Διαδικασία Αφίξεων. Ουρά Αναμονής. Μηχανισμός Εξυπηρέτησης. Πηγή Πελατών. Έξοδος. Πειθαρχία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαδικασία Αφίξεων. Ουρά Αναμονής. Μηχανισμός Εξυπηρέτησης. Πηγή Πελατών. Έξοδος. Πειθαρχία"

Transcript

1 Θεωρία Γραμμών Αναμονής (ουρές αναμονής) Πηγή Πελατών Διαδικασία Αφίξεων Ουρά Αναμονής Πειθαρχία Μηχανισμός Εξυπηρέτησης Έξοδος

2 Εισαγωγικά Στοιχεία Πληθυσμός (πηγή) πελατών Διαδικασία Αφίξεων Ουρά αναμονής Πειθαρχία της ουράς Μηχανισμός διαδικασία εξυπηρέτησης έξοδος Κωδικοποίηση και Συμβολισμοί Λήψη Αποφάσεων Επιπέδου Εξυπηρέτησης 2

3 Εισαγωγικά Στοιχεία (συνέχεια) Ουρές αναμονής δημιουργούνται όταν η τρέχουσα ζήτηση για κάποια υπηρεσία ξεπερνάει τη δυναμικότητα παροχής της Ακόμη και στις περιπτώσεις όπου η δυναμικότητα του συστήματος φαινομενικά καλύπτει τις απαιτήσεις (τη ζήτηση), ουρές αναμονής τείνουν να διαμορφώνονται λόγω της στοχαστικότητας που υπάρχει στις διαδικασίες άφιξης και εξυπηρέτησης πελατών Στόχος: Υπολογισμός δεικτών απόδοσης (π.χ. μέσος χρόνος αναμονής στην ουρά, μέσος πλήθος στην ουρά, κλπ) Αποφάσεις περί του επιπέδου της παρεχόμενης εξυπηρέτησης αντισταθμίζοντας το κόστος παροχής της εξυπηρέτησης με το κόστος (για την επιχείρηση) από την αναμονή των πελατών. 3

4 Βασικά δομικά στοιχεία και τα χαρακτηριστικά τους Πελάτης (customer) οτιδήποτε επιζητεί εξυπηρέτηση Θέσεις εξυπηρέτησης (server) τα σημεία εξυπηρέτησης Πηγή των πελατών (calling population) Μέγεθος (άπειρο δεν επηρεάζει το ρυθμό αφίξεων πότε θεωρείται πρακτικά άπειρο?? πεπερασμένο επηρεάζει ρυθμό αφίξεων? Ανοικτά συστήματα που απευθύνονται στο ευρύ κοινό Κλειστά συστήματα (π.χ. συστήματα συντήρησης) 4

5 Διαδικασία αφίξεων (arrival process) Προέλευση Πότε Μέσος ρυθμός άφιξης των πελατών (arrival rate) Προγραμματισμένες αφίξεις (deterministic arrivals) Τυχαίες αφίξεις (stochastic, random arrivals), ανεξάρτητες μεταξύ τους - άγνωστη η χρονική στιγμή κάθε άφιξης Αφίξεις κατά ομάδες (batches) Κατανομή των αφίξεων (π.χ Poisson, σταθερή, κλπ) Poisson με παράμετρο λ (διακριτή κατανομή) στη μονάδα του χρόνου η πιθανότητα να πραγματοποιηθούν x αφίξεις είναι: x e P( X x), x 0,,2,... x! 5

6 Διαδικασία αφίξεων (συνέχεια) Αν το πλήθος των αφίξεων στη μονάδα του χρόνου ακολουθεί κατανομή Poisson με παράμετρο (μέση τιμή) λ τότε η κατανομή του χρόνου, έστω Τ α, που μεσολαβεί ανάμεσα σε δύο διαδοχικές αφίξεις, είναι εκθετική (συνεχής) με μέση τιμή /λ. Δηλαδή είναι: Πυκνότητα: f ( t) t e t 0 με Ε[t] = /λ Αθροιστική: P( T a t) e t 6

7 Διαδικασία αφίξεων (συνέχεια) Ρυθμός αφίξεων: μέσο πλήθος πελατών κατά τη διάρκεια ενός χρονικού διαστήματος, το πλήθος ακολουθεί κατανομή Poisson. Χρόνος αφίξεων: μεσολαβεί ανάμεσα σε διαδοχικές αφίξεις, ακολουθεί εκθετική κατανομή και έχει μέση τιμή το αντίστροφο του μέσου ρυθμού αφίξεων. Ο χρόνος μέχρι την επόμενη άφιξη είναι ανεξάρτητος της χρ. στιγμής που έγινε η προηγούμενη (ιδιότητα αμνησίας τυχαίες αφίξεις) 7

8 Ουρά αναμονής - πειθαρχία (queue, discipline) Χωρητικότητα (μήκος ουράς) πεπερασμένη ή απεριόριστη Όταν όλες οι θέσεις αναμονής είναι κατειλημμένες (πεπερασμένη χωρητικότητα) τότε ο πραγματικός ρυθμός αφίξεων μηδενίζεται Συνήθειες των πελατών: μη προσχώρηση (balking), έλλειψη υπομονής και αποχώρηση (reneging), εναλλαγή (switching - jockeying) Πειθαρχία: ο κανόνας με τον οποίο επιλέγεται ο επόμενος πελάτης για να εξυπηρετηθεί. FIFO (FCFS), LIFO (LCFS), SIRO, SSTF. 8

9 Μηχανισμός (διαδικασία) εξυπηρέτησης (service process) Θέσεις εξυπηρέτησης (πλήθος παράλληλων θέσεων - single channel, multiple channels) Φάσεις εξυπηρέτησης (πλήθος διαδοχικών φάσεων - single phase, multiple phases) Κατανομή χρόνου εξυπηρέτησης - Ρυθμός εξυπηρέτησης (άτομα που εξυπηρετούνται στη μονάδα του χρόνου). Ο μέσος ρυθμός εξυπηρέτησης, συμβολίζεται με μ. Κατανομή Poisson με μέση τιμή μ. x e P( X x), x x! 0,,2,... 9

10 Διαδικασία εξυπηρέτησης (συνέχεια) Κατανομή του χρόνου εξυπηρέτησης: Εκθετική με μέση τιμή /μ, σταθερή, Erlang, Normal κλπ. Πυκνότητα: Αθροιστική: f ( t) P( T s t e t) όπου t 0 και Ε[t]=/μ e t Έξοδος: Άμεση επιστροφή στην πηγή, επιστροφή με χρονική υστέρηση, εγκατάλειψη της πηγής και του συστήματος. 0

11 Σύστημα εξυπηρέτησης με διάφορα δομικά στοιχεία Πειθαρχία Φάση Φάση 2 Θέση - Ουρά Θέση 2- Αναχώρηση Ουρά 0 Θέση -2 Ουρά 2 Θέση 2-2 Αναχώρηση Αφίξεις Θέση -3 Ουρά 3 Θέση 2-3 Αναχώρηση

12 Παράδειγμα Αν υποτεθεί ότι η διαδικασία άφιξης ακολουθεί κατανομή Poisson με μέση τιμή (μέσο ρυθμό αφίξεων) 5 άτομα ανά ώρα, τότε λ=5. Δηλαδή, η πιθανότητα να ισούται με κάποια δεδομένη τιμή x, η τυχαία μεταβλητή Χ α = «πλήθος ατόμων που εμφανίστηκαν σε μία ώρα», είναι: P( X a x) e 5 5 x! x, x 0,,2,... Ο χρόνος που παρεμβάλλεται μεταξύ διαδοχικών αφίξεων ακολουθεί εκθετική κατανομή με μέση τιμή /λ=/5 ώρες, δηλαδή κατά μέσο όρο παρεμβάλλονται 2 λεπτά. 2

13 Ιστόγραμμα τιμών από κατανομή Poisson με λ=5 3

14 Κατανομή Poisson με λ=5 4

15 Ιστόγραμμα τιμών από εκθετική κατανομή με μέση τιμή /λ=/5 5

16 Εκθετική κατανομή (πυκνότητα) με μέση τιμή /λ=/5 6

17 Παράδειγμα 2 Η πιθανότητα η τυχαία μεταβλητή Χ α = "πλήθος ατόμων που εμφανίστηκαν σε μία ώρα" να πάρει τιμή ακριβώς ίση με x=0, είναι: P( X a 0) 5 e 5 0! Η πιθανότητα να πάρει τιμή μικρότερη ή ίση με x, δηλαδή να εμφανιστούν από 0 μέχρι 0 άτομα μέσα σε μία ώρα είναι: P( X a 0) 0 x0 e 5 5 x! x

18 Παράδειγμα 3 Ο χρόνος Χ t, που παρεμβάλλεται μεταξύ διαδοχικών αφίξεων ακολουθεί εκθετική κατανομή με μέση τιμή /λ=/5 ώρες δηλαδή 2 λεπτά. Η πιθανότητα ο χρόνος ανάμεσα σε δύο διαδοχικές αφίξεις να είναι το πολύ 6 λεπτά (=/0 ώρες) είναι P( X t /0) e 5t t 0 Η πιθανότητα ο χρόνος ανάμεσα σε διαδοχικές αφίξεις να είναι το πολύ λεπτό (=/60 ώρες) είναι: P( X t /60) e 5t t 60 8

19 Παράδειγμα 4 Έστω ότι ο ρυθμός εξυπηρέτησης της θέσης εξυπηρέτησης ακολουθεί κατανομή Poisson με μέση τιμή μ=0 άτομα ανά ώρα, (οπότε ο χρόνος εξυπηρέτησης ακολουθεί εκθετική κατανομή με μέση τιμή /μ=/0 ώρες, δηλαδή 6 λεπτά ανά άτομο). Η πιθανότητα μέσα σε μία ώρα να μπορέσει να εξυπηρετήσει από 0 μέχρι 0 άτομα είναι: P( X a 0) 0 x0 e 0 0 x! x ενώ η πιθανότητα να μπορέσει να εξυπηρετήσει από 0 μέχρι 20 άτομα είναι: P( X a 20) 20 x0 e 0 0 x! x

20 Παραδείγματα συστημάτων εξυπηρέτησης Εμπορικά συστήματα εξυπηρέτησης Εξυπηρέτηση εξωτερικών πελατών πρατήρια βενζίνης, ταμεία τράπεζας, ταμεία κοινωφελών οργανισμών, καταστήματα, αυτόματοι πωλητές, ΑΤΜ''s, ταχυδρομεία, supermarket, κλπ Μεταφορικά μέσα εξυπηρέτησης Τα μεταφορικά μέσα ως πελάτες σταθμοί διοδίων, σηματοδότες, πλοία σε προβλήτες, φορτηγά αναμένουν για φορτοεκφόρτωση, αεροσκάφη που αναμένουν για απογείωση ή προσγείωση κλπ Τα μεταφορικά μέσα ως θέσεις εξυπηρέτησης επιβάτες που αναμένουν ταξί, λεωφορεία, πυροσβεστικά οχήματα, ασθενοφόρα, ανελκυστήρες, αεροπορικές μεταφορές κλπ 20

21 Εμποροβιομηχανικά συστήματα εξυπηρέτησης Εξυπηρέτηση εσωτερικών πελατών διακίνηση υλικών σε παραγωγικές διαδικασίες, συντήρηση μηχανών, σταθμοί επιθεώρησης, συστήματα Η/Υ, συστήματα εξυπηρέτησης εργαζομένων (αποθήκες εξοπλισμού, εστιατόρια, κάρτες πρόσβασης κλπ), συστήματα όπου μηχανές αποτελούν θέσεις εξυπηρέτησης κλπ Κοινωνικά συστήματα εξυπηρέτησης Εξυπηρέτηση ευρύτερου κοινωνικού συνόλου άμεσα ή έμμεσα σύστημα δικαιοσύνης, νομοθετικό σύστημα, συστήματα υγείας, κοινωνικές υπηρεσίες (π.χ. στεγαστική πρόνοια, υποστήριξη ανέργων κλπ), παιδεία, δημόσια έργα κλπ 2

22 Κωδικοποίηση μοντέλων (Kendall) Γενική μορφή : a/b/s/k/n» a: κατανομή αφίξεων (π.χ. M, G, D) b: κατανομή του χρόνου εξυπηρέτησης (ομοίως με a) s: πλήθος παράλληλων θέσεων εξυπηρέτησης () k: χωρητικότητα του συστήματος εξυπηρέτησης (>) N: πλήθος πελατών στην πηγή, όταν αυτό είναι πεπερασμένο. Όταν το σύστημα έχει άπειρη χωρητικότητα ή άπειρους πελάτες στην πηγή, τα αντίστοιχα σύμβολα συνήθως παραλείπονται. M/M/, M/M/s, M/G/, M/D/, M/M//N????? 22

23 Βασικά σύμβολα και ορισμοί n πλήθος πελατών στο σύστημα κάποια χρονική στιγμή (n(t)) s πλήθος των θέσεων εξυπηρέτησης του συστήματος λ μέσος ρυθμός αφίξεων στη μονάδα χρόνου (λ n ) μ μέσος ρυθμός εξυπηρέτησης στη μονάδα χρόνου (μ n ) ρ βαθμός απασχόλησης θέσεων εξυπηρέτησης P n L s L L q W W q πιθανότητα να υπάρχουν n πελάτες στο σύστημα (P n (t)) μέσο πλήθος πελατών που εξυπηρετούνται (being served) μέσο πλήθος πελατών στο σύστημα μέσο πλήθος πελατών στην ουρά μέσος χρόνος παραμονής πελάτη στο σύστημα μέσος χρόνος αναμονής πελάτη στην ουρά 23

24 Βασικά σύμβολα και ορισμοί (συνέχεια) Κατάσταση ισορροπίας (μόνιμη, σταθερή, οριακή κατάσταση - steady state): Ένα σύστημα βρίσκεται σε κατάσταση ισορροπίας, όταν η συμπεριφορά του δεν εξαρτάται από τις αρχικές συνθήκες που υπάρχουν κατά την έναρξη της λειτουργίας του. Ένα σύστημα φθάνει σε κατάσταση ισορροπίας, όταν παρέλθει ένα εύλογο χρονικό διάστημα από την αρχική του κατάσταση (την εκκίνηση), στη διάρκεια του οποίου εξαλείφεται η επίδραση των συνθηκών εκκίνησης οπότε οι δείκτες είναι ανεξάρτητοι από το χρόνο παρατήρησης t. 24

25 Βασικά σύμβολα και ορισμοί (συνέχεια) Παροδική - μεταβατική περίοδος (transient period, warm up period): Η περίοδος που απαιτείται να περάσει, ώστε το σύστημα να πάψει να εξαρτάται από τις αρχικές συνθήκες εκκίνησης, και να συγκλίνει σε κατάσταση ισορροπίας. Κατά την περίοδο αυτή, οι δείκτες απόδοσης δέχονται ουσιαστική επίδραση από τις συνθήκες εκκίνησης και εξαρτώνται από το χρόνο t. Η προσομοίωση είναι μία μεθοδολογία της Επιχ. Έρευνας με την οποία διερευνούμε τη συμπεριφορά πολύπλοκων δυναμικών συστημάτων όπου ενδεχομένως δεν υπάρχει κατάσταση ισορροπίας. 25

26 Σχέσεις κατάστασης ισορροπίας (Little) L W L Lq Ls Lq L q W q s W W q βαθμός απασχόλησης (utilization factor) = ποσοστό χρόνου που είναι απασχολημένες οι θέσεις απασχόλησης. Υπάρχουν συστήματα στα οποία για να μπορεί να υπάρξει κατάσταση ισορροπίας πρέπει να ισχύει ότι το ρ <, διαφορετικά η ουρά τείνει στο άπειρο. 26

27 Η ψυχολογία της αναμονής. Ο χρόνος που αναλώνεται σε αδράνεια μοιάζει περισσότερος από το χρόνο που αναλώνεται όταν ο πελάτης είναι απασχολημένος 2. Η αναμονή για να αρχίσει μία διαδικασία μοιάζει μεγαλύτερη από την αναμονή μέσα στη διαδικασία 3. Η ανυπομονησία κάνει την αναμονή να μοιάζει μεγαλύτερη 4. Οι αναμονές στοχαστικής διάρκειας μοιάζουν μεγαλύτερες από εκείνες που είναι προσδιοριστικές 5. Μη εξηγήσιμες αναμονές είναι μεγαλύτερες από τις εξηγήσιμες 6. Αναμονή που οφείλεται σε μη ισότιμη μεταχείριση είναι μεγαλύτερη 7. Όσο πιο σημαντική είναι η διαδικασία εξυπηρέτησης τόσο μεγαλύτερη μοιάζει η αναμονή αλλά και ο πελάτης είναι διατεθειμένος να περιμένει περισσότερο 8. Η μοναχική αναμονή μοιάζει μεγαλύτερη από την ομαδική 27

28 Το σύστημα Μ/Μ/ Παραδοχές. Η πηγή των πελατών περιέχει άπειρους πελάτες (N=). 2. Η διαδικασία αφίξεων ακολουθεί την κατανομή Poisson με γνωστό μέσο ρυθμό αφίξεων στη μονάδα του χρόνου λ, ο οποίος παραμένει σταθερός κατά τη διάρκεια παρατήρησης. Ισοδύναμα, ο χρόνος που μεσολαβεί ανάμεσα σε διαδοχικές αφίξεις ακολουθεί εκθετική κατανομή με μέση τιμή /λ. 3. Υπάρχει μία μόνο ουρά με πειθαρχία FIFO. 4. Οι πελάτες εισέρχονται πάντα στην ουρά και περιμένουν να εξυπηρετηθούν, χωρίς να αποχωρούν από αυτή. 5. Χωρητικότητα του συστήματος απεριόριστη (k = ). 28

29 Παραδοχές Μ/Μ/ (συνέχεια) 6. Υπάρχει μία θέση εξυπηρέτησης (s = ). 7. Η εξυπηρέτηση γίνεται σε μία φάση. 8. Ο χρόνος εξυπηρέτησης ακολουθεί την εκθετική κατανομή με γνωστή μέση τιμή /μ, που παραμένει σταθερή κατά τη διάρκεια παρατήρησης. Ισοδύναμα, η διαδικασία (ρυθμός) εξυπηρέτησης ακολουθεί την κατανομή Poisson με μέση τιμή μ. 9. Ο μέσος ρυθμός εξυπηρέτησης είναι μεγαλύτερος από το μέσο ρυθμό αφίξεων (λ < μ ρ < ), οπότε το σύστημα οδηγείται σε κατάσταση ισορροπίας. 29

30 30 Βασικές σχέσεις για τους δείκτες απόδοσης (Μ/Μ/) / s L ρ = λ / sμ = λ / μ (=L s για το μοντέλο αυτό όπου s=) ) ( 2 L q q L L P 0?????? ( ) q q L W n n P P 0?????? L W W q k k P n??????

31 Παράδειγμα 5 (εξωτερικό ιατρείο) Σε ένα εξωτερικό ιατρείο με μία διαγνωστική ομάδα και μία ουρά αναμονής, παρατηρήθηκε ότι την ημέρα της εφημερίας κατά την περίοδο αιχμής, οι ασθενείς καταφθάνουν με διαδικασία Poisson με μέση τιμή λ=2 άτομα ανά ώρα, ενώ η ομάδα εξέτασης εξυπηρετεί με ρυθμό μ=3 άτομα ανά ώρα. Να αξιολογήσετε το σύστημα με τον υπολογισμό των κατάλληλων δεικτών απόδοσης. Λύση Χρόνος ανάμεσα σε διαδοχικές αφίξεις εκθετική κατανομή (ρυθμός αφίξεων Poisson) με μέση τιμή /λ = /2 ώρες ανά πελάτη (=30 λεπτά). Χρόνος εξυπηρέτησης εκθετική κατανομή (ρυθμός εξυπηρέτησης Poisson) με μέση τιμή /μ = /3 ώρες ανά πελάτη (=20 λεπτά). 3

32 32 Παράδειγμα 5 (συνέχεια) / 2/3 s L 3 2 s L P πελάτες 3 4 / 2) 3(3 2 ) ( 2 2 L q πελάτες L 40 λεπτά ώρες 3 2 2) 3( / ) ( q q L W ώρα L W W q η πιθανότητα ένας πελάτης να εξυπηρετηθεί αμέσως

33 Παράδειγμα 5 (αποτελέσματα από τον Η/Υ - QSBWin) 33

34 Παράδειγμα 6 (ταμείο κινηματογράφου) Στο ταμείο ενός κινηματογράφου υπάρχει ένας ταμίας και μία ουρά αναμονής. Τις ώρες αιχμής καταφθάνει ένας πελάτης ανά 20 sec κατά μέσο όρο (εκθετική κατανομή), ενώ ο ταμίας εξυπηρετεί σε χρόνο που ακολουθεί εκθετική κατανομή με μέση τιμή 5 sec ανά πελάτη. Να αξιολογήσετε το σύστημα με τον υπολογισμό των κατάλληλων δεικτών απόδοσης. Λύση Ρυθμός αφίξεων Poisson κατανομή (χρόνος ανάμεσα στις αφίξεις εκθετική) με μέση τιμή λ = /20 πελάτες ανά δευτερόλεπτο, δηλαδή ισοδύναμα, λ=3 πελάτες το λεπτό. Ρυθμός εξυπηρέτησης Poisson κατανομή (χρόνος εξυπηρέτησης εκθετική) με μέση τιμή μ = /5 πελάτες ανά δευτερόλεπτο δηλαδή ισοδύναμα, μ= 4 πελάτες το λεπτό. 34

35 35 Παράδειγμα 6 (συνέχεια) 4 3 s L???? P πελ ) 4(4 3 ) ( 2 2 q L πελάτες L λεπτά / q q L W λεπτό W q W

36 36 Παράδειγμα 6 (συνέχεια) 4 0 P P P n P P n P P n P P n P P n

37 Παράδειγμα 6 (πιθανότητες) Οι πιθανότητες για n=0,, 2, 24 κλπ n =n n >n 37

38 Παράδειγμα 6 (μεταβολή των δεικτών συναρτήσει του λ) 38

39 39

40 Παράδειγμα 6 (μεταβολή των δεικτών συναρτήσει του μ) 40

41 4

42 Το σύστημα Μ/Μ/s> Παραδοχές. Η πηγή των πελατών περιέχει άπειρους πελάτες (N=). 2. Η διαδικασία αφίξεων ακολουθεί την κατανομή Poisson με γνωστό μέσο ρυθμό αφίξεων στη μονάδα του χρόνου λ, ο οποίος παραμένει σταθερός κατά τη διάρκεια παρατήρησης. Ισοδύναμα, ο χρόνος που μεσολαβεί ανάμεσα σε διαδοχικές αφίξεις ακολουθεί εκθετική κατανομή με μέση τιμή /λ. 3. Υπάρχει μία ουρά με πειθαρχία FIFO. 4. Οι πελάτες μπαίνουν πάντα στην ουρά και περιμένουν να εξυπηρετηθούν, χωρίς να αποχωρούν από αυτή. 5. Χωρητικότητα του συστήματος απεριόριστη (k = ). 42

43 Παραδοχές Μ/Μ/s> (συνέχεια) 6. Υπάρχουν περισσότερες από μία παράλληλες θέσεις εξυπηρέτησης. 7. Εξυπηρέτηση σε μία φάση σε κάποια από αυτές τις παράλληλες θέσεις. 8. Ο χρόνος εξυπηρέτησης σε κάθε θέση ακολουθεί την ίδια εκθετική κατανομή με γνωστή μέση τιμή /μ, που παραμένει σταθερή κατά τη διάρκεια παρατήρησης. Άρα και ο ρυθμός εξυπηρέτησης κάθε θέσης ακολουθεί την ίδια κατανομή Poisson με μέση τιμή μ. 9. Ο συνολικός μέσος ρυθμός εξυπηρέτησης όλων των θέσεων μαζί είναι μεγαλύτερος από το μέσο ρυθμό αφίξεων (λ < sμ ρ < ) οπότε το σύστημα οδηγείται σε κατάσταση ισορροπίας. 43

44 44 Βασικές σχέσεις για τους δείκτες απόδοσης (M/M/s) s / ο βαθμός απασχόλησης του συστήματος 0 0! ) / (! ) / ( s n s n s s s n P είναι η πιθανότητα να μην υπάρχουν καθόλου πελάτες στο σύστημα (μέσο ποσοστό χρόνου κατά τον οποίο όλες οι θέσεις παραμένουν αδρανείς) s n P s s s n P n P n s n n n,!,! s P P P 0 s n n P δηλ. η πιθανότητα ένας πελάτης που καταφτάνει να εξυπηρετηθεί αμέσως 0 s n w P n P 0! P s s s P s w η πιθανότητα ένας πελάτης που καταφτάνει να χρειαστεί να περιμένει πιθανότητα τουλάχιστον μία θέση αδρανής,

45 Βασικές σχέσεις - δείκτες απόδοσης (M/M/s συνέχεια) L s L q / ( s s )!( s ) L L r L q q ο αναμενόμενος αριθμός πελατών στο σύστημα (από τις σχέσεις του Little) 2 P 0 W q L q W Wq L 45

46 Παράδειγμα 7 Η διεύθυνση ενός supermarket προτίθεται να εγκαταστήσει ένα τμήμα διάθεσης άρτου. Τις ώρες αιχμής οι πελάτες καταφθάνουν με ρυθμό λ=72 πελάτες την ώρα (Poisson) και σχηματίζουν μία ουρά αναμονής. Τρεις πωλητές θα προσληφθούν για τις ώρες αιχμής (s=3) και σύμφωνα με δεδομένα από αντίστοιχα τμήματα, ο μέσος χρόνος εξυπηρέτησης κάθε πωλητή συνήθως κυμαίνεται στο λεπτό ανά πελάτη (εκθετική κατανομή). Να εντοπιστούν οι δείκτες απόδοσης. Λύση Θα πρέπει οι δύο παράμετροι να αναφέρονται στην ίδια μονάδα χρόνου. Διατηρώντας το λ=72 άτομα ανά ώρα θα πρέπει ο μέσος χρόνος εξυπηρέτησης, που είναι λεπτό ανά άτομο, και δίνει ρυθμό μ= άτομο ανά λεπτό, να μετατραπεί σε μ=60 άτομα ανά ώρα. Ισοδύναμα, αν παραμείνει το μ= άτομο το λεπτό θα πρέπει να θέσουμε λ=.2 άτομα ανά λεπτό. 46

47 Παράδειγμα 7 (συνέχεια) / s 72/ P 0 2 n0 n 72 / / 60 n! 3! / / / / 60 0! 0 3 δηλαδή P 0 = 29.4% 2! 3!

48 Παράδειγμα 7 (συνέχεια) L q ( s s ( / ) )!( s ) 3 P 2 0 P 2 0 2! ( ) L L q πελάτες W q L q / 0.094/ ώρες ( min) W L/.294/ ώρες (.078 min) δηλαδή W q 4.68 και W δευτερόλεπτα 48

49 Παράδειγμα 7 (συνέχεια) Πόση είναι η πιθανότητα ένας πελάτης να εξυπηρετηθεί αμέσως?? P 0 + P + P 2 P P0 72/60! P0 72/60 2! 0.28 Οπότε P 0 + P + P 2 = = = 85.88% Τότε: - (P 0 + P + P 2 ) = = 0.42 = 4.2% είναι η πιθανότητα ένας πελάτης που καταφτάνει να χρειαστεί να περιμένει. P 49

50 Παράδειγμα 7 (η κατανομή n πελατών) 50

51 Παράδειγμα 7 (αποτελέσματα με τον Η/Υ - σε ώρες) 5

52 Παράδειγμα 7 (αποτελέσματα με τον Η/Υ - σε λεπτά) 52

53 Το σύστημα Μ/Μ//k Παραδοχές Ισχύουν οι παραδοχές του συστήματος Μ/Μ/ εκτός από: Είναι σύστημα με πεπερασμένη χωρητικότητα ουράς (k-) Εκμηδένιση του πραγματικού ρυθμού αφίξεων όταν το σύστημα είναι πλήρες: n 0 για για n 0,,..., k n k Δεν είναι απαραίτητο να ισχύει ότι λ < μ (εδώ δεν υπάρχει περίπτωση το μήκος της ουράς να γίνει άπειρο) 53

54 Βασικές σχέσεις για τους δείκτες απόδοσης (M/M//k) / P 0 P n k n n P0 P0 k η πιθανότητα να μην υπάρχει κανείς πελάτης στο σύστημα όταν n k P 0 P =0 όταν n k n Pn k η πιθανότητα ένας πελάτης να χρειαστεί να περιμένει η πιθανότητα το σύστημα να είναι πλήρες 54

55 Βασικές σχέσεις - δείκτες απόδοσης (M/M//k συνέχεια) L ( k ) k k W W q L ( P k ) L q L ( P k ) L ( P 0 ) W q Lq ( Pk ) Ο πραγματικός μέσος ρυθμός αφίξεων στο σύστημα είναι λ(-p k ) Αυτό επειδή ισχύει: λ όταν n < k (με -P k να είναι η πιθανότητα να υπάρχει κενή θέση) 0 όταν n = k οπότε Ε(λ) = λ (-P k ) + 0(P k ) = λ(-p k ) Επίσης, ο πραγματικός βαθμός απασχόλησης είναι Ε(ρ) = ρ(-p k ) 55

56 Παράδειγμα 8 Ένα αυτόματο πλυντήριο αυτοκινήτων μπορεί να δεχτεί μέχρι τέσσερα οχήματα στο χώρο αναμονής. Ο ρυθμός αφίξεων τις ώρες αιχμής είναι Poisson με μέση τιμή λ=9 οχήματα ανά ώρα. Ο ρυθμός εξυπηρέτησης είναι επίσης Poisson με μέσο ρυθμό μ=5 οχήματα ανά ώρα. Να βρεθούν οι δείκτες απόδοσης του συστήματος. Λύση Η χωρητικότητα του συστήματος είναι k=4+=5 οχήματα Στην πραγματικότητα, ο μέσος βαθμός απασχόλησης είναι 0 ( Pk ) Pk ( Pk ) 0.6 ( )

57 Παράδειγμα 8 (συνέχεια) P k ?? P k 5 5 n 5 P P k Οι πιθανότητες για n=0,, 2, 3, 4, 5 n =n n >n 57

58 Παράδειγμα 8 (η κατανομή n πελατών) 58

59 59 Παράδειγμα 8 (συνέχεια) οχήματα ) ( ) ( 6 6 k k k L οχήματα ) (.2064 ) ( 0 P L L q λεπτά) ώρες( ) 9( ) ( k q q P L W λεπτά) 8.3 ώρες( W q W

60 Παράδειγμα 8 (αποτελέσματα με τον Η/Υ) 60

61 Παράδειγμα 8 (παραλλαγή η ) Ας υποθέσουμε ότι ο ρυθμός εξυπηρέτησης μειώνεται (λόγω π.χ. κάποιας βλάβης) σε μ=5 οχήματα ανά ώρα. Η χωρητικότητα παραμένει k = 5 και ο ρυθμός αφίξεων τις ώρες αιχμής παραμένει Poisson με μέση τιμή λ=9 οχήματα ανά ώρα. Να βρεθούν πάλι οι δείκτες απόδοσης του συστήματος και να συγκριθούν με την προηγούμενη περίπτωση. Λύση Ο πραγματικός μέσος βαθμός απασχόλησης είναι ( Pk ).8 ( )

62 Παράδειγμα 8 (παραλλαγή η - συνέχεια) P k ?? 5 5 P n P P k Οι πιθανότητες για n=0,, 2, 3, 4, 5 n =n n >n 62

63 Παράδειγμα 8 (παραλλαγή η - η κατανομή n πελατών) 63

64 Παράδειγμα 8 (παραλλαγή η - συνέχεια) L ( k k ) k (5 ) οχήματα L q L ( P0 ) 3.93 ( ) 2.95 οχήματα W q L q ( P5 ) ( ) ώρες( 36 λεπτά) W W q ώρες( 48 λεπτά) 64

65 Παράδειγμα 8 (παραλλαγή η - αποτελέσματα με τον Η/Υ) 65

66 Παράδειγμα 8 (παραλλαγή 2 η ) Ας υποθέσουμε ότι η χωρητικότητα της ουράς εκμηδενίζεται οπότε k =. Ο ρυθμός αφίξεων τις ώρες αιχμής παραμένει Poisson με μέση τιμή λ=9 οχήματα ανά ώρα και ο ρυθμός εξυπηρέτησης είναι μ=5 οχήματα ανά ώρα. Πρακτικά, όταν ένας πελάτης που φθάνει βρίσκει κάποιον ήδη να εξυπηρετείται, αποχωρεί οπότε δεν δημιουργείται ποτέ ουρά. Να βρεθούν οι δείκτες απόδοσης του συστήματος και να συγκριθούν με την αρχική περίπτωση. Λύση Οι πιθανότητες για n=0, n =n n >n 66

67 Παράδειγμα 8 (παραλλαγή 2 η - αποτελέσματα με τον Η/Υ) 67

68 Το σύστημα Μ/Μ///Ν Παραδοχές Ισχύουν οι παραδοχές του συστήματος Μ/Μ/ εκτός από: Η πηγή των πελατών περιέχει πεπερασμένο πλήθος ατόμων (Ν) Ο συνολικός ρυθμός άφιξης στο σύστημα (λ n ) επηρεάζεται από το πλήθος των ατόμων που έχουν ήδη φτάσει σύστημα (n) Η διαδικασία αφίξεων ακολουθεί κατανομή Poisson με μέσο ρυθμό εμφάνισης (άφιξης) για κάθε πελάτη, ίσο με λ Εκμηδένιση του πραγματικού ρυθμού αφίξεων όταν έχει αδειάσει η πηγή (δηλαδή λ n = 0 για n=n). 68

69 Το σύστημα Μ/Μ///Ν (συνέχεια) Εφαρμογή: Βιομηχανικά συστήματα και γενικότερα συστήματα εσωτερικής εξυπηρέτησης (π.χ. συντήρηση μηχανών) ο πραγματικός ρυθμός άφιξης επηρεάζεται από το n (πλήθος πελατών ήδη μέσα στο σύστημα). το λ ορίζεται ως ο ρυθμός με τον οποίο κάθε πελάτης, από τους Ν αρχικά διαθέσιμους, επανεμφανίζεται στην ουρά (π.χ. ο ρυθμός με τον οποίο μία μηχανή παρουσιάζει βλάβες, οπότε υπάρχει ανάγκη για επιδιόρθωση). αν οι πελάτες μέσα στο σύστημα εξυπηρέτησης είναι πλήθους n, τότε ο συνολικός ρυθμός εμφάνισης των υπολοίπων που παραμένουν στην πηγή είναι λ n = (Ν - n) λ το s= και ο ρυθμός εξυπηρέτησης είναι πάντα ίσος με μ 69

70 Παράδειγμα 9 Αν Ν=5 μηχανές και s= συνεργείο, όλες οι πιθανές καταστάσεις του συστήματος δίνονται στον ακόλουθο πίνακα: Με βλάβη (στο σύστημα εξυπηρέτησης - n) Σε λειτουργία (πηγή - N) Μήκος ουράς Συνεργείο Καμία (0) 5 Κενή (0) Αδρανές 4 Κενή (0) Ενεργό 2 3 Ενεργό Ενεργό 4 3 Ενεργό 5 Καμία (0) 4 Ενεργό μ 5λ 4λ μ 3λ μ μ μ 2λ λ 0/5 /4 2/3 3/2 4/ 5/0 Πηγή/Συνεργείο μ μ μ μ μ λ 2λ 3λ 4λ 5λ 70

71 7 Βασικές σχέσεις για τους δείκτες απόδοσης (Μ/Μ///Ν) N n n n N N P 0 0 )! (! P 0?? N n n N N P P n n όταν )! (! 0 n =0 όταν P n N N n P ) ( 0 P N L q ( L) N L W q q ) ( 0 P L L q ) ( L N L W W q η πιθανότητα η πηγή να είναι κενή η πιθανότητα να μην υπάρχει κανένας πελάτης στο σύστημα

72 Βασικές σχέσεις - δείκτες απόδοσης (Μ/Μ///Ν συνέχεια) Υπολογισμός του πραγματικού μέσου ρυθμού αφίξεων: λ n =0 όταν n=ν, με πιθανότητα P N λ n =λ όταν n=ν-, με πιθανότητα P N- λ n =2λ όταν n=ν-2, με πιθανότητα P N-2. λ n = (Ν-2)λ όταν n=2, με πιθανότητα P 2 λ n = (Ν-)λ όταν n= με πιθανότητα P λ n = Νλ όταν n=0, με πιθανότητα P 0 δηλαδή το λ n είναι λ(ν-n) Για να βρούμε το μέσο ρυθμό των αφίξεων που πραγματικά εισέρχονται στο σύστημα πρέπει να βρούμε τη μέση τιμή της παραπάνω τυχαίας μεταβλητής (του λ n ) 72

73 73 Υπολογισμός του μέσου ρυθμού πραγματικών αφίξεων N n n N n n N n n np P N P n N ) ( ( L) N O πραγματικός βαθμός απασχόλησης της θέσης εξυπηρέτησης με βάση τις αφίξεις που εισέρχονται τελικά στο σύστημα είναι: ( L) N

74 Παράδειγμα 0 Σε μία βιοτεχνία, η οποία λειτουργεί σε 24ωρη βάρδια επί πενθήμερο, ένας τεχνικός είναι υπεύθυνος για την επιδιόρθωση τεσσάρων -σχετικά παλαιών- μηχανών πλέξης. Κάθε μηχανή λειτουργεί κατά μέσο όρο 60 ώρες πριν να χρειαστεί ρύθμιση, προγραμματισμό ή επισκευή και "εμφανίζεται" στο συνεργείο με διαδικασία Poisson. Ο τεχνικός χρειάζεται κατά μέσο όρο 5 ώρες για κάθε επισκευή (εκθετική κατανομή). Λύση Θα χρησιμοποιήσουμε ως στοιχειώδη μονάδα χρόνου το πενθήμερο (=20 ώρες). Τότε είναι λ=20/60= 2 (2 αφίξεις της μηχανής ανά πενθήμερο) και μ=20/5= 8 (επιδιορθώσεις μηχανών ανά πενθήμερο) 74

75 75 Παράδειγμα 0 (συνέχεια) Αν είχαμε χρησιμοποιήσει ως στοιχειώδη μονάδα χρόνου την ώρα τότε λ=/60 (/60 της μηχανής φθάνει ανά ώρα) και μ=/5 (ο μηχανικός επιδιορθώνει με ρυθμό /5 μηχανής ανά ώρα) )! (4 4! )! (4 4! )! (! N n n n N N P )! (4 4! )! (! n N N P P N N n

76 Παράδειγμα 0 (συνέχεια) Οι πιθανότητες για n=0,, 2, 3, 4 n =n n >n L q N 2 8 ( P0 ) 4 ( 0.307) μηχανές L Lq ( P0 ) ( 0.307).2427 μηχανές 76

77 Παράδειγμα 0 (η κατανομή n πελατών) 77

78 78 Παράδειγμα 0 (συνέχεια) 0.5 days) ( ) 2( ) ( L N L W q q.27 days) ( W q W ) 2(4 ) ( L N

79 Παράδειγμα 0 (αποτελέσματα από τον Η/Υ) 79

80 Παράδειγμα Έξι όμοιες μηχανές λειτουργούν κατά μέσο όρο 20 ώρες πριν να χρειαστούν κάποια ρύθμιση. Ένας τεχνικός ρυθμίζει μία μηχανή σε δύο ώρες. Υπολογίστε τους δείκτες απόδοσης. Λύση Χρησιμοποιώντας ως στοιχειώδη μονάδα χρόνου την ώρα, παίρνουμε λ=/20 (/20 μηχανής φθάνει ανά ώρα) και μ=/2 (ο μηχανικός επιδιορθώνει με ρυθμό 0.5 μηχανής ανά ώρα). Το πλήθος των πελατών στην πηγή είναι Ν=6. P ! 0.05 (6 0)! 0.5 6! 0.05 (6 )! ! 0.05 (6 6)!

81 Παράδειγμα (τα αποτελέσματα από τον Η/Υ) 8

82 Παράδειγμα (συνέχεια) Οι πιθανότητες για n=0,, 2, 3, 4, 5, 6 n =n n >n 82

83 Παράδειγμα (η κατανομή n πελατών) 83

84 Το σύστημα Μ/G/ Παραδοχές Ισχύουν οι παραδοχές του συστήματος Μ/Μ/ εκτός από: Η διαδικασία εξυπηρέτησης δύναται να ακολουθεί οποιαδήποτε κατανομή (General) Χρειαζόμαστε κάποια εκτίμηση για τη μέση τιμή του χρόνου εξυπηρέτησης δηλαδή για το (/μ) και για τη διακύμανσή του, δηλαδή για το σ 2. Για να μπορούν να χρησιμοποιηθούν οι γνωστές σχέσεις που συνδέουν τα μέτρα λειτουργικότητας πρέπει να ισχύει ότι λ<μ. 84

85 85 Βασικές σχέσεις για τους δείκτες απόδοσης (Μ/G/) ) 2( q L q q L W q L L L W W q Polachek Khinchine Formula

86 Παράδειγμα 2 Σε ένα σύστημα εξυπηρέτησης με s=, ο μέσος χρόνος που μεσολαβεί ανάμεσα σε διαδοχικές αφίξεις είναι 2 λεπτά (εκθετική κατανομή) ενώ από δειγματοληψία η οποία διενεργήθηκε, βρέθηκε ότι η εξυπηρέτηση χρειάζεται κατά μέσο όρο 7.5 λεπτά με κάποια άγνωστη κατανομή. H διακύμανση του χρόνου εξυπηρέτησης προσεγγίστηκε από το δείγμα και βρέθηκε ίση με σ 2 = /64. Να υπολογιστούν οι δείκτες απόδοσης. Λύση Αν θεωρήσουμε την ώρα ως στοιχειώδη χρονική μονάδα, τότε ο μέσος ρυθμός άφιξης είναι λ=60/2= 5 πελάτες ανά ώρα ενώ ο μέσος ρυθμός εξυπηρέτησης είναι μ=60/7.5= 8 πελάτες ανά ώρα. 86

87 Παράδειγμα 2 (συνέχεια) P L q ( ) πελάτες L L q πελάτες 87

88 Παράδειγμα 2 (συνέχεια) W q Lq ώρες( 2.5 λεπτά) W W q ώρες( 20 λεπτά) Επειδή η εκτίμηση της διακύμανσης είναι σ 2 = /64 = /8 2 = /μ 2, ουσιαστικά η μέση τιμή και η διακύμανση στο παράδειγμα, συμπεριφέρονται όπως και της εκθετικής (χωρίς απαραίτητα να είναι πραγματικά η κατανομή του χρόνου εξυπηρέτησης εκθετική). Έτσι, τα αποτελέσματα είναι ισοδύναμα με το Μ/Μ/. Αν αντικαταστήσουμε στο L q το σ 2 με /μ 2 θα έχουμε: 88

89 89 Παράδειγμα 2 (συνέχεια) ) ( ) ( L q Είναι δηλαδή ο τύπος του μοντέλου Μ/Μ/ για το L q. Οπότε είναι αλήθεια ότι έχουμε αντίστοιχα αποτελέσματα με εκείνα της Μ/Μ/ τουλάχιστον κατά προσέγγιση επειδή η μέση τιμή και η διασπορά συμπεριφέρονται έτσι. Οι υπόλοιποι δείκτες υπολογίζονται από τους γνωστούς τύπους για τη Μ/Μ/.??

90 Παράδειγμα 2 (τα αποτελέσματα από τον Η/Υ) 90

91 Το σύστημα Μ/D/ Αν στο σύστημα Μ/G/ υποθέσουμε επιπλέον ότι σ 2 = 0, τότε έχουμε ένα σύστημα Μ/G/ με μηδενική μεταβλητότητα του χρόνου εξυπηρέτησης. Τέτοιες περιπτώσεις εμφανίζονται σε βιομηχανικά συστήματα, π.χ. σε σταθμούς επεξεργασίας όπου μία επαναλαμβανόμενη εργασία εκτελείται από μηχανή με σταθερό χρόνο κάθε φορά και αμελητέα, πρακτικά μηδενική απόκλιση. Στην περίπτωση αυτή, όλοι οι χρόνοι εξυπηρέτησης είναι ίδιοι, δεν υπάρχει αβεβαιότητα και έχουμε εκφυλισμένη (σταθερή) κατανομή του χρόνου εξυπηρέτησης. Τότε: L q ( ) 2 2( ) 9

92 Παράδειγμα 3 (M/D/) Συνεχίζοντας με τα δεδομένα του προηγούμενου παραδείγματος και θέτοντας σ 2 = 0 έχουμε τα ακόλουθα αποτελέσματα για τους βασικούς δείκτες απόδοσης. L q 2 2( ) πελάτες W q Lq ώρες( 6.25 λεπτά) 92

93 Παράδειγμα 3 (συνέχεια) L L q πελάτες 55 W L ώρες( 3.75 λεπτά) Παρατηρούμε ότι οι δείκτες απόδοσης του M/D/ είναι καλύτεροι από αυτούς του M/M/ και του M/G/ με ίδιες παραμέτρους αλλά με μη μηδενική διακύμανση του χρόνου εξυπηρέτησης. Π.χ. ένας πελάτης στο παρόν σύστημα θα παραμείνει κατά μέσο όρο 6.25 λεπτά στην ουρά, ενώ στο προηγούμενο θα παραμείνει 2.5 λεπτά. Επομένως, μείωση ή και μηδενισμός της μεταβλητότητας του ρυθμού εξυπηρέτησης μπορεί να οδηγήσει σε σημαντικές βελτιώσεις των δεικτών λειτουργικότητας. 93

94 Προσδιορισμός δυναμικότητας συστημάτων εξυπηρέτησης Λήψη αποφάσεων αναφορικά με: το πλήθος των θέσεων εξυπηρέτησης (s) την αποτελεσματικότητα των θέσεων εξυπηρέτησης (μ) το πλήθος των συστημάτων εξυπηρέτησης (λ) Όλες οι αποφάσεις σχετίζονται με το γενικότερο ερώτημα: Ποιο είναι το κατάλληλο επίπεδο εξυπηρέτησης? Ειδικότερα, για το πλήθος των θέσεων εξυπηρέτησης προσδιορισμός της δυναμικότητας ώστε να ελαχιστοποιείται το συνολικό προσδοκώμενο μεταβλητό κόστος λειτουργίας του συστήματος 94

95 Στοιχεία κόστους Κόστος (για την επιχείρηση) από την αναμονή των πελατών Κόστος για την παροχή εξυπηρέτησης (εγκατάσταση λειτουργία θέσεων εξυπηρέτησης, αδράνεια) Όταν αυξάνεται η δυναμικότητα του συστήματος (s) τότε μειώνεται ο μέσος χρόνος παραμονής των πελατών σύστημα και ταυτόχρονα μειώνεται το κόστος από την αναμονή των πελατών. Αυξάνεται όμως το κόστος παροχής εξυπηρέτησης. Όταν μειώνεται η δυναμικότητα του συστήματος αυξάνεται ο μέσος χρόνος παραμονής των πελατών στο σύστημα οπότε αυξάνεται και το κόστος από την αναμονή των πελατών. Μειώνεται όμως το κόστος παροχής της εξυπηρέτησης. Σημείο ισορροπίας?? 95

96 Κόστος Συνολικό προσδοκώμενο κόστος, TC Ελάχιστο κόστος Κόστος εξυπηρέτησης, SC Κόστος αναμονής, WC Βέλτιστη δυναμικότητα Δυναμικότητα συστήματος, s 96

97 Διαμόρφωση της σχέσης κόστους TC: μέσο συνολικό μεταβλητό κόστος λειτουργίας (Total Cost) WC: μέσο κόστος αναμονής των πελατών (Waiting Cost) SC: μέσο κόστος παροχής εξυπηρέτησης (Service Cost) Τότε: TC = WC + SC, οπότε ο στόχος είναι : Minimize TC c w : κόστος αναμονής ενός πελάτη ανά μονάδα χρόνου c s : κόστος εξυπηρέτησης από μία θέση στη μονάδα του χρόνου WC = c w W λ = c w L SC = c s s 97

98 Κόστος αναμονής Εξωτερικοί πελάτες Εμπορικά συστήματα ή κερδοσκοπικές θέσεις εξυπηρέτησης διαφυγόντα κέρδη, χαμένες συναλλαγές, αξιοπιστία Κοινωνικά συστήματα ή μη κερδοσκοπικές θέσεις εξυπηρέτησης κοινωνικό κόστος Εσωτερικοί πελάτες Εμποροβιομηχανικά συστήματα χαμένη παραγωγική εκροή, νεκροί χρόνοι, αδράνεια πρώτων υλών, ημικατεργασμένων προϊόντων και κεφαλαιουχικού εξοπλισμού, ακινητοποίηση πόρων, καθυστερήσεις, ρήτρες κλπ 98

99 Παράδειγμα 4 Μια εταιρεία logistics διαθέτει μεγάλο στόλο οχημάτων τα οποία τις ώρες αιχμής καταφθάνουν στην κεντρική αποθήκη για φορτοεκφόρτωση, με ρυθμό 5 οχήματα ανά ώρα (διαδικασία Poisson). Στην αποθήκη υπάρχουν ομοιόμορφα συνεργεία φορτοεκφορτωτών καθένα από τα οποία είναι σε θέση να εξυπηρετήσει ένα όχημα κατά μέσο όρο σε 2 λεπτά (εκθετική κατανομή). Το ωριαίο κόστος εργασίας ενός συνεργείου ανέρχεται στα 20 ευρώ ανά ώρα ενώ το κόστος που αφορά τον αδρανή οδηγό και όχημα ανέρχεται στα 24 ευρώ ανά ώρα. Να εντοπιστεί το άριστο πλήθος συνεργείων. Λύση Είναι λ=5 και μ=60/2 = 5 οχήματα ανά ώρα. Σύστημα M/M/s με s τουλάχιστον ίσο με 4 (??). Για κάθε τιμή του s, υπολογίζουμε από το σχετικό τύπο για το Μ/Μ/s, το L q, και στη συνέχεια το L. 99

100 Παράδειγμα 4 (συνέχεια) Πίνακας υπολογισμών s L SC WC TC = = = = =

101 Παράδειγμα 4 (υπολογισμοί κόστους με τον Η/Υ) 0

102 Παράδειγμα 4 (υπολογισμοί για την άριστη λύση s=5) 02

103 Παράδειγμα 4 (συνέχεια για την άριστη λύση s=5) Οι πιθανότητες για n=0,, 2,, 9 n =n n >n 03

104 Παράδειγμα 4 (η κατανομή n πελατών) 04

105 Παράδειγμα 5 Η εταιρεία ενοικίασης οχημάτων «Speedy» προγραμματίζει να προσλάβει μία συνεργάτιδα για τις Κυριακές και τις αργίες, η οποία θα απασχολείται επί εξάωρο, αποκλειστικά τις ημέρες αυτές. Υπάρχουν τρεις υποψήφιες, η Αντωνία, η Βασιλική και η Γιάννα, καθεμία από τις οποίες έχει εμπειρία ανάλογης εργασίας. Ο υπεύθυνος για την πρόσληψη, απασχόλησε κάθε υποψήφια για μία δοκιμαστική περίοδο και συνέλεξε δεδομένα σχετικά με την απόδοσή τους. Διαπίστωσε ότι και οι τρεις υποψήφιες ακολουθούσαν εκθετική κατανομή χρόνου εξυπηρέτησης, με μέσο χρόνο 6 λεπτά για την Αντωνία, 2 λεπτά για τη Βασιλική και λεπτά για την Γιάννα. Το συνολικό κόστος εργασίας των υποψηφίων για ένα εξάωρο είναι ανάλογο της εμπειρίας τους και ανέρχεται σε 90 ευρώ για την Αντωνία, 4 ευρώ για τη Βασιλική και 50 ευρώ για τη Γιάννα. Ο ρυθμός αφίξεων στο κατάστημα της εταιρείας τις ημέρες αυτές είναι συνήθως 7 πελάτες ανά δίωρο (κατανομή Poisson). Το κόστος για την επιχείρηση από την αναμονή και παραμονή ενός πελάτη στο σύστημα εκτιμήθηκε στα 0 ευρώ ανά ώρα. Ποια υποψήφια θα πάρει τη θέση με βάση το κριτήριο του κόστους? 05

106 Παράδειγμα 5 (συνέχεια) Δεδομένα Υποψήφια Ρυθμός εξυπηρέτησης, μ (πελάτες / ώρα) Ωριαίο κόστος εργασίας c s (ευρώ) Α 60 / 6 = / 6 = 5 Β 60 / 2 = 5 4 / 6 = 9 Γ 60 / = / 6 = 25 Σύγκριση τριών συστημάτων Μ/Μ/, τα οποία ενώ έχουν ίδιο ρυθμό αφίξεων λ=3.5 άτομα ανά ώρα, διαφέρουν στο ρυθμό εξυπηρέτησης καθώς και στο κόστος παροχής της εξυπηρέτησης. Υπολογίζουμε για κάθε υποψήφια τους δείκτες και το προσδοκώμενο κόστος λειτουργίας. 06

107 Παράδειγμα 5 (συνέχεια - Αντωνία αποτελέσματα) 07

108 Παράδειγμα 5 (συνέχεια - Βασιλική αποτελέσματα) 08

109 Παράδειγμα 5 (συνέχεια - Γιάννα αποτελέσματα) 09

110 Παράδειγμα 5 (συνοπτικά αποτελέσματα) Αντωνία Βασιλική Γιάννα Δείκτης (λ=3.5, μ=3.75) (λ=3.5, μ=5) (λ=3.5, μ=6) L q (πελάτες) L (πελάτες) W q (ώρες) (28 min) (9.7 min) W (ώρες) P % 30% 35.83% P wait = (-P 0 ) % 70% 64.7% WC=c w L 04= = =7.9 SC=c s s TC =WC + SC

111 Παράδειγμα 5 (συμπεράσματα /2) Κατ'αρχήν απορρίπτεται η Αντωνία αφού απέχει κατά πολύ από τις υπόλοιπες υποψήφιες και ως προς τους λειτουργικούς δείκτες και ως προς το συνολικό κόστος. Με βάση το ωριαίο λειτουργικό κόστος επιλέγεται η Βασιλική (42.33<42.9). Η διαφορά όμως σε σχέση με τη Γιάννα είναι πολύ μικρή, 0.57 ευρώ ανά ώρα, εφόσον οι εκτιμήσεις είναι ακριβείς. Συνολικά, ανά εξάωρο η εξοικονόμηση ανέρχεται μόλις στα 3.42 ευρώ.

112 Παράδειγμα 5 (συμπεράσματα 2/2) Όμως, υπάρχουν και οι δείκτες απόδοσης, οι οποίοι για τη Γιάννα είναι όλοι καλύτεροι. Π.χ, ο μέσος χρόνος αναμονής των πελατών με τη Βασιλική είναι 28 λεπτά (=0.4660) ενώ με τη Γιάννα είναι 9.7 λεπτά (= ) δηλαδή 30% καλύτερος. Επομένως, και τα στοιχεία αυτά πρέπει να ληφθούν υπόψη για την τελική απόφαση. Τέλος, αλλά όχι ελάχιστο, ακόμη και αν προσληφθεί η Γιάννα, ο καλύτερος μέσος χρόνος αναμονής είναι σχεδόν είκοσι λεπτά και ο χρόνος συνολικής παραμονής, πάνω από μισή ώρα (0.56 ώρες). Εσείς, θα ήσασταν ευχαριστημένοι ως πελάτες?? 2

113 Παράδειγμα 6 Μία βιοτεχνία παράγει εποχιακά προϊόντα θαλάσσης και διαθέτει 0 μηχανές επεξεργασίας πλαστικής ύλης. Κάθε μηχανή εμφανίζει, κατά μέσο όρο, κάποια βλάβη κάθε 20 ημέρες (εκθετική κατανομή). Υπάρχει ένα τεχνικό συνεργείο, το οποίο χρειάζεται κατά μέσο όρο 2 ημέρες για να επιδιορθώσει μία βλάβη. Το ημερήσιο κόστος εργασίας ανέρχεται στα 70 ευρώ. Όταν είναι σε λειτουργία λιγότερες από 0 μηχανές, τα διαφυγόντα κέρδη από ποινικές ρήτρες λόγω καθυστέρησης κάλυψης παραγγελιών και από τη μείωση της αξιοπιστίας της επιχείρησης, εκτιμώνται σε 00 ευρώ ημερησίως ανά μηχανή εκτός λειτουργίας. Να υπολογιστεί το συνολικό κόστος λειτουργίας του συστήματος και οι βασικοί δείκτες απόδοσης. Στη συνέχεια, να υπολογίσετε τα ίδια στοιχεία, αν καταφέρετε να βελτιώσετε την παραγωγικότητα του συνεργείου κατά 50% με την χορήγηση αντίστοιχου πριμ παραγωγικότητας. 3

114 Παράδειγμα 6 (συνέχεια) Λύση: Πρόκειται για ένα σύστημα Μ/Μ///Ν όπου Ν=0. Αν θεωρήσουμε ως στοιχειώδη μονάδα μέτρησης του χρόνου την ημέρα, τότε ο μέσος ρυθμός εμφάνισης βλάβης κάθε μηχανής είναι λ=/20 (/20 της μηχανής εμφανίζεται ανά ημέρα για επιδιόρθωση). Επίσης, ο ρυθμός επιδιόρθωσης είναι μ=/2 (/2 μηχανής ανά ημέρα επιδιορθώνει ο τεχνικός). Το κόστος αναμονής είναι c w = 00 ευρώ ανά μηχανή και το κόστος παροχής της εξυπηρέτησης είναι c s = 70 ευρώ ημερησίως. Χρησιμοποιώντας τις σχέσεις για το σύστημα Μ/Μ///Ν για Ν=0, υπολογίζουμε το L και στη συνέχεια το συνολικό κόστος από τις γνωστές σχέσεις. 4

115 Παράδειγμα 6 (συνέχεια) P 0 n 0 0 N n0 N! ( N n)! 0! 0.05 (0 0)! ! 0.05 (0 0)! L q N ( P0 ) 0 ( ) L Lq ( P0 ).3604 ( ) WC = = και SC = 70 = 70 TC = WC + SC = = ευρώ 5

116 Παράδειγμα 6 (αποτελέσματα από τον Η/Υ) 6

117 Παράδειγμα 6 (συνέχεια) Οι πιθανότητες για n=0,, 2,, 0 n =n n >n 7

118 Παράδειγμα 6 (κατανομή n πελατών) 8

119 Παράδειγμα 6 (παραλλαγή) (50% βελτίωση παραγωγικότητας - 50% αύξηση κόστους εργασίας) 9

120 Παράδειγμα 7 Στο κατάστημα ψυχαγωγίας «Αρένα», το πλέον δημοφιλές παιγνίδι εικονικής πραγματικότητας είναι το «Missile Commander VR» το οποίο διαρκεί πάντα ακριβώς τρία λεπτά και κοστίζει 2 ευρώ τη φορά. Οι πελάτες φθάνουν με εκθετική κατανομή χρόνου μεταξύ διαδοχικών αφίξεων με μέση τιμή 5 λεπτά και περιμένουν τη σειρά τους για να παίξουν δημιουργώντας μία ουρά αναμονής. Λόγω της ζήτησης, η διεύθυνση του καταστήματος δεν επιτρέπει να παίξει κανείς δύο συνεχόμενες φορές. Το κόστος αναμονής/παραμονής κάθε πελάτη στο σύστημα είναι 0.5 ευρώ το λεπτό, και το κόστος εξυπηρέτησης είναι 0. ευρώ το λεπτό. Υπολογίστε τους δείκτες λειτουργικότητας και το προσδοκώμενο περιθώριο κέρδους της επιχείρησης από το συγκεκριμένο παιγνίδι, στη μονάδα του χρόνου. 20

121 Παράδειγμα 8 Ένα Γυμνάσιο διατηρεί τρία λεωφορεία για τη μεταφορά των μαθητών και του προσωπικού. Το διοικητικό συμβούλιο του σχολείου προσέλαβε ένα μηχανικό για να τα συντηρεί. Ένα όχημα χρειάζεται συντήρηση, κατά μέσο όρο, κάθε 20 εργάσιμες ημέρες (διαδικασία Poisson). Η συντήρηση απαιτεί κατά μέσο όρο τέσσερις εργάσιμες ημέρες (εκθετική κατανομή). Το ημερήσιο κόστος εργασίας για τον τεχνικό είναι 00 ευρώ ενώ το κόστος ενός λεωφορείου, το οποίο δεν εκτελεί δρομολόγια διότι είναι στο σύστημα συντήρησης, είναι ίσο με 200 ευρώ ημερησίως. Να υπολογίσετε σε κατάσταση ισορροπίας τους βασικούς δείκτες απόδοσης και τις πιθανότητες να βρίσκονται n λεωφορεία στο τμήμα συντήρησης για όλες τις δυνατές τιμές του n. Πόσο είναι το μέσο πλήθος λεωφορείων που βρίσκονται σε λειτουργία και πόσο είναι τελικά το συνολικό κόστος λειτουργίας του συστήματος αυτού; 2

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B) ΑΣΚΗΣΗ Β Μέγιστο στήλης Ο Π Ε Υ Ελάχιστα γραμμών Ο 60 5 55 65 5*maximin (A) Π 50 75 70 45 45 Ε 56 30 30 50 30 Υ 40 30 35 55 30 *60 75 70 65 minimax (B) Επειδή maximin (A) minimax (B) δεν υπάρχει ισορροπία

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2016-2017 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Wimbledon. Queuing for iphone

Wimbledon. Queuing for iphone http://uer.uom.gr/~acg http://uer.uom.gr/~acg Wimbledo Queuig for iphoe http://uer.uom.gr/~acg 3 http://uer.uom.gr/~acg 4 UK WWII Food ratio UK WWII Lodo Louvre http://uer.uom.gr/~acg http://uer.uom.gr/~acg

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 208-209 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων: 1. Σφαιρικές & Λεπτομερείς Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 27/3/2019 ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2018-2019 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή

Διαβάστε περισσότερα

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 4. Σχεδιασµός υναµικότητας Το πρόβληµα της δυναµικότητας ιαδικασία Σχεδιασµού Συστήµατα αναµονής Εισηγητής: Θοδωρής Βουτσινάς ρ Μηχ/γος

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων (I) 1. Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 21/3/2018 ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 2009-2010 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) Να απαντηθούν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48

Διαβάστε περισσότερα

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ www.olieclaroom.gr.ουρεσ ΑΝΑΜΟΝΗΣ Ως ουρά αναμονής ή ισοδύναμα ένα σύστημα εξυπηρέτησης, ορίζεται το σύστημα το οποίο παρέχει εξυπηρέτηση σε πελάτες που προσέρχονται σε αυτό. Πρόκειται για τη μοντελοποίηση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

«ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΜΕ ΕΝΑΝ ΣΤΑΘΜΟ ΕΞΥΠΗΡΕΤΗΣΗΣ»

«ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΜΕ ΕΝΑΝ ΣΤΑΘΜΟ ΕΞΥΠΗΡΕΤΗΣΗΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩN «ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΜΕ ΕΝΑΝ ΣΤΑΘΜΟ ΕΞΥΠΗΡΕΤΗΣΗΣ» Της σπουδάστριας ΒΑΤΣΕΡΗ ΑΝΤΙΓΟΝΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2005 Τ.Ε.Ι. ΚΑΒΑΛΑΣ

Διαβάστε περισσότερα

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ ΠΡΟΤΥΠΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ ΠΡΟΤΥΠΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation Πληροφοριακά Συστήματα Διοίκησης Προσομοίωση Simulation Προσομοίωση Έστω ότι το σύστημα βρίσκεται σε κάποια αρχική κατάσταση Αν γνωρίζουμε τους κανόνες σύμφωνα με τους οποίους το σύστημα αλλάζει καταστάσεις

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Διαχείριση Ουρών Αναμονής σε καταστήματα τραπεζών με χρήση Mobile Banking και Geo-Social Networks.

Διαχείριση Ουρών Αναμονής σε καταστήματα τραπεζών με χρήση Mobile Banking και Geo-Social Networks. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΔΙΟΙΚΗΣΗ» ΤΜΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Διαχείριση Ουρών Αναμονής σε καταστήματα τραπεζών

Διαβάστε περισσότερα

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης

Διαβάστε περισσότερα

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων, Εξισώσεις Ισορροπίας 2. Προσομοιώσεις, Άσκηση Προσομοίωσης Ουράς M/M/1/10 Βασίλης

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη

Διαβάστε περισσότερα

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0 Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις :

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 1 2 (Εισαγωγή Θεμελιώδεις σχέσεις) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1.

Διαβάστε περισσότερα

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend Εργαστήριο Διοίκησης Παραγωγής & Έργων Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend ΕΠΙΣΚΟΠΗΣΗ ΤΟΥ EXTEND Το Extend είναι ένα λογισμικό εικονικής προσομοίωσης που μπορεί να

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΜΕΡΟΣ Α ΥΠΟΧΡΕΩΤΙΚΑ ΘΕΜΑΤΑ (8,33% ΑΝΑ ΘΕΜΑ) ΘΕΜΑ A.1 Αν η συνάρτηση του οριακού κόστους μιας επιχείρησης είναι

Διαβάστε περισσότερα

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY DEPARTMENT OF STATISTICS POSTGRADUATE PROGRAM Elements of Markovian Processes and Queueing Processes with Numerical Applications By Erold Ajdini A THESIS Submitted

Διαβάστε περισσότερα

Απλα Συστήματα Αναμονής Υπενθύμιση

Απλα Συστήματα Αναμονής Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις. Κανονική Κατανομή Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Κανονική Κατανομή τεχνικές 73 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 1 0 / 0 1 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού

Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού Ασκήσεις ΠΣΔ Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού Μια επιχείρηση παράγει 3 προϊόντα και έχει 4 διαθέσιμαεργοστάσια. Ο χρόνος παραγωγής (σε λεπτά) για κάθε προϊόν διαφέρει από εργοστάσιο

Διαβάστε περισσότερα

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο ΘΕΜΑ 1 ο (ΜΟΝΑΔΕΣ 10) Μια βιοτεχνία καθαρισμού ρούχων λειτουργεί καθημερινά 8 ώρες. Η βιοτεχνία δέχεται κατά μέσο όρο 4 παραγγελίες την ημέρα για καθαρισμό ενδυμάτων. (ι). Να υπολογισθεί η πιθανότητα να

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

ίκτυα Επικοινωνίας Υπολογιστών

ίκτυα Επικοινωνίας Υπολογιστών ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 26/4/2017 ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1 Εργαστηριακή Άσκηση 2011-2012 Το σύστημα αναμονής M/G/1 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ. Διδάκτορας Σκοπός της παρούσας εργασίας είναι η εξερεύνηση των βασικών ιδιοτήτων

Διαβάστε περισσότερα

I/O: Λίγη θεωρία ουρών, RAID

I/O: Λίγη θεωρία ουρών, RAID I/O: Λίγη θεωρία ουρών, RAID Ορολογία Δίσκων Καθυστέρηση δίσκου = Queuing Time + Seek Time + Rotation Time + Xfer Time Τάξη μεγέθους (χρόνοι) για μεταφορές 4K byte: Seek: 12 ms Rotate: 4.2 ms @ 7200 rpm

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους

Διαβάστε περισσότερα

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2. (μονάδα παραγωγής ενέργειας) Έχουμε μια απομακρυσμένη μονάδα παραγωγής ενέργειας. Η ζήτηση σε ενέργεια καλύπτεται από διάφορες πηγές. Η ισχύς εξόδου της ανεμογεννήτριας εξαρτάται από την ταχύτητα ανέμου

Διαβάστε περισσότερα

H επίδραση των ουρών στην κίνηση ενός δικτύου

H επίδραση των ουρών στην κίνηση ενός δικτύου H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ Τέλεια δέσµη: όλες οι γραµµές της είναι προσπελάσιµες από οποιαδήποτε είσοδο. Ατελής δέσµη: όλες οι γραµµές της δεν είναι προσπελάσιµες από οποιαδήποτε είσοδο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Μεταγωγής Πακέτου - Μοντέλο M/M/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018 ΟΥΡΑ Μ/Μ/2 (επανάληψη) Αφίξεις Poisson με ομοιόμορφο μέσο ρυθμό λ k = λ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης, Σ. Παπαβασιλείου 10-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Αποτελεσµατική διαχείριση ουρών αναµονής στον τραπεζικό τοµέα- Μελέτη περίπτωσης DoNotWait.gr

Αποτελεσµατική διαχείριση ουρών αναµονής στον τραπεζικό τοµέα- Μελέτη περίπτωσης DoNotWait.gr ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΔΙΟΙΚΗΣΗ» ΤΜΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Αποτελεσµατική διαχείριση ουρών αναµονής στον

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3xi -2 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i )= 5, x

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν Σειρά - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson (1) Παράδειγμα Επίδοσης Δικτύου Μεταγωγής Πακέτου (2) Παράδειγμα Ανάλυσης Υπολογιστικού Συστήματος Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα