Pitanja i zadaci za Školsko natjecanje iz astronomije 2012/ razred osnovne škole. 5. veljače ODGOVORI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pitanja i zadaci za Školsko natjecanje iz astronomije 2012/ razred osnovne škole. 5. veljače ODGOVORI"

Transcript

1 Pitanja i zadaci za Školsko natjecanje iz astronomije 01/ razred osnovne škole 5. veljače 013. ODGOVORI Zaokruži slovo ispred točnog odgovora (svaki točan odgovor boda): 1. Na našim geografskim širinama u cirkumpolarna zviježđa ulazi: a) Cefej b) Herkul c) Škorpion d) Kočijaš. Koji je od ovih planeta po veličini najsličniji Jupiteru: a) Mars b) Merkur c) Neptun d) Venera 3. Položaj Mjeseca u kojem je on najudaljeniji od Zemelje nazivamo: a) perigej b) afel c) perihel d) apogej 4. Koji od ponuđenih planeta ima najgušći sustav satelita (prsten): a) Saturn b) Uran c) Zemlja d) Jupiter 5. Kroz koji grad prolazi početni (nulti) meridijan: a) Zagreb b) London c) Peking d) New York

2 Nadopuni rečenicu ( svaka točno nadopunjena rečenica boda) 6. Galileo Galilei otkrio je četiri najveća satelita planeta Jupiter. 7. Galaktika u kojoj se nalazi naš planet Zemlja zove Mliječna staza (put, Kumova slama) i ima spiralan oblik. 8. Točka na nebeskoj sferi koja se nalazi točno iznad promatrača (90⁰) naziva se zenit. 9. Vrtnju Zemlje čija je posljedica izmjena godišnjih doba nazivamo (zemljina) revolucija. 10. Zviježđe Perzej pripada zviježđu zimskog neba. ZADACI 11. Nacrtaj četiri glavne faze Mjeseca i ispod svake napiši naziv. 8 MLAĐAK (MLADI MJESEC) PRVA ČETVRT UŠTAP(PUN MJESEC) ZADNJA ČETVRT Svaka točno nacrtana faza Mjeseca i svaki točan naziv 1 bod

3 1. Ispod svakog planeta (poredanih po veličini-radijusu) pridruži jedno od imena: Mekur, Neptun, Saturn, Jupiter, Venera. Zaokruži planet koji nema atmosferu. Iscrtkaj planet koji je najudaljeniji od Sunca. 8 Merkur Venera Neptun Saturn Jupiter Za svako točno ime planeta 1 bod Ako je točno ime Merkur i zaokružen 1. planet boda Ako je točno ime Neptun i iscrtkan 3. planet 1 bod 13. Imenuj dana zviježđa (onako kako ih mi vidimo sa Zemlje)! Pridruži imena zvijezda odgovarajućim zvijezdama na zadanim skicama: Sjevernjača, Dubhe, Merak, Mizar, Rigel. 9 Za svaki točno napisan naziv (zvijezde ili zviježđa) po 1 bod

4 14. Koliko ima najviše, a koliko najmanje moguće dana u deset godina? Objasni računom i riječima! 5 1 godina = najmanje moguće 365 dana = najviše moguće 366 dana 10 godina = 365 dana * 10 = 3650 dana 1 bod U deset godina mogu biti ili 3 prijestupne godine. 1 bod U slučaju da tih deset godina sadrži prijestupne godine dobivamo najmanji mogući broj dana: = 365 dana. 1 bod U suprotnom dobivama najveći mogući broj dana u tih deset godina: = 3653 dana. 1 bod *napomena: bodovanje ne mora biti strogo po rješenju, već po procijeni ispravljača UKUPNO: 50

5 Pitanja i zadaci za Školsko natjecanje iz astronomije 01/ razred osnovne škole RJEŠENJA Zaokruži slovo pored točnog odgovora! 5. veljače Osnivač Zagrebačke zvjezdarnice je: a) Oton Kučera b) Ivan Mažuranić c) Nikola Kopernik d) Josip Ruñer Bošković. Najsjajnija zvijezda u zviježñu Kočijaš je: a) Prokion b) Aldebaran c) Kapela d) Sirius 3. Jupiterovu skupinu planeta ne čini: a) Saturn b) Uran c) Neptun d) Mars 4.. Velika crvena pjega je pojava koja obilježava: a) Merkur b) Jupiter c) Mars d) Venera 1

6 Ako je tvrdnja točna zaokruži slovo T ako je netočna zaokruži slovo N 5. Jupiter nikada ne može doći u položaj opozicije! T N 6. Najudaljenija točka putanje nebeskog tijela koji kruži oko Sunca je afel. T N 7. Osnovna jedinica za mjerenje udaljenosti u Sunčevu sustavu je godina svjetlosti (g.s.). T N Na praznu crtu upiši odgovor! 8. Puni Mjesec doseže prividnu zvjezdanu veličinu ili magnitudu - 1,7. 9. Bliži Marsov satelit koji obilazi oko Marsa u ravnini ekvatora za otprilike 7,5 sati je Fobos ili Phobos. 10. Merkur i Veneru u odnosu na položaj prema Zemlji i Suncu ubrajamo u skupinu unutarnjih (ili donjih planeta) planeta. Ukupno 0

7 Zadatci 1. Skiciraj položaj sjevernog nebeskog pola na način kako se odreñuje pomoću zviježña Kasiopeje? Povezati pravac α Malog medvjeda i α Kasiopeje (ispravno nacrtana skica boda). Poveži parove crtom tako da hrvatskom imenu zviježña pridružiš latinsko ime. (za svaki ispravno povezani par boda ) Ukupno 8 b) Veliki Pas Canis Minor c) Veliki Medvjed Canis Major c) Mali Pas Ursa Minor d) Mali Medvjed Ursa Major 3

8 3. Izračunaj Venerinu sideričku godinu ako znaš da Zemljina siderička godina (A) traje 365 d, a Venerina sinodička godina (S) 584 d? A = siderička godina Zemlje d S = sinodička godina Venere d T = siderička godina Venere -? (ispravno napisana formula 1 bod) (ispravno uvrštavanje u formulu 1 bod) ,6 5 (točan izračun recipročne vrijednosti sideričke godine Venere 1 bod) (točan konačni rezultat s mjernom jedinicom 1 bod) Ukupno 4 4. a) Na karti neba označi cirkumpolarna zviježña: Veliki medvjed, Mali medvjed, Kasiopeja, Cefej. b) Pored svakog zviježña navedi pokratu latinskog imena. c) Slovom α i β označi dvije najsjajnije zvijezde u svakom zviježñu. d) za svako ispravno označeno zviježñe 1 bod - ukupno 4 boda e) za svaku točnu pokratu latinskog imena zviježña 1 bod - ukupno 4 boda f) za svaku ispravno označenu (α i β) po 1 bod - ukupno 8 bodova Ukupno 16 4

9 5

10 Pitanja i zadaci za Školsko natjecanje iz astronomije razred osnovne škole 5. veljače 013. godine ODGOVORI NA PITANJA Zaokruži točan odgovor: 1. Koji od nabrojanih objekata možemo vidjeti golim okom? a) Maglicu Rakovicu b) Kvazar 3C 73 c) Andromedinu galaktiku d) Asteroid Juno. Apogej je položaj tijela na stazi oko: a) Sunca kada mu je najbliže. b) Sunca kada mu je najdalje. c) Zemlje kada joj je najbliže. d) Zemlje kada joj je najdalje. 3. Koje se od nabrojanih zviježña nikada ne može vidjeti iz Australije? a) Mali medvjed b) Orion c) Lav d) Oktant 4. Zaokruži ispravnu tvrdnju. a) Sa Zemlje se može opažati opozicija Merkura. b) Sa Marsa se može opažati tranzit Mjeseca preko Sunčeva diska. c) Sa Jupitera se može opažati okultacija Sjevernjače Saturnom. d) Sa Neptuna se može opažati potpuna pomrčina Sunca Ganimedom.

11 5. Zbog meñusobnog utjecaja Mjeseca i Zemlje: a) Zemlja ubrzava rotaciju i Mjesec se približava. b) Zemlja usporava rotaciju i Mjesec se približava. c) Zemlja ubrzava rotaciju i Mjesec se udaljava. d) Zemlja usporava rotaciju i Mjesec se udaljava. Nadopuni ili odgovori: 6. Najizraženiju vulkansku aktivnost meñu satelitima u Sunčevom sustavu ima Io. 7. Planet prividno najslabijeg sjaja koji se sa Zemlje može vidjeti golim okom je Uran. 8. Gledano sa Saturna, koji planeti mogu doći u položaj opozicije sa Suncem? Uran i Neptun. 9. Zvijezde koje nikada ne izlaze iznad obzora nazivamo anticirkumpolarne zvijezde. 10. Tijekom kojih godišnjih doba sjena gnomona postavljenog na ekvator pada južno od njega? U proljeće i ljeto.

12 RJEŠENJA ZADATAKA 1. Skiciraj meñusobni položaj Merkura i Zemlje u odnosu na Sunce, gledano s Venere kada je Merkur u donjoj konjunkciji, a Zemlja u kvadraturi. 6 Sunce Merkur Zemlja Venera Točan položaj Merkura Točan položaj Zemlje (3 boda) (3 boda)

13 . Koliko punih okreta oko svoje osi Zemlja napravi u dvije godine? 7 N god = 365,4 okreta N god = 365,5 okreta N god = 365 okreta N = (N god + 1) N = (365,5 + 1) = 73,4844 N uk = 73 okreta (3 boda) ( boda) (1 bod) ( boda) (1 bod) (1 bod)

14 3. Marko je negdje u Europi izmjerio da visina Aldebarana u meridijanu iznosi 60. a) Ako znaš da su koordinate Aldebarana α = 4 h 36 m, δ = ', kolika je približna zemljopisna širina mjesta u kojemu je Marko izvršio mjerenje? Skiciraj! b) Kolika je približna zenitna udaljenost sjevernog nebeskog pola u tom mjestu? 8 N Z z Aldebaran ϕ δ h obzor a) skica ( boda) ϕ = 90 - h + δ ϕ = ' = 46 30' (1 boda) ( boda) b) z = 90 - ϕ (1 boda) z = ' = 43 30' ( boda)

15 4. Linijom poveži zvijezde sa zviježñima u kojima se nalaze! Andromeda Alderamin Cefej Arktur Lav Denebola Mali pas Algol Orion Gomeisa Perzej Alkor Veliki medvjed Rigel Volar Mirah Zmaj Tuban 9 Svaki točan odgovor (po 1 bod)

16 Rješenja pitanja i zadataka za Školsko natjecanje iz astronomije 5. veljače razred Zaokruži točan odgovor u 1.,. i 3. pitanju. 1) Koja zvijezda ima najmanju prividnu zvjezdanu veličinu (magnitudu)? a) Albireo b) Šedir c) Vega d) Alkor ) U kojem se položaju mora nalaziti Zemlja, ako promatrač na Marsu vidi Zemlju u fazi prva četvrt? Sunce je označeno slovom S, Mars slovom M, a položaji Zemlje slovima: A, B, C, D i E. a) položaj A b) položaj B c) položaj C d) položaj D e) položaj E. 3) Kako se zove žena koja je bila prva u svemiru? a) Valentina Leonidovna Ponomaryova b) Žanna Dmitrievna Yorkina c) Liu Yang d) Valentina VladimirovnaTereškova. Prekriži netočno u 4. i 5. pitanju. 4) Period rotacije terestričkih planeta dulji / kraći je od perioda rotacije jovijanskih planeta. 5) Okular Galilejeva teleskopa ima konveksnu / konkavnu leću. Dopuni rečenicu u 6., 7. i 8. pitanju. 6) Osnovna je razdioba površine Mjeseca na svjetlija _kopna_ i tamnija _mora_. kopna...1 bod mora..1 bod

17 7) Tijekom pomrčine Sunca promatra se najviši sloj Sunčeve atmosfere kojem je naziv korona. 8) Koji od crteža prikazuje oblik staze gibanja planeta oko Sunca? a) b) c) d) Odgovor je _c)_ jer vrijedi 1. Keplerov _ zakon. c).. 1 bod 1. Keplerov...1 bod 9) Koji je od Galilejevih satelita koji se gibaju oko Jupitera najbliži planetu? Io 10) Kada iz svemira kamen putuje prema Zemlji, dok ne padne na tlo, prolazi kroz tri faze. Koristeći se pravilnim redoslijedom riječi meteor, meteorit i meteoroid, napiši na donje crte koje su to faze. Meteoroid, meteor, meteorit ZADATCI 1) Izračunaj nakon koliko se vremena na Zemlji vidi prominencija koja se dogodila na Suncu? Neka mjerna jedinica rješenja bude minuta. Ili c = m/s.. boda s = 1 aj = 1, km boda t = s/c... boda t = 1, m / m/s t = 500 s 1 bod t = 8,33 min..1 bod c = m/s. boda s = 1 aj = 1, km. boda t = s/c... boda t = 1, m / m/s t = 498,67 s 1 bod t = 8,31 min...1 bod 8

18 ) Pridruži slovo koje odgovara: Rektascenziji _G_ Nebeskom ekvatoru _C_ Južnom nebeskom polu _D_ Deklinaciji _A_ 4 Svako točno pridruženo slovo 1 bod 3) Leteći prema Zemlji, stanovnici galaksije BL Lacertae uočili su šest sjajnih zvijezda koje Zemljanima predstavljaju vrhove zimskog šesterokuta. Istakni još četiri zvijezde koje nedostaju te nacrtaj taj šesterokut. 11 Dopuni tablicu. Latinski naziv zvijezde zimskog šesterokuta Sirius Pollux Kratica (pokrata) zviježđa kojem zvijezda pripada CMa Gem Svaka točno označena zvijezda boda Nacrtani šesterokut.1 bod Svako polje u tablici 1 bod

19 4) Koliko bi se Mjeseci moglo nebeskim meridijanom, od horizonta do zenita, prividno poredati jedan do drugog? 7 Prividni je promjer Mjeseca 0, boda Zenitna je udaljenost točke horizonta 90 0 boda Moglo bi se poredati 90:0,5 = 180 (ili 90 = 180) Mjeseci. 3 boda

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda)

PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda) HRVATSKO ASTRONOMSKO DRUŠTVO Državno povjerenstvo za školska natjecanja i susrete iz astronomije Pitanja i zadaci iz astronomije za županijsko natjecanje 003. 4. razred osnovne škole PITANJA A - zaokruži

Διαβάστε περισσότερα

Rješenja PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda)

Rješenja PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda) HRVATSKO ASTRONOMSKO DRUŠTVO Državno povjerenstvo za školska natjecanja i susrete iz astronomije Pitanja i zadaci iz astronomije za županijsko natjecanje 00. 1. &. razred srednje škole Rješenja PITANJA

Διαβάστε περισσότερα

PITANJA. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije razred osnovne škole. 18. ožujka 2011.

PITANJA. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije razred osnovne škole. 18. ožujka 2011. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije 011. 4. razred osnovne škole 18. ožujka 011. PITANJA Zaokruži slovo ispred točnog odgovora ( svaki točan odgovor boda ) 1. Jedina zvijezda

Διαβάστε περισσότερα

ORIJENTACIJA NEBESKE SFERE (SVODA)

ORIJENTACIJA NEBESKE SFERE (SVODA) OSNOVE ORIJENTACIJE ORIJENTACIJA NEBESKE SFERE (SVODA) ODREĐIVANJE OSNOVNIH TOČAKA, PRAVACA, KRUŽNICA I RAVNINA NEBESKE SFERE ORIJENTACIJA NA NEBESKOM SVODU ASTROGNOZIJA POZNAVANJE OBJEKATA NA NEBESKOM

Διαβάστε περισσότερα

5. razred osnovne škole

5. razred osnovne škole 5. razred osnovne škole PITANJA Odgovori: 1. Kako se zove točka na nebeskoj sferi koja je suprotna zenitu? Nadir. Navedi planete u čijem imenu ima manje od 6 slova! Zemlja, Mars, Uran 3. Oko kojeg planeta

Διαβάστε περισσότερα

1. razred srednje škole

1. razred srednje škole Zaokruži točan odgovor ili odgovori! 1. razred srednje škole PITANJA 1. Pomrčina Sunca je pojava koja može nastati samo kada je mjesec u fazi: a) uštapa b) mlađaka c) u zadnjoj četvrti. Poznati komet koji

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

4. razred osnovne škole

4. razred osnovne škole 4. razred osnovne škole Zaokruži slovo ispred točnog odgovora! PITANJA. Zviježđa koja su uvijek iznad obzora (nikad ne zalaze) nazivaju se a) cirkumpolarna zviježđa b) zviježđa zodijaka c) zviježđa južnog

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI PLANETI ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI Građa terestričkih planeta stjenovito središte, tanka atmosfera km ρ 4880 5,43 12104 5,24 12756 5,52

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258.

Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258. Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258. 2. Da li zvijezde koje promatramo bilo s južnog, bilo sa sjevernog pola

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Mali vodič kroz astrognoziju

Mali vodič kroz astrognoziju AAD Rijeka Martina Šupak Mali vodič kroz astrognoziju Rijeka, 2013. 0. Uvod U ovom vodiču bit će govora o promatranju neba, no ne nekim skupim teleskopima već golim okom, a ponekad i dalekozorom. Astrognozija

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu

Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu Mjerih nebesa, sada sjene mjerim. Um mi visinama težaše, tijelo na Zemlji prikovano osta. Johannes Kepler

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

56. ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 8. RAZRED

56. ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 8. RAZRED Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 56. ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 204. PISANA PROVJERA ZNANJA 8. RAZRED Zaporka učenika: ukupan zbroj bodova pisanog uratka vrednovao

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE

ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE KEPLEROVI ZAKONI PLANETARNIH KRETANJA Johan Kepler (1571-1630) nemaĉki matematiĉar i astronom nasledio Tiho Brehea na mestu kraljevskog matematiĉara. Ĉetiri godine je

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka Doc. dr. sc. Markus Schatten Zbirka rješenih zadataka iz baza podataka Sadržaj 1 Relacijska algebra 1 1.1 Izračun upita....................................... 1 1.2 Relacijska algebra i SQL.................................

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

7. razred 20. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE. Razred ili kategorija natjecanja: Zaporka. Broj postignutih bodova / 70

7. razred 20. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE. Razred ili kategorija natjecanja: Zaporka. Broj postignutih bodova / 70 0. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 0. GODINE Razred ili kategorija natjecanja: 7. razred Zaporka Broj postignutih bodova / 70 Potpis članova Školskog povjerenstva... Mjesto i nadnevak:

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

3. MJESEC Nastanak Mjeseca Sustav Zemlja - Mjesec

3. MJESEC Nastanak Mjeseca Sustav Zemlja - Mjesec MAGNITUDA MJESECA Rad izradio: Fabijan Čakanić, 8.razred Osnovna škola Bogumila Tonija, Samobor Mentor: Ivana Matić, prof., VII. stupanj ivana.matic7@skole.hr Samobor, šk.god.2013./2014. ZAHVALA Zahvaljujem

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα