Αναλυτική Φωτογραμμετρία

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναλυτική Φωτογραμμετρία"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 6: Βασικά Φωτογραμμετρικά προβλήματα II Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Βασικά Φωτογραμμετρικά προβλήματα II Ενότητα 6

5 Περιεχόµενα 6 ης ενότητας Το πρόβληµα του Σχετικού και του Απόλυτου προσανατολισµού σε βήµατα i. Γεωµετρία λήψης στερεοζεύγους ii. Επεξεργασία ζεύγους λήψεων iii. Το πρόβληµα του Σχετικού και απόλυτου προσανατολισµού σε βήµατα Σχετικός προσανατολισµός Απόλυτος προσανατολισµός iv. Αναλυτική επίλυση του προβλήµατος του Σχετικού προσανατολισµού ζεύγους εικόνων Προσδιορισµός παραµέτρων Σχετικού προσανατολισµού Προσδιορισµός συν/νων στερεοµοντέλου v. Αναλυτική επίλυση του προβλήµατος του Απόλυτου προσανατολισµού µοντέλου Προσδιορισµός παραµέτρων 3D µετασχηµατισµού Μετασχηµατισµός του στερεοµοντέλου 5

6 Στόχοι ενότητας Η κατανόηση του βασικού προβλήµατος του σχετικού προσανατολισµού ζεύγους επικαλυπτόµενων εικόνων (στερεοζεύγους) µέσω διαδικασίας συνόρθωσης Η κατανόηση του βασικού προβλήµατος του απόλυτου προσανατολισµού µοντέλου µέσω διαδικασίας συνόρθωσης 6

7 Λέξεις κλειδιά Σχετικός προσανατολισµός εικόνων Απόλυτος προσανατολισµός µοντέλου 7

8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ i. Γεωµετρία λήψης στερεοζεύγους

9 Γεωµετρία λήψης στερεοζεύγους (1/2) Όπως ήδη αναφέρεται στην 4 η Ενότητα κατά τη λήψη στερεοζεύγους: Σε κάθε φωτογραφούµενο σηµείο P του χώρου δηµιουργείται το επιπολικό επίπεδο (Ο α Ο β Ρ), το οποίο τέµνει τις εικόνες κατά τις επιπολικές ευθείες (e α ) και (e β ) Z e α Y α p 1 p 2 P(X,Y,Z) e β ΕΠΙΠΟΛΙΚΗ ΓΕΩΜΕΤΡΙΑ X 9

10 Γεωµετρία λήψης στερεοζεύγους Κατά τη λήψη στερεοζεύγους: 1. Από σηµείο του χώρου P δύο ακτίνες, µέσω των κέντρων προβολής K 1 και K 2, δίνουν τα οµόλογα σηµεία p 1 και p 2 στα επίπεδα των εικόνων, 2. Τα σηµεία P, K 1, K 2 είναι συνεπίπεδα και ορίζουν το επιπολικό επίπεδο (e) Το επιπολικό επίπεδο (e) τέµνει τις εικόνες κατά τις επιπολικές ευθείες e 1 και e 2 ΕΠΙΠΟΛΙΚΗ ΓΕΩΜΕΤΡΙΑ 3. Οι δύο λήψεις πραγµατοποιούνται: (2/2) µε συγκεκριµένους εξωτερικούς προσανατολισµούς ως προς ένα ορισµένο σύστηµα αναφοράς, π.χ επίγειο σύστηµα µε ένα συγκεκριµένο σχετικό προσανατολισµό (= θέση και προσανατολισµό της 2 ης λήψης σε σχέση µε την 1 η ) 10

11 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ii. Επεξεργασία ζεύγους λήψεων

12 ii. Επεξεργασία ζεύγους λήψεων Ζητούµενο η αποκατάσταση της γεωµετρίας λήψης µε σκοπό τον προσδιορισµό σηµείων στο χώρο W α Ο α V α p α U α Ο β p β W β V β U β 1 Z p 1 Y p 2 P(X,Y,Z) X Εικόνες σε τυχαία θέση στο χώρο αδυναµία προσδιορισµού σηµείου στο χώρο Εικόνες στην ίδια σχετική και απόλυτη θέση που είχαν κατά τη στιγµή της λήψης (αποκατάσταση της γεωµετρίας λήψης του ζεύγους των εικόνων) δυνατότητα προσδιορισµού σηµείου στο χώρο 12

13 Αποκατάσταση της Γεωµετρίας λήψης στερεοζεύγους(1) 1.1 Οι απόλυτοι εξωτερικοί προσανατολισµοί των δύο λήψεων ως προς το εδαφικό σύστηµα αναφοράς είναι δυνατό να προσδιορισθούν µέσω φωτογραµµετρικών οπισθοτοµιών, εφόσον διατίθενται γνωστά σηµεία 1.2 Ο σχετικός προσανατολισµός των δύο λήψεων είναι δυνατό να προσδιοριστεί χωρίς να απαιτούνται γνωστά σηµεία ΣΥΝΘΗΚΗ ΣΥΝΕΠΙΠΕ ΟΤΗΤΑΣ- ΠΡΟΒΛΗΜΑ ΣΧΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1.3. Όταν οι εικόνες αποκατασταθούν στην ίδια σχετική θέση και προσανατολισµό, που είχαν κατά τη στιγµή των λήψεων δηµιουργείται το ΣΤΕΡΕΟΜΟΝΤΕΛΟ. η υπό κλίµακα και σε τυχαίο σύστηµα αναφοράς 3D αναπαράσταση-αναπαραγωγή του αντικειµένου, το οποίο απεικονίζεται σε ζευγάρι επικαλυπτόµενων εικόνων 1.4. Το στερεοµοντέλο µετασχηµατίζεται από το (x, y, z) σύστηµα µοντέλου σε επίγειο σύστηµα (Χ,Υ,Ζ) µε τη διαδικασία του ΑΠΟΛΥΤΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 13

14 Προσδιορισµός σηµείου P στο έδαφος (Χ,Υ,Ζ) σε βήµατα Οπισθοτοµίες (απαίτηση για γνωστά σηµεία εδάφους, τουλάχιστον 4 σε κάθε λήψη) Εµπροσθοτοµία Κατά τον εµπροσθοτοµικό προσδιορισµό σηµείου, ουσιαστικά υλοποιείται το επιπολικό επίπεδο (Ο 1 Ο 2 P) W O 1 V U O 2 V Z Οι δύο λήψεις πραγµατοποιούνται: Y µε συγκεκριµένους εξωτερικούς προσανατολισµούς ως προς ένα ορισµένο σύστηµα αναφοράς, π.χ επίγειο σύστηµα (Οπισθοτοµίες) µε ένα συγκεκριµένο σχετικό προσανατολισµό (= θέση και προσανατολισµό της 2 ης λήψης σε σχέση µε την 1 η ) X P 14

15 Αποκατάσταση της Γεωµετρίας λήψης στερεοζεύγους (2) 1.1 Οι απόλυτοι εξωτερικοί προσανατολισµοί των δύο λήψεων ως προς το εδαφικό σύστηµα αναφοράς είναι δυνατό να προσδιορισθούν µέσω φωτογραµµετρικών οπισθοτοµιών, εφόσον διατίθενται γνωστά σηµεία 1.2 Ο σχετικός προσανατολισµός των δύο λήψεων είναι δυνατό να προσδιοριστεί χωρίς να απαιτούνται γνωστά σηµεία ΣΥΝΘΗΚΗ ΣΥΝΕΠΙΠΕ ΟΤΗΤΑΣ- ΠΡΟΒΛΗΜΑ ΣΧΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1.3. Όταν οι εικόνες αποκατασταθούν στην ίδια σχετική θέση και προσανατολισµό, που είχαν κατά τη στιγµή των λήψεων δηµιουργείται το ΣΤΕΡΕΟΜΟΝΤΕΛΟ. η υπό κλίµακα και σε τυχαίο σύστηµα αναφοράς 3D αναπαράσταση-αναπαραγωγή του αντικειµένου, το οποίο απεικονίζεται σε ζευγάρι επικαλυπτόµενων εικόνων 1.4. Το στερεοµοντέλο µετασχηµατίζεται από το (x, y, z) σύστηµα µοντέλου σε επίγειο σύστηµα (Χ,Υ,Ζ) µε τη διαδικασία του ΑΠΟΛΥΤΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 15

16 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ iii. Το πρόβληµα του Σχετικού και Aπόλυτου προσανατολισµού σε βήµατα

17 Σχετικός και Απόλυτος Προσανατολισµός σε βήµατα Σχετικός και Απόλυτος προσανατολισµός σε βήµατα µε τελικό ζητούµενο τον προσδιορισµό σηµείου P(X,Y,Z) 1. Σχετικός προσανατολισµός Η επίλυση του προβλήµατος του Σ.Π αφορά σε ένα ζευγάρι επικαλυπτόµενων λήψεων και ολοκληρώνεται σε δύο βήµατα. 1.1 Υπολογισµός των απαραίτητων παραµέτρων για την αποκατάσταση της γεωµετρίας λήψης που ίσχυε κατά τη φωτογράφιση 1.2 ηµιουργία του στερεοµοντέλου 2. Απόλυτος προσανατολισµός Η επίλυση του προβλήµατος του Α.Π, αφορά σε ένα στερεοµοντέλο και ολοκληρώνεται σε δύο βήµατα. 2.1 Προσδιορισµός παραµέτρων 3D µετασχηµατισµού από το σύστηµα (x,y,z) του µοντέλου στο εδαφικό σύστηµα (X,Y,Z) 2.2 Μετασχηµατισµός του στερεοµοντέλου στο έδαφος βάσει του γνωστού πλέον µετασχηµατισµού 17

18 Σχετικός προσανατολισµός 1 p 1 p 2 Πρόβληµα σχετικού προσανατολισµού : προσδιορισµός της σχετικής θέσης και προσανατολισµού των δύο εικόνων όπως ήταν τη στιγµή της λήψης Z Y P(X,Y,Z) X Όταν προσδιορισθούν οι παράµετροι σχετικού προσανατολισµού οι ακτίνες Ο 1 p 1 και O 2 p 2 είναι συνεπίπεδες και εποµένως τέµνονται στο σηµείο P στο χώρο Το σηµείο Ρ είναι σηµείο του στερεοµοντέλου 18

19 1. Υπολογισµός των απαραίτητων παραµέτρων Προκειµένου να αποκατασταθεί ο σχετικός προσανατολισµός ζεύγους εικόνων, οι προβαλλόµενες ακτίνες µέσω ζευγών οµολόγων σηµείων εξαναγκάζονται να τµηθούν στο χώρο δηµιουργώντας τα επιπολικά επίπεδα (ικανοποίηση συνθήκης συνεπιπεδότητας) Υπολογισµός των απαραίτητων παραµέτρων για την αποκατάσταση της γεωµετρίας λήψης που ίσχυε κατά τη φωτογράφιση Ζεύγη οµολόγων σηµείων, τα οποία παρατηρούνται για την επίλυση του προβλήµατος του Σχετικού προσανατολισµού W R T β V β p α x b b x Ο β b bz y p β U β Όταν αυτό συµβεί, τότε οι δύο εικόνες τοποθετούνται στο χώρο µε την ίδια σχετική θέση και προσανατολισµό, που είχαν τη στιγµή της λήψης P 19

20 2. ηµιουργία του στερεοµοντέλου Φωτογραµµετρική εµπροσθοτοµία z y x p 1 p 2 Έχοντας αποκαταστήσει το σχετικό προσανατολισµό των δύο λήψεων, δηµιουργείται το στερεοµοντέλο, δηλαδή το αντίστοιχο 3D αντικείµενο, σε τυχαία κλίµακα, θέση και προσανατολισµό P i (x,y,z) 1.Για το κάθε σηµείο P i του στερεοµοντέλου, είναι δυνατός ο υπολογισµός των συντεταγµένων (x, y, z) στο σύστηµα αναφοράς του µοντέλου 2. Το στερεοµοντέλο είναι δυνατό να παρατηρηθεί στερεοσκοπικά µε τη βοήθεια των κατάλληλων διατάξεων 20

21 Απόλυτος προσανατολισµός 1. Προσδιορισµός παραµέτρων 3D µετασχηµατισµού από το σύστηµα (x,y,z) του µοντέλου στο εδαφικό σύστηµα (X,Y,Z) z y x 2. Μετασχηµατισµός του στερεοµοντέλου στο έδαφος βάσει του γνωστού πλέον µετασχηµατισµού z y x Z X Z X P(Χ,Υ,Ζ) 21

22 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ iv. Αναλυτική επίλυση του προβλήµατος του Σχετικού προσανατολισµού ζεύγους εικόνων Προσδιορισµός παραµέτρων Σχετικού προσανατολισµού Προσδιορισµός συν/νων στερεοµοντέλου

23 Επίλυση (1/2) Η επίλυση του προβλήµατος του σχετικού προσανατολισµού αφορά ένα ζεύγος λήψεων και ορίζεται ως εξής: Από τις παρατηρήσεις των συντεταγµένων (x, y ) των εικόνων Ν σηµείων του εδάφους σε στερεοζεύγος, προσδιορίζονται οι παράµετροι του σχετικού προσανατολισµού (β y, β z, κ, φ, ω) των δύο λήψεων Μαθηµατικό µοντέλο: εξίσωση συνεπιπεδότητας Επίλυση µέσω συνόρθωσης µε τη µέθοδο των µικτών εξισώσεων T T T wi + ai x - bαi vαi - bαi vαi= 0 Για Ν 6 δηµιουργούνται αντίστοιχα εξισώσεις 6 5 αγνώστους αυξάνονται δηλαδή οι βαθµοί ελευθερίας 23

24 Επίλυση (2/2) Σηµεία Gruber : Τυπική διάταξη 6 σηµείων (ελάχιστος αριθµός) σε επικαλυπτόµενες εικόνες, τα οποία παρατηρούνται κατά τον Σχετικό Προσανατολισµό. Συνήθως παρατηρούνται Ν>6 σηµεία, στις θέσεις του σχήµατος 24

25 εδοµένα εισόδου ΣΧ εδοµένα εισόδου για τον προσδιορισµό των παραµέτρων σχετικού προσανατολισµού Παρατηρήσεις y b = j=1,2 i=1,2,.,n N Προσεγγιστικές τιµές παραµέτρων σχετικού προσανατολισµού x 0 Θεωρούµε επίσης ότι είναι γνωστά τα στοιχεία εσ. προσανατολισµού (x o, y o, f) της µηχανής λήψης και έχει προηγηθεί η αποκατάσταση του εσ. προσανατολισµού 25

26 Υπολογίζονται (1/2) 1. Με βάση τις τιµές των παρατηρήσεων y b = x y σηµείου στις λήψεις α και β και των προσεγγιστικών τιµών των παραµέτρων Σχ. Π. υπολογίζονται: 2. W i 3. Τα στοιχεία των πινάκων a it, b αi T και b βi T 4. m i = b αi T C αi b αi + b βi T C βi b βi 5. Τα στοιχεία των υποπινάκων N i και u i σύµφωνα µε τις σχέσεις N i = a i a i T και u i = a i 6. Η τελική κανονική εξίσωση -N x= u -(A T M -1 A) x = (A T M -1 w) σχηµατίζεται µε το θεώρηµα άθροισης των κανονικών εξισώσεων N=N 1 + N N N u=u 1 + u u N Eπανάληψη των βηµάτων 1,2,3,4,5 και 6 για όλες τις παρατηρήσεις και ολοκλήρωση του σχηµατισµού των όρων της εξίσωσης - Nx= u 7. Επίλυση x = -N -1 u 5x1 5x5 5x1 26

27 Υπολογίζονται (2/2) 8. Εκτίµηση = δβ y δβ z δκ δφ δω των διορθώσεων των αρχικών προσεγγιστικών τιµών x 0 β β κ 0 φ 0 ω 0 9. Προκύπτει ένα νέο διάνυσµα προσεγγιστικών τιµών παραµέτρων x 0 δβy β δβz β δκ κ 0 δφ φ 0 δω ω 0 και πραγµατοποιείται η 2 η επανάληψη (βήµατα 1-8) 10. Οι επαναλήψεις τελειώνουν όταν ικανοποιηθεί το κριτήριο σύγκλισης το οποίο αρχικά έχει τεθεί 11. Υπολογίζεται το διάνυσµα των εκτιµήσεων των αγνώστων παραµέτρων σχετικού προσανατολισµού β y β z κ φ ω 27

28 Προσδιορισµός συν/νων στερεοµοντέλου W β V β Λήψη Ο α Λήψη Ο β Ο α p α x b bx by p β bz U β Χο α =Υο α =Ζο α =0 ω α =φ α =κ α =0 Θέτοντας bx =1= Χο β by= β y by = βy=υο β bz= β z bz = βz=ζο β P i ω= ω β φ=φ β κ= κ β Οι συν/νες µοντέλου (x,y,z) i ενός σηµείου P i προσδιορίζονται µε εφαρµογή εµπροσθοτοµίας από τις παρατηρήσεις p αi, p βi και τις γνωστές τιµές παραµέτρων εξ.προσανατολισµού των λήψεων Ο α και Ο β ως προς το σύστηµα (x,y,z), οι οποίες αναλυτικά είναι: 28

29 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ v. Αναλυτική επίλυση του προβλήµατος του Σχετικού προσανατολισµού ζεύγους εικόνων Προσδιορισµός παραµέτρων 3D µετασχηµατισµού Μετασχηµατισµός του στερεοµοντέλου

30 Επίλυση προβλήµατος Η επίλυση του προβλήµατος του απόλυτου προσανατολισµού αφορά ένα στερεοµοντέλο και ολοκληρώνεται σε δύο βήµατα. Z z y x i. Προσδιορισµός παραµέτρων 3D µετασχηµατισµού από το σύστηµα (x,y,z) του µοντέλου στο εδαφικό σύστηµα (X,Y,Z) ii. Μετασχηµατισµός του στερεοµοντέλου στο έδαφος βάσει του γνωστού πλέον µετασχηµατισµού X 30

31 Το πρόβληµα (1/2) Η επίλυση του προβλήµατος του απόλυτου προσανατολισµού αφορά ένα στερεοµοντέλο j και ορίζεται ως εξής: Από τις παρατηρήσεις των συντεταγµένων (x, y,z ) i για i=1,2, N σηµείων στο µοντέλο των οποίων οι συν/νες (Χ, Υ, Ζ) i είναι απόλυτα γνωστές στο έδαφος να υπολογιστούν οι παράµετροι µετασχηµατισµού k, θ x, θ y, θ z, x o, y o z o των συντεταγµένων µοντέλου σε εδαφικές συν/νες Μαθηµατικό µοντέλο: 3D µετασχηµατισµός οµοιότητας x y z i = k R 1(-θx) R 2(-θy) R 3(-θz) X Y Ζ i + x o y o z o Επίλυση µέσω συνόρθωσης µε τη µέθοδο των εξισώσεων παρατηρήσεων βάσει της γραµµικοποιηµένης εξίσωσης b ji = A ji x j + v ji 3x1 3x7 7x1 3x1 Για Ν 3 δηµιουργούνται αντίστοιχα εξισώσεις 9> 7 αγνώστους 31

32 Το πρόβληµα (2/2) Οι όροι της εξίσωσης b ji = A ji x + v ji αναλυτικά είναι x x y y z z 0 i = x x ji δk δθ x δθ y δθ z δx o δy o δz o j + v x v y v z i H παραγώγιση των εξισώσεων του 3D µετασχηµατισµού οµοιότητας και η αναλυτική έκφραση όλων των στοιχείων του πίνακα A ji δίνονται στο ερµάνης A. (1990) Ενδεικτικά δίνεται το στοιχείο y = sinθ x y i yo cos θ x zi zo 32

33 εδοµένα εισόδου ΑΠ εδοµένα εισόδου για τον προσδιορισµό των παραµέτρων απόλυτου προσανατολισµού 1. Παρατηρήσεις y b = x y i=1,2, N 2. Απόλυτα γνωστές συν/νες (Χ, Υ, Ζ) i i=1,2, N 3. Προσεγγιστικές τιµές παραµέτρων απόλυτου προσανατολισµού x 0 = k 0 θ θ θ x o y o z o T 33

34 Υπολογίζονται (1/3) 1. Με βάση τις προσεγγιστικές τιµές των παραµέτρων του Α.Π. υπολογίζεται ο προσ. πίνακας στροφής R 0 2. Με βάση τις τιµές των παρατηρήσεων y b = x y του σηµείου p i στο µοντέλο j και των γνωστών εδαφικών συν/νων Χ,Υ,Ζ του σηµείου P i στη βασική εξίσωση παρατήρησης b ji = A ji j + v ji υπολογίζονται 1. Ανηγµένες παρατηρήσεις b ji = (y b -y 0 ) ji 2. Πίνακας σχεδιασµού A ji = x x j 3. Υπολογίζονται τα αντίστοιχα στοιχεία = T P και = T Pb ji των πινάκων της τελικής κανονικής εξίσωσης j j j 34

35 Υπολογίζονται (2/3) 4. Η τελική κανονική εξίσωση j j j σχηµατίζεται µε το θεώρηµα άθροισης των κανονικών εξισώσεων j = N j1 + N j2 +..N jn j = u j1 + u j2 +..u jn 5. Eπανάληψη των βηµάτων 2,3,4 για όλα τα σηµεία και ολοκλήρωση του σχηµατισµού των όρων της εξίσωσης j j j 6. Επίλυση x j = j 7x1 7x7 7x1 7. Εκτίµηση x j = δk δθ δθ δθ δx o δy o δz o T των διορθώσεων των αρχικών προσεγγιστικών τιµών x 0 = k 0 θ θ θ x y z j T 35

36 Υπολογίζονται (3/3) 8. Προκύπτει ένα νέο διάνυσµα προσεγγιστικών τιµών x 0 δk k 0 δθ θ δθ θ δθ θ δx o x δy o y δz o z και πραγµατοποιείται η 2 η επανάληψη (βήµατα 1 8) 9. Οι επαναλήψεις τελειώνουν όταν ικανοποιηθεί το κριτήριο σύγκλισης, το οποίο µπορεί να αφορά: στον αριθµό των επαναλήψεων ή/και στην τάξη µεγέθους των διορθώσεων 10. Υπολογίζεται το διάνυσµα των εκτιµήσεων των αγνώστων x = k θ θ θ x y z j T 36

37 Μετασχηµατισµός z y x Μετασχηµατισµός του στερεοµοντέλου στο έδαφος βάσει του γνωστού πλέον µετασχηµατισµού Z X P(Χ,Υ,Ζ) 37

38 Ερωτήσεις 6 ης ενότητας (1/2) 1. ώστε τον ορισµό του προβλήµατος του Σχετικού Προσανατολισµού 2. Σε ποιά συνθήκη βασίζεται η επίλυση του προβλήµατος του Σ.Π. Ποιά η φυσική σηµασία 3. Ποιές είναι οι φωτογραµµετρικές παράµετροι οι οποίες εµπλέκονται στην εξίσωση συνεπιπεδότητας 4. Πόσα ζεύγη οµολόγων σηµείων παρατηρούνται για την επίλυση του Σ.Π και γιατί 5. Έχοντας προσδιορίσει τα στοιχεία του ΣΠ, µε ποιά διαδικασία υπολογίζονται οι συν/νες σηµείων στο στερεοµοντέλο 6. Πώς καθορίζεται η κλίµακα του στερεοµοντέλου 7. Ποια είναι τα δεδοµένα εισόδου προκειµένου να εκτελεστεί ένα λογισµικό επίλυσης Σ.Π 8. Τι ονοµάζουµε επιπολικό επίπεδο, επιπολικές ευθείες και επίπολα. ώστε σχήµα 9. Ποιά η χρησιµότητα της επιπολικής γεωµετρίας στη Φωτογραµµετρία 10. Ποιά είναι η σχέση η οποία συνδέει τον πίνακα R T του Σ.Π µε τους πίνακες R Kα και R Κβ των Ε.Π των δύο λήψεων ως προς το εδαφικό σύστηµα αναφοράς 38

39 Ερωτήσεις 6 ης ενότητας (2/2) 11. ώστε τον ορισµό του προβλήµατος του Απόλυτου Προσανατολισµού 12. Ποιές παράµετροι προσδιορίζονται κατά την επίλυση του Απόλυτου προσανατολισµού µοντέλου 13. Ποιό είναι το µαθηµατικό µοντέλο βάσει του οποίου επιλύεται το πρόβληµα του Α.Π 14. Ποιός είναι ο ελάχιστος αριθµός Ν γνωστών σηµείων (Χ,Υ,Ζ) ο απαραίτητος για την επίλυση του προβλήµατος του Α.Π και γιατί 15. Ποιά διαδικασία ακολουθεί την επίλυση του Α.Π 16. Ποιά είναι τα δεδοµένα εισόδου προκειµένου να εκτελεστεί ένα λογισµικό επίλυσης Α.Π 39

40 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Βασιλική Φραγκουλίδου Θεσσαλονίκη, Χειμερινό Εξάμηνο

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών

Διαβάστε περισσότερα

Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση)

Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση) Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@ental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ανλυτική Φωτογρμμετρί Ενότητ # 4 Μθημτικά μοντέλ Συγγρμμικότητς κι Συνεπιπεδότητς Κθηγήτρι Όλγ Γεωργούλ Τμήμ Αγρονόμων & Τοπογράφων Μηχνικών

Διαβάστε περισσότερα

Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών Μαθημάτων από την Μονάδα

Διαβάστε περισσότερα

Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν

Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση Μηχανισµού Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου ΗΦωτογραµµετρική

Διαβάστε περισσότερα

Απόλυτος Προσανατολισµός

Απόλυτος Προσανατολισµός Για την κατανόηση της διαδικασίας του Απόλυτου Προσανατολισµού, θα θεωρήσουµε ένα στερεό σώµα που αποτελείται από: 1. Τις δύο δέσµες του στερεοσκοπικού ζεύγους και 2. Το στερεοσκοπικό µοντέλο Ας µη ξεχνάµε

Διαβάστε περισσότερα

Ηδηµιουργία του στερεοσκοπικού µοντέλου περιλαµβάνει:

Ηδηµιουργία του στερεοσκοπικού µοντέλου περιλαµβάνει: Προσανατολισµoί στερεοσκοπικών ζευγών Για να είναι δυνατή η συνεχής απόδοση στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη

Διαβάστε περισσότερα

Χ, Υ, Ζ σηµείων. Εικονιστικό προϊόν

Χ, Υ, Ζ σηµείων. Εικονιστικό προϊόν Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση η Μηχανισµού µ Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 3: Ψηφιακός χάρτης διαχείριση - 1 ο μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Φωτογραμμετρία II Άσκηση 3-Αεροτριγωνισμός Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών

Φωτογραμμετρία II Άσκηση 3-Αεροτριγωνισμός Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Φωτογραμμετρία II Άσκηση 3-Αεροτριγωνισμός Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 5: ΣΓΠ και τοπολογία Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Φωτογραμμετρία II Ψηφιακή εικόνα. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

Φωτογραμμετρία II Ψηφιακή εικόνα. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. Φωτογραμμετρία II Ψηφιακή εικόνα Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns και δημιουργήθηκε στο πλαίσιο των Ανοιχτών

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα

5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα 5/3/ Για να είναι δυνατή η επεξεργασία στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ.

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 6: Χωρική ανάλυση στα ΣΓΠ Μέρος 1ο Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

Φωτογραμμετρία II Το κυνήγι μιας ακτίνας. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

Φωτογραμμετρία II Το κυνήγι μιας ακτίνας. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. Φωτογραμμετρία II Το κυνήγι μιας ακτίνας Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 4: Εισαγωγή στη Φωτογραμμετρία. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 2: Ψηφιακός χάρτης Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα

Διαβάστε περισσότερα

Αεροτριγωνισµός. Το βασικό πρόβληµα 13/4/2010

Αεροτριγωνισµός. Το βασικό πρόβληµα 13/4/2010 Αεροτριγωνισµός Αεροτριγωνισµός Εισαγωγή Χρησιµότητα Το Βασικό Πρόβληµα Τα σηµεία στον Αεροτριγωνισµό (Α/Τ) Μέθοδοι συνόρθωσης Μέθοδος των ανεξαρτήτων µοντέλων Μέθοδος των εσµών Πρόσθετες παρατηρήσεις

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραία Ενότητα # :Μέθοδοι παρεμβολής 3D-Αναλυτικές μέθοδοι Ιωάννης Γ Παρασχάκης Τμήμα Αγρονόμων & Τοπογράων Μηχανικών

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 13: Εξελιγμένα θέματα στα GISs Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 8: Εργαστήριο 8 Εξελιγμένα θέματα σχεδίασης στο λογισμικό AutoCad Καθηγητής Ιωάννης Γ.

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία

Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόµων και Τοπογράφων Μηχ. Τοµέας Τοπογραφίας Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία Φωτογραµµετρική Οπισθοτοµία Υποδειγµατικά λυµένη άσκηση εδοµένα Τα δεδοµένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 7: Εργαστήριο 7: Σχεδίαση χάρτη από μετρήσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Δρ. Δημήτριος

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Εργαστήριο 2 - Η διανυσματική μορφή (vector) Καθηγητής Ιωάννης Γ. Παρασχάκης Δρ. Μηχ.

Διαβάστε περισσότερα

Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΕΜΠ. Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος Ανδρέας. Περί φωτογραµµετρίας

Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΕΜΠ. Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος Ανδρέας. Περί φωτογραµµετρίας Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΕΜΠ Αποτυπώσεις Μνηµείων Υπεύθυνος Διδάσκων: Γεωργόπουλος Ανδρέας Περί φωτογραµµετρίας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Crea:ve Commons.

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 8: Μοντελοποίηση Χαρτογραφικών Δεδομένων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 3: Αλγοριθμικές μέθοδοι παρεμβολής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπόλογιστές

Σχεδίαση με Ηλεκτρονικούς Υπόλογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπόλογιστές Ενότητα # 11: Συστήματα αναφοράς στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων σε σφαιρική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρ. και Τοπογράφων Μηχανικών Φωτογραμμετρία Ι Άσκηση 4α Σχετικός Προσανατολισμός Ζεύγους Εικόνων Εξαρτημένος Συνθήκη Συγγραμμικότητας Δ. Βασιλάκη, 010 Σχετικός Προσανατολισμός

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative

Διαβάστε περισσότερα

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Η έννοια και χρήση των εσωτερικών δεσμεύσεων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 8: Ανάλυση δικτύων στα ΣΓΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Εως τώρα εξοικειωθήκαµε (λίγο ως πολύ) µε τις παρακάτω έννοιες στη Φωτογραµµετρία:

Εως τώρα εξοικειωθήκαµε (λίγο ως πολύ) µε τις παρακάτω έννοιες στη Φωτογραµµετρία: Χρήσιµη υπενθύµιση Εως τώρα εξοικειωθήκαµε (λίγο ως πολύ) µε τις παρακάτω έννοιες στη Φωτογραµµετρία: Μετρήσεις στις εικόνες και προσδιορισµός εικονοσυντεταγµένων Προσδιορισµός του Εξωτερικού Προσανατολισµού

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Οδοποιία II. Ενότητα 8: Εφαρμογές Οδοποιία ΙI. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οδοποιία II. Ενότητα 8: Εφαρμογές Οδοποιία ΙI. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία II Ενότητα 8: Εφαρμογές Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 6 : Ασκήσεις (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Φωτογραμμετρία II Άσκηση 4-Στερεοσκοπική απόδοση Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών

Φωτογραμμετρία II Άσκηση 4-Στερεοσκοπική απόδοση Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Φωτογραμμετρία II Άσκηση 4-Στερεοσκοπική απόδοση Ανδρέας Γεωργόπουλος Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Φωτογραμμετρία II Αεροτριγωνισμός& Ακρίβειες. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

Φωτογραμμετρία II Αεροτριγωνισμός& Ακρίβειες. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. Φωτογραμμετρία II Αεροτριγωνισμός& Ακρίβειες Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Cmmns και δημιουργήθηκε στο πλαίσιο

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 3: Σύγκριση διανυσματικής και ψηφιδωτής μορφής Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #2: Δυνάμεις στο Επίπεδο Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (2): Άτομο Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 7: Φασματοσκοπία IR Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 1: Εισαγωγή Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης Οικονομετρία Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (4): Περιοδικός Πίνακας Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 5: Χαρτογραφικές βάσεις δεδομένων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 10

Λογισμός 4 Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 9: Η διάσταση του χρόνου στα ΓΣΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΛΥΚΕΙΟΥ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 1: Ηλεκτρικά χαρακτηριστικά γραμμών μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα