκόσμια Οικονομία, 2014 Ένα Βραχυχρόνιο Υπόδειγµα

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Ενα Νέο Κεϋνσιανό Υπόδειγμα με Περιοδικό Καθορισμό των Ονομαστικών Μισθών. Καθορισμός των Ονομαστικών Μισθών και Ανεργία

Ενα Νέο Κεϋνσιανό Υπόδειγμα με Περιοδικό Καθορισμό των Ονομαστικών Μισθών. Καθορισμός των Ονομαστικών Μισθών και Ανεργία Ενα Νέο Κεϋνσιανό Υπόδειγμα με Περιοδικό Καθορισμό των Ονομαστικών Μισθών Καθορισμός των Ονομαστικών Μισθών και Ανεργία Καθ. Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, Αθήνα, 2016 Δυναμικά Στοχαστικά

Διαβάστε περισσότερα

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων Οικονομικές Διακυμάνσεις Οι οικονομίες ανέκαθεν υπόκειντο σε κυκλικές διακυμάνσεις. Σε ορισμένες περιόδους η παραγωγή και η απασχόληση αυξάνονται με

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη προσέγγιση στην ανάλυση

Διαβάστε περισσότερα

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων. Το Υπόδειγμα των Πραγματικών Οικονομικών Κύκλων

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων. Το Υπόδειγμα των Πραγματικών Οικονομικών Κύκλων Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων Το Υπόδειγμα των Πραγματικών Οικονομικών Κύκλων 1 Οικονομικές Διακυμάνσεις Οι οικονομίες ανέκαθεν υπόκειντο σε κυκλικές διακυμάνσεις. Σε ορισμένες περιόδους

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της

Διαβάστε περισσότερα

Κεφάλαιο 8 Το Βασικό Κεϋνσιανό Υπόδειγµα

Κεφάλαιο 8 Το Βασικό Κεϋνσιανό Υπόδειγµα Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 2012 Κεφάλαιο 8 Το Βασικό Κεϋνσιανό Υπόδειγµα Η πιο διαδεδοµένη προσέγγιση στην ανάλυση των οικονοµικών κύκλων βασίζεται στα παραδοσιακά Κεϋνσιανά

Διαβάστε περισσότερα

Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού

Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού Ramsey-Cass-Koopmans 1 Το Υπόδειγμα του Ramsey To υπόδειγμα αντιπροσωπευτικού νοικοκυριού oφείλεται στον Ramsey (1928), ο οποίος είχε πρώτος αναλύσει τη βέλτιστη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

Κεφάλαιο 6 Η Νοµισµατική Προσέγγιση

Κεφάλαιο 6 Η Νοµισµατική Προσέγγιση Κεφάλαιο 6 Η Νοµισµατική Προσέγγιση Η νοµισµατική προσέγγιση είναι ένας από τους κεντρικούς πυλώνες της διεθνούς µακροοικονοµικής. Βάση της είναι το λεγόµενο νοµισµατικό υπόδειγµα, το οποίο προσδιορίζει

Διαβάστε περισσότερα

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών. Διεθνής Οικονομική Καθ. Γιώργος Αλογοσκούφης

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών. Διεθνής Οικονομική Καθ. Γιώργος Αλογοσκούφης Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Διεθνής Οικονομική Καθ. Γιώργος Αλογοσκούφης 1 Η Διαχρονική Προσέγγιση Η διαχρονική προσέγγιση έχει ως σημείο εκκίνησης τις τεχνολογικές και αγοραίες δυνατότητες

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Κεφάλαιο 14 Ατελής Ανταγωνισµός, Κλιµακωτή Προσαρµογή των Τιµών και Μακροοικονοµικές Διακυµάνσεις

Κεφάλαιο 14 Ατελής Ανταγωνισµός, Κλιµακωτή Προσαρµογή των Τιµών και Μακροοικονοµικές Διακυµάνσεις Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 205 Κεφάλαιο 4 Ατελής Ανταγωνισµός, Κλιµακωτή Προσαρµογή των Τιµών και Μακροοικονοµικές Διακυµάνσεις Στο κεφάλαιο αυτό παρουσιάζουµε τη διάρθρωση ενός

Διαβάστε περισσότερα

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα Οικονοµικών Διακυµάνσεων

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα Οικονοµικών Διακυµάνσεων Γιώργος Αλογοσκούφης, Διαχρονική Μακροοικονοµική, Αθήνα 2013 Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα Οικονοµικών Διακυµάνσεων Η πιο διαδεδοµένη προσέγγιση στην ανάλυση των οικονοµικών κύκλων βασίζεται

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Καθ. ΓΙΩΡΓΟΣ ΑΛΟΓΟΣΚΟΥΦΗΣ Οικονομικό Πανεπιστήμιο Αθηνών 1 Η Διαχρονική Προσέγγιση Η διαχρονική προσέγγιση έχει ως σημείο εκκίνησης τις τεχνολογικές και αγοραίες

Διαβάστε περισσότερα

Κεφάλαιο 8 Ένα Δυναµικό Υπόδειγµα Επενδύσεων

Κεφάλαιο 8 Ένα Δυναµικό Υπόδειγµα Επενδύσεων Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Κεφάλαιο 8 Ένα Δυναµικό Υπόδειγµα Επενδύσεων Στο κεφάλαιο αυτό αναλύουµε το βασικό δυναµικό νεοκλασσικό υπόδειγµα επιλογής των επενδύσεων. Το

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

5 Ο προσδιορισμός του εισοδήματος: Εξαγωγές και εισαγωγές

5 Ο προσδιορισμός του εισοδήματος: Εξαγωγές και εισαγωγές 5 Ο προσδιορισμός του εισοδήματος: Εξαγωγές και εισαγωγές Σκοπός Στο προηγούμενο κεφάλαιο εξετάσαμε τον προσδιορισμό του εισοδήματος μίας οικονομίας χωρίς διεθνές εμπόριο, δηλαδή χωρίς να λάβουμε υπ όψιν

Διαβάστε περισσότερα

Ανεργία και Τριβές στην Αγορά Εργασίας. Καθ. Γιώργος Αλογοσκούφης

Ανεργία και Τριβές στην Αγορά Εργασίας. Καθ. Γιώργος Αλογοσκούφης Ανεργία και Τριβές στην Αγορά Εργασίας Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ανεργία και Ανταγωνιστική Αγορά Εργασίας Σε μία πλήρως ανταγωνιστική αγορά

Διαβάστε περισσότερα

Ανεργία και Τριβές στην Αγορά Εργασίας. Ένα Υπόδειγμα Αναζήτησης και Σύζευξης στην Αγορά Εργασίας

Ανεργία και Τριβές στην Αγορά Εργασίας. Ένα Υπόδειγμα Αναζήτησης και Σύζευξης στην Αγορά Εργασίας Ανεργία και Τριβές στην Αγορά Εργασίας Ένα Υπόδειγμα Αναζήτησης και Σύζευξης στην Αγορά Εργασίας Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2016 Ανεργία και Ανταγωνιστική Αγορά Εργασίας

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης. Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας

Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης. Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας Εκμάθηση από την Εμπειρία και Συσσώρευση Κεφαλαίου η τεχνολογική πρόοδος

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων

Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων Στο κεφάλαιο αυτό παρουσιάζουµε ένα απλό υπόδειγµα κρίσεων δηµοσίου χρέους. Το υπόδειγµα αυτό οφείλεται στον Calvo (1988). Επικεντρωνόµαστε στο ερώτηµα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα και η Σταδιακή Προσαρµογή του Επιπέδου των Τιµών

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα και η Σταδιακή Προσαρµογή του Επιπέδου των Τιµών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2014 Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα και η Σταδιακή Προσαρµογή του Επιπέδου των Τιµών Η πιο διαδεδοµένη σήµερα προσέγγιση στην ανάλυση των

Διαβάστε περισσότερα

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 1 ΤΟΜΟΣ ΚΑΘΑΡΑ ΠΑΡΟΥΣΑ ΑΞΙΑ Η καθαρή Παρούσα Αξία ισούται με το άθροισμα προεξοφλημένων καθαρών ταμειακών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

Συνολική Ζήτηση, ΑΕΠ και Συναλλαγματικές Ισοτιμίες. Βραχυχρόνιοι Προσδιοριστικοί Παράγοντες του ΑΕΠ και της Συναλλαγματικής Ισοτιμίας

Συνολική Ζήτηση, ΑΕΠ και Συναλλαγματικές Ισοτιμίες. Βραχυχρόνιοι Προσδιοριστικοί Παράγοντες του ΑΕΠ και της Συναλλαγματικής Ισοτιμίας Συνολική Ζήτηση, ΑΕΠ και Συναλλαγματικές Ισοτιμίες Βραχυχρόνιοι Προσδιοριστικοί Παράγοντες του ΑΕΠ και της Συναλλαγματικής Ισοτιμίας Η Συνολική Ζήτηση και ο Βραχυχρόνιος Προσδιορισµός του ΑΕΠ και της Ισοτιµίας

Διαβάστε περισσότερα

ΔΕΟ 31 1 η γραπτή εργασία Τελική έκδοση με παρατηρήσεις

ΔΕΟ 31 1 η γραπτή εργασία Τελική έκδοση με παρατηρήσεις ΔΕΟ 31 1 η γραπτή εργασία 2013-14 - Τελική έκδοση με παρατηρήσεις ΠΡΟΣΟΧΗ! Αποτελεί υποδειγματική λύση. απάντηση! 1 Μελετήστε τη λύση και δώστε τη δική σας ΘΕΜΑ 1 Ο Επένδυση Α Για την επένδυση Α γνωρίζουμε

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11 Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =

Διαβάστε περισσότερα

Συναλλαγματικές ισοτιμίες και επιτόκια

Συναλλαγματικές ισοτιμίες και επιτόκια Κεφάλαιο 2 Συναλλαγματικές ισοτιμίες και επιτόκια 2.1 Σύνοψη Στο δεύτερο κεφάλαιο του συγγράμματος περιγράφεται αρχικά η συνθήκη της καλυμμένης ισοδυναμίας επιτοκίων και ο τρόπος με τον οποίο μπορεί ένας

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Κεφάλαιο 9 Μακροοικονοµική Πολιτική και Βραχυχρόνια Αλληλεξάρτηση στην Παγκόσµια Οικονοµία

Κεφάλαιο 9 Μακροοικονοµική Πολιτική και Βραχυχρόνια Αλληλεξάρτηση στην Παγκόσµια Οικονοµία Κεφάλαιο 9 Μακροοικονοµική Πολιτική και Βραχυχρόνια Αλληλεξάρτηση στην Παγκόσµια Οικονοµία Στο κεφάλαιο αυτό αναλύουµε ένα βραχυχρόνιο κεϋνσιανό υπόδειγµα για την παγκόσµια οικονοµία. Το υπόδειγµα αυτό

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Κεφάλαιο 3 ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Ένα από τα βασικά συμπεράσματα του απλού νεοκλασικού υποδείγματος οικονομικής μεγέθυνσης, που παρουσιάστηκε στο Κεφάλαιο, είναι ότι δεν μπορεί

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 9: Αποτίμηση κοινών μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 9: Αποτίμηση κοινών μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 9: Αποτίμηση κοινών μετοχών Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

Διαχρονικές Επιπτώσεις της Δημοσιονομικής Πολιτικής. Δημόσιες Δαπάνες, Δημόσιο Χρέος και Φορολογικοί Συντελεστές

Διαχρονικές Επιπτώσεις της Δημοσιονομικής Πολιτικής. Δημόσιες Δαπάνες, Δημόσιο Χρέος και Φορολογικοί Συντελεστές Διαχρονικές Επιπτώσεις της Δημοσιονομικής Πολιτικής Δημόσιες Δαπάνες, Δημόσιο Χρέος και Φορολογικοί Συντελεστές Ο Εισοδηματικός Περιορισμός της Κυβέρνησης Ο εισοδηματικός περιορισμός της κυβέρνησης ορίζεται

Διαβάστε περισσότερα

Ενότητα 10: Πληθωρισμός και ανεργία

Ενότητα 10: Πληθωρισμός και ανεργία Ενότητα 10: Πληθωρισμός και ανεργία Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

2. Επίλυση μη Γραμμικών Εξισώσεων

2. Επίλυση μη Γραμμικών Εξισώσεων 2. Επίλυση μη Γραμμικών Εξισώσεων Ασκήσεις 2.4 Έστω (x n ) n2n η ακολουθία των προσεγγίσεων, την οποία δίνει η μέθοδος της διχοτόμησης για την εξίσωση f (x) = 0 με f : [ 1; p 2]! R; f (x) := x 3 3 2 x2

Διαβάστε περισσότερα

Αριθμητικά Μοντέλα Επιλογής Έργων

Αριθμητικά Μοντέλα Επιλογής Έργων Αριθμητικά Μοντέλα Επιλογής Έργων Διακρίνονται σε χρηματοοικονομικά μοντέλα και σε μοντέλα βαθμολόγησης. Τα χρηματοοικονομικά μοντέλα είναι: Περίοδος αποπληρωμής επενδεδυμένων κεφαλαίων (Payback Period)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Αποτίμηση Αξιογράφων. PhD

Αποτίμηση Αξιογράφων. PhD Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής και Τραπεζικής Διοικητικής Αποτίμηση Αξιογράφων PhD Οκτώβριος 206 Δημήτρης Μαλλιαρόπουλος Καθηγητής e-mal: dmallaropulos@bankogreece.gr Εισαγωγή: Το DNA των

Διαβάστε περισσότερα

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και ισχύει f () = 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι σταθερή σ' όλο το διάστημα Δ. Πόρισμα Αν δύο συναρτήσεις

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Χρήμα και Οικονομική Μεγέθυνση. Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση

Χρήμα και Οικονομική Μεγέθυνση. Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση Χρήμα και Οικονομική Μεγέθυνση Προσφορά Χρήματος, Πληθωρισμός και Οικονομική Μεγέθυνση Η Ζήτηση Χρήματος Αρχικά αναλύουμε ένα υπόδειγμα αντιπροσωπευτικού νοικοκυριού στο οποίο το χρήμα εισέρχεται στη συνάρτηση

Διαβάστε περισσότερα

Άσκηση. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το σύνολο τιμών της. (β) Να βρεθεί ο πραγματικός αριθμός a, τέτοιος ώστε να ισχύει

Άσκηση. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το σύνολο τιμών της. (β) Να βρεθεί ο πραγματικός αριθμός a, τέτοιος ώστε να ισχύει Πειραματικό λύκειο Αναβρύτων Δρεκόλιας Δημήτρης Γ Λυκείου 2//2 Άσκηση Έστω η συνάρτηση f(x) = 2e x x 2 + με πεδίο ορισμού το σύνολο D f = R. (i)(α) Να αποδειχθεί ότι η ƒ αντιστρέφεται και να βρεθεί το

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης

Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου, Συσσώρευση Ανθρωπίνου Κεφαλαίου, και Παραγωγή Νέων Ιδεών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Η Αγορά Χρήματος, το Επίπεδο Τιμών και ο Πληθωρισμός. Καθ. Γιώργος Αλογοσκούφης

Η Αγορά Χρήματος, το Επίπεδο Τιμών και ο Πληθωρισμός. Καθ. Γιώργος Αλογοσκούφης Η Αγορά Χρήματος, το Επίπεδο Τιμών και ο Πληθωρισμός Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2016 1 Το Χρήμα και το Επίπεδο των Τιμών Το χρήμα είναι ένα ιδιαίτερο

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 1 ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 2015-16 Προσοχή! Όλες οι εργασίες ελέγχονται για αντιγραφή. Μελετήστε προσεκτικά και δώστε τη δική σας λύση ΘΕΜΑ 1 ο Α) Αρχικά θα πρέπει να υπολογίσουμε τη μηνιαία πραγματοποιηθείσα

Διαβάστε περισσότερα

( p) (1) (2) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. Α.Α.Δράκος

( p) (1) (2) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. Α.Α.Δράκος ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ Δράκος 4-5 4.) ΠΛΗΘΩΡΙΣΜΟΣ ΚΑΙ ΚΙΝΔΥΝΟΣ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ 4.. ΑΞΙΟΛΟΓΗΣΗ

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Απόθεµα περιουσιακών στοιχείων. Χρήσιµο για τις συναλλαγές. Μία µορφή πλούτου. Επάρκεια. Χωρίς Χρήµα. Ανταλλακτική Οικονοµία (Barter economy)

Απόθεµα περιουσιακών στοιχείων. Χρήσιµο για τις συναλλαγές. Μία µορφή πλούτου. Επάρκεια. Χωρίς Χρήµα. Ανταλλακτική Οικονοµία (Barter economy) Απόθεµα περιουσιακών στοιχείων Χρήµα Χρήσιµο για τις συναλλαγές Μία µορφή πλούτου Χωρίς Χρήµα Επάρκεια Ανταλλακτική Οικονοµία (Barter economy) 1 Λειτουργίες του Χρήµατος Μέσο διατήρησης της αξίας Μονάδα

Διαβάστε περισσότερα

Κεφάλαιο 3 Το Υπόδειγµα του Αντιπροσωπευτικού Νοικοκυριού

Κεφάλαιο 3 Το Υπόδειγµα του Αντιπροσωπευτικού Νοικοκυριού Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2016 Κεφάλαιο 3 Το Υπόδειγµα του Αντιπροσωπευτικού Νοικοκυριού Το υπόδειγµα του αντιπροσωπευτικού νοικοκυριού είναι ένα δυναµικό υπόδειγµα γενικής

Διαβάστε περισσότερα

Μακροοικονομική. Μακροοικονομική Θεωρία και Πολιτική. Αναπτύχθηκε ως ξεχωριστός κλάδος: Γιατί μελετάμε ακόμη την. Μακροοικονομική Θεωρία και

Μακροοικονομική. Μακροοικονομική Θεωρία και Πολιτική. Αναπτύχθηκε ως ξεχωριστός κλάδος: Γιατί μελετάμε ακόμη την. Μακροοικονομική Θεωρία και Μακροοικονομική Θεωρία και Πολιτική Εισαγωγή: με τι ασχολείται Ποια είναι η θέση της μακροοικονομικής σήμερα; Χρησιμότητα - γιατί μελετάμε την μακροοικονομική θεωρία; Εξέλιξη θεωρίας και σχέση με την πολιτική

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Το Πρότυπο Ανταγωνιστικό Υπόδειγμα του Διεθνούς Εμπορίου με Συναρτήσεις Παραγωγής και Χρησιμότητας Cobb Douglas. Καθ. Γιώργος Αλογοσκούφης

Το Πρότυπο Ανταγωνιστικό Υπόδειγμα του Διεθνούς Εμπορίου με Συναρτήσεις Παραγωγής και Χρησιμότητας Cobb Douglas. Καθ. Γιώργος Αλογοσκούφης Το Πρότυπο Ανταγωνιστικό Υπόδειγμα του Διεθνούς Εμπορίου με Συναρτήσεις Παραγωγής και Χρησιμότητας Cobb Douglas Καθ. Γιώργος Αλογοσκούφης Καθ. Γ. Αλογοσκούφης, Διεθνής Οικονομική και Παγκόσμια Οικονομία,

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα