ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση 3 Στην πεζογέφυρα της άσκησης, να βρεθεί:. η απαιτούμενη διατομή από τη σειρά ΗΕΒ, για το άνω πέλμα των κυρίων δικτυωμάτων,. να σχολιαστεί και να ληφθεί υπ όψη η πιθανή πύκνωση των σημείων εξασφάλισης έναντι λυγισμού. ίνεται ποιότητα χάλυβα S355. Ελατές διατομές Επιλογή καμπύλης λυγισμού ιατομή Όρια t f h h/, h/ >, t f 40 mm 40 mm < t f 00 t f 00 mm t f > 00 mm Λυγισμός περί τον άξονα Καμπύλη λυγισμού S 35 S 75 S 460 S 355 S 40 d d 0 0

2 ,,0 Μειωτικός συντελεστής 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0 d 0, 0, 0,0 0,0 0, 0,4 0,6 0,8,0,,4,6,8,0,,4,6,8 3,0 Ανηγμένη λυγηρότητα Καμπύλες λυγισμού Σε μέλη υπό αξονική θλίψη, η τιμή του για την κατάλληλη ανηγμένη λυγηρότητα λ πρέπει να καθορίζεται από την αντίστοιχη καμπύλη λυγισμού σύμφωνα με τη σχέση: χ αλλά χ, 0 φ φ λ φ 0,5 α λ 0, λ όπου Af L r λ για διατομές κατηγορίας, και 3 N i λ L r i r είναι το μήκος λυγισμού στο υπό θεώρηση επίπεδο λυγισμού είναι η ακτίνα αδρανείας περί τον αντίστοιχο άξονα, υπολογιζόμενη χρησιμοποιώντας τις ιδιότητες της πλήρους διατομής E λ π 93,9ε f 35 ε (f σε N/mm ) f είναι ο συντελεστής ατελειών Συντελεστές ατελειών για καμπύλες λυγισμού Καμπύλη λυγισμού 0 d Συντελεστής ατελειών 0,3 0, 0,34 0,49 0,76

3 ΛΥΣΗ ΑΣΚΗΣΗΣ 3 Υλικά Ποιότητα δομικού χάλυβα S355 f =355MP=35,5kN/m f u =50MP=5,0kN/m. ΦΟΡΤΙΑ Σχήμα : Γεωμετρία και φορτία πεζογέφυρας Τα φορτία που λαμβάνονται υπόψη είναι: Ι.Β. μεταλλικής κατασκευής g =,80kN/m Πλάκα σκυροδέματος πάχους 8m g πλάκας = 0,8m 5kN/m 3 = 4,50kN/m Κινητό φορτίο πεζογέφυρας p = 5,00kN/m. ΣΥΝΔΥΑΣΜΟΣ ΦΟΡΤΙΣΕΩΝ,35(g+g πλάκας )+,50p=,35x(,8kN/m +4,5kN/m )+,50x5,0 kn/m =6,0kN/m Σχήμα : Ζώνη επιρροής για επικόμβια φορτία Τα φορτία του καταστρώματος καταλήγουν στα δύο δικτυώματα μέσω εγκάρσιων διαδοκίδων με εύρος ζώνης επιρροής 3,0m. Σε κάθε κόμβο του δικτυώματος εφαρμόζεται φορτίο ίσο με: 6,0kN/m 3,00m 6,00m/ = 44,0 kn/κόμβο. Στους ακραίους κόμβους το εύρος επιρροής είναι το μισό, επομένως εφαρμόζεται φορτίο ίσο με: P=7,0kN/κόμβο. A3-

4 3. ΣΤΑΤΙΚΟ ΠΡΟΣΟΜΟΙΩΜΑ ΚΑΙ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΔΙΚΤΥΩΜΑΤΟΣ Σχήμα 3: Επικόμβια φορτία στο δικτύωμα 3.. Ακριβής στατική επίλυση με επίλυση δικτυώματος Σχήμα 4: Αξονικές δυνάμεις στο δικτύωμα Από την επίλυση του δικτυώματος προκύπτει ότι η δυσμενέστερη ράβδος του άνω πέλματος θλίβεται με δύναμη Ν Ed =90,0kN. 4. ΕΠΙΛΟΓΗ ΔΙΑΤΟΜΗΣ ΑΠΟ ΣΕΙΡΑ ΗΕΒ Η επιλογή γίνεται με το κριτήριο αντοχής σε λυγισμό: χaf NEdγ M 90kN,00 NEd N,Rd A A γ χf 0,70 35,5kN / m M 77,6m όπου γ Μ =,00 και υποθέσαμε ότι χ=0,70. Από τους πίνακες των προτύπων διατομών επιλέγουμε την διατομή ΗΕΒ00 με εμβαδόν Α=78,m A3-

5 5. ΕΛΕΓΧΟΣ ΑΝΩ ΠΕΛΜΑΤΟΣ ΜΕ ΔΙΑΤΟΜΗ ΗΕΒ Διατομή ΗΕΒ00 Από τους πίνακες των προτύπων διατομών η διατομή ΗΕΒ00 έχει τα εξής γεωμετρικά και αδρανειακά χαρακτηριστικά: ΗΕΒ 00 =00mm t f =5mm h=00mm t w =9mm A=78,m r=8mm d=34mm I=5696m 4 I=003m 4 i =8,54m i =5,07m 5.. Κατηγορία διατομής Σχήμα 5: ιατομή ΗΕΒ 00 Από τους πίνακες των προτύπων διατομών η ΗΕΒ00 ποιότητας χάλυβα S355 σε καθαρή θλίψη είναι κατηγορίας. Πιο αναλυτικά μπορεί να υπολογιστεί σύμφωνα με τους πίνακες για την κατηγοριοποίηση του κορμού και του πέλματος, όπως παρουσιάζεται παρακάτω. Κατηγορία κορμού Με βάση τους πίνακες με τις πρότυπες διατομές και σύμφωνα με τον πίνακα για την κατηγοριοποίηση του κορμού που υπόκειται σε καθαρή θλίψη έχουμε: /t=d/t w =34/9=4,89<33ε=6,73 όπου ε 35 / 355 0, 8 και f το όριο διαρροής του χάλυβα σε MP. Επομένως ο κορμός ανήκει στην κατηγορία. Κατηγορία πέλματος Με βάση τους πίνακες με τις πρότυπες διατομές και σύμφωνα με τον πίνακα για την κατηγοριοποίηση του πέλματος που υπόκειται σε καθαρή θλίψη έχουμε: ( t w ) / r (00 9)mm / 8mm 5,7 9ε 7,9 t t f 5mm Επομένως και το πέλμα ανήκει στην κατηγορία. Κατηγορία διατομής Εφόσον και το πέλμα και ο κορμός ανήκουν στην κατηγορία όλη η διατομή ανήκει στην κατηγορία Καμπύλη λυγισμού Από τον πίνακα για την επιλογή καμπύλης λυγισμού, για πρότυπη διατομή διπλού ταυ και για χάλυβα S355, έχουμε: h/=00/00=<, και t f =5mm < 00mm Επομένως η καμπύλη λυγισμού είναι η για λυγισμό περί τον άξονα - και περί τον άξονα -. A3-3

6 Πίνακας : Επιλογή καμπύλης λυγισμού Ελατές διατομές ιατομή t f h h/ >, h/, Όρια t f 40 mm 40 mm < t f 00 t f 00 mm t f > 00 mm Λυγισμός περί τον άξονα Καμπύλη λυγισμού S 35 S 75 S 460 S 355 S 40 d d Μήκη λυγισμού Το μήκος λυγισμού εντός κατακορύφου επιπέδου θα είναι ίσο με την απόσταση των κόμβων όπου συντρέχουν οι ορθοστάτες και οι διαγώνιες ράβδοι του δικτυώματος, επειδή αυτά προσφέρουν πλευρική εξασφάλιση. Το μήκος λυγισμού εντός οριζοντίου επιπέδου, θα είναι ίσο με την απόσταση των κόμβων όπου συντρέχουν οι διαδοκίδες, υπό την προϋπόθεση ότι στις θέσεις διασταύρωσης διαδοκίδων και οριζόντιων συνδέσμων δυσκαμψίας (επί του άξονα της γέφυρας) τα τρία μέλη συνδέονται μεταξύ τους, έτσι ώστε οι σύνδεσμοι να παρεμποδίζουν την κίνηση των διαδοκίδων κατά την εγκάρσια έννοια της γέφυρας. Εάν αυτό δεν συμβαίνει, τότε το μήκος λυγισμού εντός οριζοντίου επιπέδου θα είναι το διπλάσιο. εχόμαστε ότι η σύνδεση αυτή πραγματοποιείται, οπότε το μήκος λυγισμού κατά τους δύο άξονες θα είναι: L r, =L r, =3,00m=300m A3-4

7 Σημεία πλευρικής εξασφάλισης 5.5. Λυγηρότητες Σχήμα 6: Σημεία πλευρικής εξασφάλισης εντός οριζοντίου και κατακορύφου επιπέδου Η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: L r, 300m λ 0,47 i λ 8,54m 76,4 ενώ η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: L r, 300m λ 0,77 i λ 5,07m 76,4 όπου E 0000MP λ π π 76,4 f 355MP 5.6. Μειωτικοί συντελεστές χ Οι μειωτικοί συντελεστές χ, και χ περί τον τοπικό άξονα και αντίστοιχα υπολογίζεται από το παρακάτω σχήμα σύμφωνα με τις καμπύλες λυγισμού και με τις λυγηρότητες λ και λ. A3-5

8 ,,0 Μειωτικός συντελεστής 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0 d 0, 0, 0,0 0,0 0, 0,4 0,6 0,8,0,,4,6,8,0,,4,6,8 3,0 Ανηγμένη λυγηρότητα Σχήμα 7: Καμπύλες λυγισμού Έτσι για ανηγμένη λυγηρότητα κατά τον άξονα, λ 0, 47 ο συντελεστής χ για καμπύλη λυγισμού είναι ίσος με χ =0,90 ενώ για ανηγμένη λυγηρότητα κατά τον άξονα, λ 0, 77 ο συντελεστής χ για καμπύλη λυγισμού είναι ίσος με χ =0,68. Εναλλακτικώς, ο μειωτικός συντελεστές χ μπορεί να υπολογιστεί από τους πίνακες που δίνονται στη βιβλιογραφία ή πιο αναλυτικά σύμφωνα με την σχέση: χ φ φ λ όπου φ 0,5 αλ 0,0 λ και α ο συντελεστής ατελειών που εξαρτάται από τις καμπύλες λυγισμού και δίνεται από τον παρακάτω πίνακα. Πίνακας : Συντελεστές ατελειών για καμπύλες λυγισμού Καμπύλη λυγισμού 0 d Συντελεστής ατελειών 0,3 0, 0,34 0,49 0,76 Περί τον άξονα - Για καμπύλη λυγισμού ισχύει α=0,34 φ χ 0,5 φ α λ 0,0 λ 0,5 0,34 0,47 0,0 0,47 0, 66 φ λ 0,66 0,66 0,47 0,89,00 A3-6

9 Περί τον άξονα - Για καμπύλη λυγισμού ισχύει α=0,49 φ 0,5 α λ 0,0 λ 0,5 0,49 0,77 0,0 0,77 0, 94 χ φ φ λ 0,94 0,94 χ=min(χ ; χ )=min(0,89; 0,68)=0,68 0, Αντοχή θλιβόμενου μέλους σε λυγισμό N,Rd χaf γ M 0,68 78,m 35,5kN / m,00 0,68,00 885,34kN N Ed 90kN Επομένως η διατομή που επιλέξαμε δεν επαρκεί και γι αυτό επιλέγουμε την αμέσως μεγαλύτερη, δηλαδή την ΗΕΒ0 και επαναλαμβάνουμε τους υπολογισμούς. 6. ΕΛΕΓΧΟΣ ΑΝΩ ΠΕΛΜΑΤΟΣ ΜΕ ΔΙΑΤΟΜΗ ΗΕΒ0 6.. Διατομή ΗΕΒ0 Από τους πίνακες των προτύπων διατομών επιλέγουμε την διατομή ΗΕΒ0 με τα εξής γεωμετρικά και αδρανειακά χαρακτηριστικά: ΗΕΒ 0 =0mm t f =6mm h=0mm t w =9,5mm A=9,0m r=8mm d=5mm I=809m 4 I=843m 4 i =9,43m i =5,59m 6.. Κατηγορία διατομής Σχήμα 8: ιατομή ΗΕΒ 0 Από τους πίνακες των προτύπων διατομών η ΗΕΒ0 ποιότητας χάλυβα S355 σε καθαρή θλίψη είναι κατηγορίας Καμπύλη λυγισμού Από τον πίνακα για την επιλογή καμπύλης λυγισμού, για πρότυπη διατομή διπλού ταυ και για χάλυβα S355, έχουμε: h/=0/0=<, και t f =5mm < 00mm Επομένως η καμπύλη λυγισμού είναι η για λυγισμό περί τον άξονα - και περί τον άξονα Λυγηρότητες Η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: A3-7

10 L r, 300m λ 0,4 i λ 9,43m 76,4 ενώ η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: L 300m λ 0,70 i λ 5,59m 76, Μειωτικοί συντελεστές χ Από τον πίνακα για ανηγμένη λυγηρότητα λ 0, 4 προκύπτει χ =0,9<,00, ενώ για ανηγμένη λυγηρότητα λ 0, 70 προκύπτει χ =0,7<,00 Επομένως ο μειωτικός συντελεστής δίνεται ως: χ=min(χ ; χ )=min(0,9; 0,7)=0, Αντοχή θλιβόμενου μέλους σε λυγισμό N,Rd χaf γ M 0,7 9,0m 35,5kN / m,00 36kN N Ed 90kN 7. ΠΥΚΝΩΣΗ ΣΗΜΕΙΩΝ ΕΞΑΣΦΑΛΙΣΗΣ ΕΝΑΝΤΙ ΛΥΓΙΣΜΟΥ ΓΙΑ ΔΙΑΤΟΜΗ ΗΕΒ Σχήμα 9: ιαμόρφωση πύκνωσης σημείων εξασφάλισης έναντι λυγισμού Από τον υπολογισμό των μειωτικών συντελεστών χ βλέπουμε ότι κατά τον ασθενή άξονα ο μειωτικός συντελεστής χ είναι μικρότερος από τον χ. Η αντοχή σε λυγισμό καθορίζεται από τον μικρότερο μειωτικό συντελεστή, επομένως από τον χ. Για να εκμεταλλευτούμε την πύκνωση των σημείων εξασφάλισης έναντι λυγισμού θα πρέπει να διατάξουμε έτσι την διατομή μας ώστε να μειώνεται το μήκος λυγισμού κατά τον ασθενή άξονα. (Η διατομή τοποθετείται με τον κορμό παράλληλα προς το κατάστρωμα). Με τη νέα δικτύωση περιορίζεται στο μισό το ένα από τα δύο μήκη λυγισμού. 7.. Επιλογή διατομής για πύκνωση σημείων εξασφάλισης έναντι λυγισμού Η επιλογή γίνεται με το κριτήριο αντοχής σε λυγισμό: χaf NEdγ M 90,00 NEd N,Rd A A 63,63m γm χf 0,85 35,5 όπου γ Μ =,00 και υποθέσαμε ότι χ=0,85, επειδή μειώνεται το μήκος λυγισμού κατά τον ασθενή άξονα στο μισό. 7.. Διατομή ΗΕΒ80 Από τους πίνακες των προτύπων διατομών επιλέγουμε την διατομή ΗΕΒ80 με τα εξής γεωμετρικά και αδρανειακά χαρακτηριστικά: ΗΕΒ 80 =80mm t f =4mm h=80mm t w =8,5mm A=65,3m r=5mm d=mm A3-8

11 I=383m 4 I=363m 4 i =7,66m i =4,57m 7.3. Κατηγορία διατομής Σχήμα 0: ιατομή ΗΕΒ 80 Από τους πίνακες των προτύπων διατομών η ΗΕΒ80 ποιότητας χάλυβα S355 σε καθαρή θλίψη είναι κατηγορίας Καμπύλη λυγισμού Από τον πίνακα για την επιλογή καμπύλης λυγισμού, για πρότυπη διατομή διπλού ταυ και για χάλυβα S355, έχουμε: h/=80/80=<, και t f =5mm < 00mm Επομένως η καμπύλη λυγισμού είναι η για λυγισμό περί τον άξονα - και περί τον άξονα Μήκη λυγισμού Έτσι το μήκος λυγισμού για τους δύο άξονες θα είναι: L =300m L =50m 7.6. Λυγηρότητες Η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: L r, 300m λ 0,5 i λ 7,66m 76,4 ενώ η ανηγμένη λυγηρότητα ως προς τον άξονα - δίνεται ως εξής: L r, 50m λ 0,43 i λ 4,57m 76, Μειωτικοί συντελεστές χ Από τον πίνακα για ανηγμένη λυγηρότητα λ 0, 5 προκύπτει χ =0,89<,00, ενώ για ανηγμένη λυγηρότητα λ 0, 43 προκύπτει χ =0,88<,00 Επομένως ο μειωτικός συντελεστής δίνεται ως: χ=min(χ ; χ )=min(0,89; 0,88)=0, Αντοχή θλιβόμενου μέλους σε λυγισμό N,Rd χaf γ M 0,88 65,3m 35,5kN / m,00 040kN N Ed 90kN Επομένως με την προσθήκη σημείων εξασφάλισης έναντι λυγισμού κατά τον ασθενή άξονα χρησιμοποιούμε δύο διατομές μικρότερες από την περίπτωση όπου δεν υπάρχουν πρόσθετα σημεία εξασφάλισης. Παρατηρούμε ότι η αντοχή της διατομής αυτής είναι κατά λίγο μεγαλύτερη από την δράση σχεδιασμού, επομένως δεν χρειάζεται να ελέγξουμε μία διατομή μικρότερη. A3-9

12 8. ΠΑΡΑΤΗΡΗΣΗ Σε περίπτωση που η πεζογέφυρα ήταν κάτω διάβασης, τότε θα υπήρχε πλευρική εξασφάλιση για λυγισμό εντός κατακορύφου επιπέδου για το θλιβόμενο άνω πέλμα δικτυώματος, λόγω της ύπαρξης των ορθοστατών και των διαγωνίων ράβδων του δικτυώματος, ενώ για λυγισμό εντός οριζοντίου επιπέδου το μήκος λυγισμού θα ήταν ίσο με το μήκος της πεζογέφυρας. Σε περίπτωση όμως που η σύνδεση των ορθοστατών των δικτυωμάτων με τις διαδοκίδες του καταστρώματος, στις θέσεις όπου συνδέονται οι διαγώνιες ράβδοι δυσκαμψίας, είναι τέτοια ώστε να μπορεί να παραληφθεί καμπτική ροπή, θα εξασφαλιζόταν πλαισιακή λειτουργία μεταξύ ορθοστατών και διαδοκίδων, η οποία θα μπορούσε να προσφέρει μερική πλευρική εξασφάλιση στο άνω θλιβόμενο πέλμα για λυγισμό εντός οριζοντίου επιπέδου κι έτσι το μήκος λυγισμού για λυγισμό θα μπορούσε να θεωρηθεί μειωμένο. ιαδοκίδα καταστρώματος Σύνδεση πλαισίου Σχήμα : Πλαισιακή λειτουργία A3-0

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 3 Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Άσκηση 3 Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 3 Δικτύωμα πεζογέφυρας (θιβόμενο άνω πέμα) χοή Ποιτικών ηχανικών ργαστήριο εταικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υικό υπόκειται σε άδειες χρήσης Cretive Commons. ια

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση : Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση : Κόμβος δοκού υποστυλώματος (συγκολλητή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 14 Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα

Σιδηρές Κατασκευές ΙΙ Άσκηση 14 Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα ιδηρές ατασκευές Άσκηση ντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 4: Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλαμτος με κοχλίες Α, Β, C Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 10: Έλεγχος διακοπτόμενης συγκόλλησης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος)

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) ιδηρές ατασκευές Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Κατανομή της ροπής στα μέλη της ανάλογα με τη δυσκαμψία τους. Τα άκρα θεωρούνται πακτωμένα εκτός αν υπάρχουν συνθήκες άρθρωσης.

Κατανομή της ροπής στα μέλη της ανάλογα με τη δυσκαμψία τους. Τα άκρα θεωρούνται πακτωμένα εκτός αν υπάρχουν συνθήκες άρθρωσης. Υπολογισμός ροπών Κατανομή της ροπής στα μέλη της ανάλογα με τη δυσκαμψία τους Τα άκρα θεωρούνται πακτωμένα εκτός αν υπάρχουν συνθήκες άρθρωσης. Οι τιμές της ροπής Μ1 στην κορυφή του μέλους 1 και της Μ2

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ:

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: ΔΙΕΡΕΥΝΗΣΗ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΤΑΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΙΑ ΤΗΝ ΚΑΛΥΨΗ ΧΩΡΩΝ ΜΕΓΑΛΩΝ ΑΝΟΙΓΜΑΤΩΝ ΜΕ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ:

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Κόμβος δοκού υποστυλώματος (κοχλιωτή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 13: Αντισεισμικός σχεδιασμός στεγάστρου με οριζόντιους και κατακόρυφους συνδέσμους δυσκαμψίας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 2 Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος

Σιδηρές Κατασκευές Ι Άσκηση 2 Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος ιδηρές ατασκευές Άσκηση Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Κόμβοι πλαισιακών κατασκευών

Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι δοκού-υποστυλώματος Κόμβοι δοκού-δοκού Βάσεις υποστυλωμάτων Κοχλιωτοί Συγκολλητοί Κόμβοι δοκού - υποστυλώματος Με μετωπική πλάκα Με γωνιακά

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 5: Κοχλίωση κοντού προβόλου γερανογέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ

ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ ΔΙΓΕΝΗΣ ΣΠΥΡΟΣ Περίληψη Σκοπός της εργασίας είναι η περιγραφή της συμπεριφοράς διαφόρων διατάξεων δικτυωτών συνδέσμων σε πλευρικά επιβαλλόμενα φορτία. Στο

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων 1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές.

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 49 ΚΕΦΑΛΑΙΟ 5 ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 5.1 Γενικά Η ενίσχυση στοιχείων οπλισμένου σκυροδέματος σε διάτμηση με σύνθετα υλικά επιτυγχάνεται μέσω της επικόλλησης υφασμάτων ή, σπανιότερα,

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 5 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ΑΛΙΣΣΟΣ, Δ.ΔΥΜΗΣ ΑΧΑΪΑΣ 19 Ο χλμ. Ν.Ε.Ο. ΠΑΤΡΩΝ-ΠΥΡΓΟΥ ΤΗΛ. : 2693072111, FAX : 293071954 www.steelhouse.gr

ΑΛΙΣΣΟΣ, Δ.ΔΥΜΗΣ ΑΧΑΪΑΣ 19 Ο χλμ. Ν.Ε.Ο. ΠΑΤΡΩΝ-ΠΥΡΓΟΥ ΤΗΛ. : 2693072111, FAX : 293071954 www.steelhouse.gr ΑΛΙΣΣΟΣ, Δ.ΔΥΜΗΣ ΑΧΑΪΑΣ 19 Ο χλμ. Ν.Ε.Ο. ΠΑΤΡΩΝ-ΠΥΡΓΟΥ ΤΗΛ. : 2693072111, FAX : 293071954 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Η βαριά μεταλλική κατασκευή βρίσκεται σε άνθηση τα τελευταία χρόνια. Ο κόσμος έχει αποκτήσει οικειότητα

Διαβάστε περισσότερα

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35 Περιεχόμενα 1 Εισαγωγή 11 1.1 Γενικά... 11 1. Συμβολισμοί Επεξηγήσεις... 1 Μόρφωση συμμίκτων γεφυρών 17.1 Γενικά... 17. Ολόσωμες και κιβωτιοειδείς δοκοί... 19..1 Πυκνά διατεταγμένες σιδηροδοκοί διατομής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 9 ποκατάσταση συνέχειας καμπτόμενης δοκού χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 016

Διαβάστε περισσότερα

NFATEC L13 Columns (27/09/2004)

NFATEC L13 Columns (27/09/2004) NFATEC L13 Columns (27/09/2004) {LASTEDIT}Roger 27/09/2004{/LASTEDIT} {LECTURE} {LTITLE}Στύλοι{/LTITLE} {AUTHOR}John Ermopoulos{/AUTHOR} {EMAIL}jermop@central.ntua.gr{/EMAIL} {OVERVIEW} Κατασκευαστικά

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 7: Σύνδεση με κοχλίες τύπου D και E Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΙΔΗΡΕΣ ΚΑΙ ΧΑΛΥΒΔΙΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΣΚΕΥΗ ΚΑΙ ΕΝΙΣΧΥΣΗ

ΣΙΔΗΡΕΣ ΚΑΙ ΧΑΛΥΒΔΙΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΣΚΕΥΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΣΙΔΗΡΕΣ ΚΑΙ ΧΑΛΥΒΔΙΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΣΚΕΥΗ ΚΑΙ ΕΝΙΣΧΥΣΗ Καθηγητής ΑΡΗΣ ΑΒΔΕΛΑΣ Εργαστήριο Μεταλλικών Κατασκευών Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Η αξιολόγηση της δομικής συμπεριφοράς

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2]

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΩΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΩΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΙΙ ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] Βραχύς πρόβολος

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΧΑΛΥΒΑ - ΣΚΥΡΟΔΕΜΑΤΟΣ

ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΧΑΛΥΒΑ - ΣΚΥΡΟΔΕΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΓΙΑ ΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΧΑΛΥΒΑ - ΣΚΥΡΟΔΕΜΑΤΟΣ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού).

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). 1 ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). Πλάτος δοκού t beam =0.30m Πλάτος υποστυλωμάτων 0.50m

Διαβάστε περισσότερα

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

Παράδειγμα 2. Διαστασιολόγηση δοκού Ο/Σ σε διάτμηση

Παράδειγμα 2. Διαστασιολόγηση δοκού Ο/Σ σε διάτμηση Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα. Διαστασιολόγηση δοκού Ο/Σ σε διάτμηση Για τη δοκό του παραδείγματος 1 να γίνει η διαστασιολόγηση

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2013.099

Νέα έκδοση προγράμματος STeel CONnections 2013.099 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2013.099 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι

ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΤΕΧΝΟΛΟΓΙΑ

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA Mέθοδοι υπολογισμού υποστυλωμάτων κατά EC4 H Γενική Mέθοδος H Aπλουστευμένη Mέθοδος Γενική Mέθοδος: Περιλαμβάνει και υποστυλώματα διατομής μη συμμετρικής ή μη ομοιόμορφης

Διαβάστε περισσότερα

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

7.1. Κατακόρυφα φορτία στους πεσσούς Πεσσός 6 στον όροφο. neff = A

7.1. Κατακόρυφα φορτία στους πεσσούς Πεσσός 6 στον όροφο. neff = A 7.1. Κατακόρυφα φορτία στους πεσσούς 7.1.1. Πεσσός 6 στον όροφο neff = A li + lα + lδ 2 ltot li = 1,0 m lα = 0 lδ = 1,50 m ltot = 5,30-0,15 = 5,15 m Α1 = 1/4 (2 5,15-3,75) 3,75 = 6,14 m 2 Α2 = 1/4 (2 5,15-3,05)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 11 1.1 Γενικά...11 1.2 Χαλύβδινες διατομές ψυχρής έλασης...15 ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού... 45 2.1 Οριακές καταστάσεις και έλεγχοι μη υπέρβασής τους...45 2.2 Προσδιορισμός

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Απλοποιημένη υπολογιστική θεώρηση

Διαβάστε περισσότερα

Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΤΟΙΧΩΝ ΣΤΟ BIM ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ holobim και η αυτόματη δημιουργία των διαγώνιων ράβδων των ενεργών τοίχων

Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΤΟΙΧΩΝ ΣΤΟ BIM ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ holobim και η αυτόματη δημιουργία των διαγώνιων ράβδων των ενεργών τοίχων Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΤΟΙΧΩΝ ΣΤΟ BIM ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ holobim και η αυτόματη δημιουργία των διαγώνιων ράβδων των ενεργών τοίχων Η αποτύπωση των τοίχων γίνεται και στις τρεις διαστάσεις και όσοι τοίχοι εφάπτονται

Διαβάστε περισσότερα

Σημειώσεις του μαθήματος Μητρωϊκή Στατική

Σημειώσεις του μαθήματος Μητρωϊκή Στατική ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Μελέτη βελτίωσης της συμπεριφοράς κτιρίου σε ενδεχόμενο σχηματισμό μαλακού ορόφου μέσω ελαστικής ανάλυσης ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου... 7 3

Διαβάστε περισσότερα

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR}

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} {EMAIL}r.j.plank@sheffield.ac.uk{/EMAIL} {OVERVIEW} οκοί

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1)

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Υπολογισμός συνδέσεως διαγωνίου Σύνδεση διαγωνίου Δ 100.1 (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Έργο Υπολογισμός συνδέσεως διαγωνίου COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΙΣΧΥΣΗΣ ΣΕ ΚΤΙΡΙΑ ΜΕ PILOTI ΜΕΣΩ ΕΛΑΣΤΙΚΩΝ ΚΑΙ ΑΝΕΛΑΣΤΙΚΩΝ ΑΝΑΛΥΣΕΩΝ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΙΣΧΥΣΗΣ ΣΕ ΚΤΙΡΙΑ ΜΕ PILOTI ΜΕΣΩ ΕΛΑΣΤΙΚΩΝ ΚΑΙ ΑΝΕΛΑΣΤΙΚΩΝ ΑΝΑΛΥΣΕΩΝ Συγκριτική μελέτη συστημάτων ενίσχυσης σε κτίρια με piloti μέσω ελαστικών και ανελαστικών αναλύσεων ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΙΣΧΥΣΗΣ ΣΕ ΚΤΙΡΙΑ ΜΕ PILOTI ΜΕΣΩ ΕΛΑΣΤΙΚΩΝ ΚΑΙ ΑΝΕΛΑΣΤΙΚΩΝ ΑΝΑΛΥΣΕΩΝ ΣΑΡΛΗΣ

Διαβάστε περισσότερα