ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ"

Transcript

1 ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών, Πάτρα Περίληψη Σε αυτή την εργασία παρουσιάζεται η επίλυση του προβλήματος σχεδιασμού κίνησης και χρονοπρογραμματισμού εργασιών για ένα αυτόνομο όχημα. Ο χώρος εργασίας είναι ένα δύο διαστάσεων περιβάλλον το οποίο περιέχει ακίνητα εμπόδια γνωστής γεωμετρίας και ένα σύνολο σταθμών εργασίας των οποίων γνωρίζουμε τη θέση. Το όχημα θα πρέπει να ξεκινήσει από την αποθήκη, να εξυπηρετήσει μέσα σε ένα προκαθορισμένο χρονικό διάστημα όσο το δυνατόν περισσότερους σταθμούς εργασίας, ακριβώς μια φορά, και να επιστρέψει στην αποθήκη. Η επίλυση του προβλήματος γίνεται σε δύο στάδια. Αρχικά, ο χώρος εργασίας του οχήματος αναπαριστάται με τη χρήση της Bump-Surface. Στη συνέχεια ο προσδιορισμός της βέλτιστης δυνατής διαδρομής γίνεται πάνω στην επιφάνεια αυτή με τη χρήση Γενετικών Αλγορίθμων. Στην Ενότητα 4 παρουσιάζεται ένα ενδεικτικό παράδειγμα εφαρμογής της μεθόδου σε περιβάλλον που περιέχει εφτά σταθμούς εργασίας. Λέξεις κλειδιά: αυτόνομο όχημα, χρονοπρογραμματισμός εργασιών, δισδιάστατα περιβάλλοντα, Bump-Surface 1 ΕΙΣΑΓΩΓΗ Η ανάπτυξη αυτόνομων οχημάτων είναι ένας θεμελιώδης στόχος στα σύγχρονα βιομηχανικά συστήματα παραγωγής (Halme A. and Koskinen K. 1995). Τέτοια οχήματα πρέπει να είναι ικανά να δέχονται υψηλού-επιπέδου οδηγίες για την εργασία τους και να την εκτελούν (με το μικρότερο δυνατόν κόστος) παίρνοντας μόνα τους αποφάσεις καθώς κινούνται με ασφάλεια στο χώρο εργασίας τους. Η ανάπτυξη των κατάλληλων μεθοδολογιών για τη δημιουργία αυτόνομων οχημάτων εγείρει πολλά σύνθετα προβλήματα συνδυαστικής βελτιστοποίησης. Δύο από αυτά είναι, το πρόβλημα του σχεδιασμού κίνησης και το πρόβλημα του χρονικού προγραμματισμού εργασιών. Υπάρχει ένα κενό στη βιβλιογραφία όσον αφορά στις εργασίες που μελετούν και τα δύο προβλήματα ταυτόχρονα (Vis Iris F.A. 2006). Συνήθως, τα δύο παραπάνω προβλήματα μελετώνται χωριστά. Ένας πιθανός λόγος για αυτό είναι ότι η ενοποίηση των δύο προβλημάτων σε ένα μοναδικό πρόβλημα δημιουργεί ένα διπλά δυσεπίλυτο συνδυαστικό πρόβλημα βελτιστοποίησης. Σε αυτήν την εργασία παρουσιάζεται μια μεθοδολογία που αντιμετωπίζει τα δύο προβλήματα ταυτόχρονα για ένα αυτόνομο όχημα το οποίο κινείται σε 1

2 δισδιάστατο βιομηχανικό περιβάλλον το οποίο περιέχει σταθερά (γνωστά) εμπόδια και ένα σύνολο από σταθμούς εργασίας. Το όχημα θα πρέπει να ξεκινήσει από την αποθήκη (αφετηρία), να εξυπηρετήσει μέσα σε ένα προκαθορισμένο χρονικό διάστημα όσο το δυνατόν περισσότερους σταθμούς εργασίας (περνώντας ακριβώς μια φορά από τον κάθε σταθμό) και να επιστρέψει στην αποθήκη. Η εξυπηρέτηση μπορεί για παράδειγμα να αφορά εργασίες εφοδιαστικής όπως μεταφορά και διανομή όγκου υλικών σε κάθε σταθμό ανάλογα με το πλάνο παραγωγής. Η μεθοδολογία που προτείνεται επιλύει το πρόβλημα σε δύο στάδια. Αρχικά, εφαρμόζεται η μεθοδολογία της Bump-Surface (Azariadis and Aspragathos, 2005) για την αναπαράσταση του χώρου εργασίας του οχήματος. Στη συνέχεια, εφαρμόζουμε πάνω στην Bump-Surface ένα κατάλληλο Γενετικό Αλγόριθμο (Goldberg, 1989) για την εύρεση μιας διαδρομής για το όχημα η οποία θα ικανοποιεί τους περιορισμούς και τα κριτήρια και των δύο προβλημάτων (σχεδιασμού κίνησης και χρονικού προγραμματισμού εργασιών). Πρέπει να σημειωθεί ότι, η επίλυση του ενιαίου διπλού προβλήματος γίνεται στο χώρο διαμορφώσεων του οχήματος όπου το όχημα αναπαριστάται ως σημείο και τα εμπόδια μεγεθύνονται ανάλογα ώστε να συμπεριλάβουν και τη διάσταση του οχήματος. Το κύριο πλεονέκτημα της προτεινόμενης μεθοδολογίας είναι ότι εντοπίζονται μικρότερες σε μήκος και πιο ομαλές διαδρομές για το όχημα από ότι με τις κλασσικές προσεγγίσεις. Επίσης, το πλήθος των σταθμών που εξυπηρετούνται από το όχημα είναι συνήθως μεγαλύτερο. 2 ΔΙΑΤΥΠΩΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Ας υποθέσουμε ένα εργοστασιακό περιβάλλον δύο διαστάσεων το οποίο περιέχει απαγορευμένες περιοχές και ένα σύνολο σταθμών εργασίας (ΣΕ), Σχήμα 1. Επίσης, κάνουμε τις ακόλουθες υποθέσεις: Η γεωμετρία και η θέση των απαγορευμένων περιοχών (τοίχοι, εργοστασιακός εξοπλισμός) είναι γνωστή. Το όχημα αναπαριστάται ως σημείο. Οι θέσεις των σταθμών εργασίας και της αποθήκης είναι γνωστές. Το όχημα μπορεί να κινείται μόνο προς τα εμπρός με σταθερή ταχύτητα u rob. Η διαδρομή του οχήματος ξεκινά πάντοτε από την αποθήκη περνά από έναν αριθμό ΣΕ και καταλήγει σε αυτήν. Η κίνηση του οχήματος περιορίζεται από ένα χρονικό παράθυρο 0, f μέσα στο οποίο πρέπει να εξυπηρετηθούν όσο το δυνατόν περισσότεροι ΣΕ. f είναι ο χρόνος άφιξης του οχήματος στην αποθήκη. Το χρονικό διάστημα στο οποίο πρέπει να εξυπηρετηθούν οι ΣΕ είναι προκαθορισμένο (ορίζεται από το πλάνο παραγωγής, τα τεχνικά χαρακτηριστικά του οχήματος). Από τα παραπάνω έχουμε ότι, το συνδυαστικό πρόβλημα σχεδιασμού κίνησης και χρονοπρογραμματισμού εργασιών για ένα όχημα διατυπώνεται ως εξής: Δοσμένης της γεωμετρίας του περιβάλλοντος, της γεωμετρίας του οχήματος, της θέσης των 2

3 σταθμών εργασίας και της θέσης της αποθήκης στο περιβάλλον καθόρησε μια διαδρομή η οποία αποφεύγει την σύγκρουση με τα εμπόδια και ικανοποιεί τα κάτωθι κριτήρια: I. Το όχημα δεν θα πρέπει να συγκρουστεί ή να διασχίσει τις απαγορευμένες περιοχές του περιβάλλοντος. II. Το όχημα θα πρέπει να εξυπηρετήσει μέσα σε ένα προκαθορισμένο χρονικό διάστημα όσο το δυνατόν περισσότερους σταθμούς εργασίας, ακριβώς μια φορά. αποθήκη σταθμός_3 σταθμός_6 σταθμός_7 u 2 σταθμός_1 σταθμός_2 σταθμός_4 σταθμός_5 u 1 Σχήμα 1: Ο χώρος εργασίας του ρομπότ που περιλαμβάνει μια αποθήκη και 7 σταθμούς εργασίας. Πρέπει να σημειωθεί ότι, επειδή, το όχημα κινείται με ταχύτητα σταθερού μέτρου μπορούμε να θεωρήσουμε ότι μια βέλτιστη διαδρομή ως προς το χρόνο αντιστοιχεί σε μια διαδρομή βέλτιστη ως προς το μήκος. 3 ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ο ΣΤΑΔΙΟ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΟΥ ΧΩΡΟΥ ΕΡΓΑΣΙΑΣ Η προτεινόμενη μέθοδος βασίζεται στη μεθοδολογία Bump-Surface για την αναπαράσταση του δισδιάστατου χώρου εργασίας του ρομπότ. Ο χώρος εργασίας του οχήματος (Σχήμα 1) αναπαριστάται από μια μαθηματική πολλαπλότητα δύο διαστάσεων, η οποία κείται στον Ευκλείδειο χώρο των τριών διαστάσεων (Σχήμα 2) χρησιμοποιώντας μια επιφάνεια B-Spline (Les Piegl and Wayne Tiller, 1997). z y x Σχήμα 2: Η αντίστοιχη Bump-Surface. 3

4 3.2 ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ Ας υποθέσουμε ότι το όχημα διαγράφει μια διαδρομή t u1(), t u2() t R η οποία περιγράφεται ως μια B-Spline καμπύλη πρώτου βαθμού από την ακόλουθη συνάρτηση: όπου N () t,1 1 R t N () t p, t[0,1] (1) 0,1 είναι η συνάρτηση βάσης και 0,1 2 διαδρομής R t u1(), t u2() t p0, p1, p2,..., p 1 p ορίζονται ως εξής: o p0 p 1 ορίζουν την αποθήκη. p είναι τα σημεία ελέγχου της. Ο συνολικός αριθμός των σημείων ελέγχου o p1, p2,..., p 2 w ΣΕ ενδιάμεσα σημεία ελέγχου gl, l 1,..., b o είναι ο συνολικός αριθμός σημείων ελέγχου 2 o o o R t w p 0,1 για την διαδρομή b r είναι ο συνολικός αριθμός των ενδιάμεσων σημείων ελέγχου l 0,1 2 g. w είναι ο συνολικός αριθμός ΣΕ που εξυπηρετούνται από το όχημα r είναι ο αριθμός των σημείων ελέγχου μεταξύ δύο ΣΕ. Μια ελεύθερη διαδρομή η οποία ξεκινά από την αποθήκη, αποφεύγει τα εμπόδια, περνά από τους ΣΕ ακριβώς μια φορά, και καταλήγει στην αποθήκη πρέπει να αναζητηθεί στις «επίπεδες» περιοχές της Bump-Surface S. Εκ κατασκευής, το μήκος τόξου της επιφανειακής καμπύλης SR t είναι ίσο με το μήκος τόξου της καμπύλης R t όταν αυτή δεν τέμνει εμπόδια, στο δύο διαστάσεων περιβάλλον. Για αυτό, είναι λογικό να αναζητήσουμε μια «επίπεδη» διαδρομή πάνω στη S η οποία ικανοποιεί το κριτήριο Ι. Το μήκος τόξου της S t R δίνεται από την σχέση: 1 du 1 2 du du du L E( ) 2 F 1 2 G( 2 ) dt (2) dt dt dt dt 0 όπου E, F και G είναι τα θεμελιώδη ποσά 1 ης τάξης της S στο t. Επιπλέον, σύμφωνα το κριτήριο ΙΙ το όχημα θα πρέπει να ακολουθήσει μια διαδρομή η οποία ενώνει έναν αριθμό ΣΕ w με την αποθήκη σε ένα προκαθορισμένο χρονικό παράθυρο 0, f. Το μήκος της διαδρομής είναι μικρότερο ή ίσο με: L u f (3) 4

5 Η ελαχιστοποίηση της συνάρτησης του μήκους ως προς τα ενδιάμεσα σημεία ελέγχου g 0,1 2 l, l 1,..., b με τον περιορισμό L u f, οδηγεί σε μια διαδρομή η οποία ικανοποιεί τα κριτήρια και του περιορισμούς του προβλήματος. 4 Ο ΤΡΟΠΟΠΟΙΗΜΕΝΟΣ ΓΕΝΕΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ Για την επίλυση του παραπάνω συνδυαστικού προβλήματος αναπτύχθηκε ένας κατάλληλος Γενετικός Αλγόριθμος (ΓΑ) με τα εξής βασικά χαρακτηριστικά: Χρωμόσωμα: Το προτεινόμενο χρωμόσωμα έχει μεταβλητό μήκος και αποτελείται από δύο μέρη: το πρώτο μέρος αποτελείται μόνο από ακέραιους αριθμούς ενώ το δεύτερο μέρος αποτελείται μόνο από πραγματικούς αριθμούς. Κάθε χρωμόσωμα αποτελείται από w b2 γονίδια, όπου b 2 είναι ο συνολικός αριθμός των ενδιάμεσων σημείων ελέγχου στην προτεινόμενη διαδρομή (ο αριθμός 2 δηλώνει τη διάσταση του περιβάλλοντος). Το ακέραιο μέρος του χρωμοσώματος αναπαριστά την σειρά με την οποία το όχημα επισκέπτεται τους ΣΕ. Το πραγματικό μέρος του χρωμοσώματος αναπαριστά τα b 2 ενδιάμεσα σημεία ελέγχου l 0,1 2, 1,..., τα οποία ορίζουν την διαδρομή R t g l b (συμπεριλαμβανομένου και των ΣΕ ) του οχήματος. Πρέπει να σημειωθεί ότι, κάθε χρωμόσωμα αντιστοιχεί σε μια μοναδική διαδρομή για το όχημα. Γενετικοί τελεστές: Αναπαραγωγή: Χρησιμοποιήθηκε η κλασσική μέθοδος της ρουλέτας (αναλογική επιλογή). Σύμφωνα με αυτή τη μέθοδο, τα χρωμοσώματα επιλέγονται να αναπαράγουν τη δομή τους στην επόμενη γενιά με ένα ποσοστό ανάλογο της τιμής της προσαρμοστικότητας τους. Διασταύρωση: Για το ακέραιο μέρος του χρωμοσώματος χρησιμοποιήθηκε η διασταύρωση ΟΧ (order crossover) και για το πραγματικό μέρος διασταύρωση ενός σημείου. Μετάλλαξη: Για το ακέραιο μέρος του χρωμοσώματος εφαρμόστηκε το σχήμα αντιστροφής (inversion) και για το πραγματικό μέρος επιλέχθηκε το σχήμα ορίων (boundary). Τονίζεται ότι η επιλογή των συγκεκριμένων σχημάτων και τελεστών έγινε μετά από διεξοδική πειραματική εργασία και έλεγχο σε διάφορα ρομποτικά περιβάλλοντα. Η συνάρτηση προσαρμοστικότητας προκύπτει από την αντικειμενική συνάρτηση και εκφράζεται ως εξής: 1, L u f L (4) 0, ά 5 ΠΕΙΡΑΜΑΤΑ Η προτεινόμενη μεθοδολογία δοκιμάστηκε με επιτυχία σε διαφορετικά δισδιάστατα περιβάλλοντα. Λόγο έλλειψης χώρου παρουσιάζεται ένα ενδεικτικό παράδειγμα εφαρμογής της μεθόδου σε περιβάλλον που περιέχει 7 ΣΕ. Οι προσομοιώσεις έγιναν στο Matlab και υλοποιήθηκαν σε Pentium IV 3.2 GHz PC. Σε όλες τις εφαρμογές το μέγεθος του πλέγματος ορίστηκε ίσο με 100x 100, το r είναι ίσο με 2 και η ταχύτητα του οχήματος ήταν σταθερού μέτρου και ίση με u rob 1. Οι τελεστές του ΓΑ επιλέχθηκαν πειραματικά και ορίζονται ως εξής: μέγεθος πληθυσμού=200, μέγιστος αριθμός γενιών= 300, ρυθμός διασταύρωσης=0.75, ρυθμός σχήματος αντιστροφής=0.095, οριακή μετάλλαξη= Επίσης, σε όλες τις 5

6 περιπτώσεις η γενικευμένη Bump-Surface αναπαραστάθηκε με μια (2, 2) βαθμού B- Spline επιφάνεια. Ας υποθέσουμε το δυσδιάστατο εργοστασιακό περιβάλλον του Σχήματος 1. Στο χώρο εργασίας υπάρχουν εφτά ΣΕ. Σε αυτήν την περίπτωση το χρονικό παράθυρο ορίζεται ίσο με 0, 2.7 χρονικές μονάδες. Η προτεινόμενη σειρά των ΣΕ είναι: αποθήκη- ΣΕ 3 - ΣΕ 6 - ΣΕ 4 - ΣΕ 2 - Αποθήκη (Σχήμα 3). Το μήκος της διαδρομής είναι 2.64 μονάδες μήκους. αποθήκη σταθμός_3 σταθμός_6 σταθμός_7 σταθμός_1 σταθμός_2 σταθμός_4 σταθμός_5 Σχήμα 3: Η προτεινόμενη λύση. 6 ΕΠΙΛΟΓΟΣ Σε αυτή την εργασία παρουσιάστηκε μια νέα μεθοδολογία για την επίλυση του συνδυαστικού προβλήματος σχεδιασμού κίνησης και χρόνο προγραμματισμού εργασιών για ένα αυτόνομο όχημα σε δισδιάστατα περιβάλλοντα. Η προτεινόμενη μεθοδολογία επιλύει το πρόβλημα σε 2 διαδοχικά στάδια: Αρχικά, ο χώρος εργασίας του οχήματος αναπαριστάται με μια Bump-Surface. Στη συνέχεια, ο προσδιορισμός της βέλτιστης λύσης γίνεται πάνω στην Bump-Surface με τη χρήση ενός κατάλληλου Γενετικού Αλγορίθμου. ΒΙΒΛΙΟΓΡΑΦΙΑ Azariadis P., Aspragathos N.: Obstacle Representation by Bump-Surface for Optimal Motion-Planning, Journal of Robotics and Autonomous Systems, Vol. 51, No. 2-3, 2005, pp Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Publishing Company, Halme A., Koskinen K., Intelligent Autonomous Vehicles, Elsevier Science & Technology, Les Piegl, Wayne Tiller, The NURBS Book, Springer-Verlag Berlin, Vis Iris F.A, Survey of research in the design and control of automated guided vehicle systems, European Journal of Operational Research, 170, ,

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Προβλήματα Βελτιστοποίησης Περιγραφή προβλήματος με αρχική κατάσταση, τελική

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη μιας προσαρμοστικής πολιτικής αντικατάστασης αρχείων, με χρήση

Διαβάστε περισσότερα

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΕΥΡΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΕΥΡΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ & ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ

Διαβάστε περισσότερα

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών

Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας. Εργαστήριο Φυσικών και Χημικών Διεργασιών

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας. Εργαστήριο Φυσικών και Χημικών Διεργασιών Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Εργαστήριο Φυσικών και Χημικών Διεργασιών Αντίστροφος Σχεδιασμός και Βελτιστοποίηση Δικτύων Σωληνώσεων

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί

Διαβάστε περισσότερα

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Θεµελίωση Γενετικών Αλγορίθµων

Θεµελίωση Γενετικών Αλγορίθµων Θεµελίωση Γενετικών Αλγορίθµων Σηµερινό Μάθηµα Προβληµατισµοί Σχήµατα Τάξη Οριστικό Μήκος ΘεώρηµατωνΣχηµάτων Υπόθεση δοµικών Στοιχείων Πλάνη 1 Προβληµατισµοί Τι προβλέψεις µπορούν να γίνουν για τη χρονική

Διαβάστε περισσότερα

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού...

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού... ΚΕΦΑΛΑΙΟ 5. ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Περιεχόμενα 5.1. Χωροταξικός Σχεδιασμός... 2 5.2. Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού... 4 5.3. Δραστηριότητες Χωροταξικού Σχεδιασμού... 5 5.4. Τύποι Χωροταξίας...

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι

Διαβάστε περισσότερα

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA ΕΦΑΡΜΟΓΗ στην ΕΠΕΞΕΡΓΑΣIΑ ΣΗΜΑΤΟΣ και στην ΑΣΑΦΗ ΛΟΓIΚΗ Σ. Φωτόπουλος ΠΑΝΕΠ. ΠΑΤΡΩΝ Τµ. ΦΥΣΙΚΗΣ ΠΜΣ ΗΕΠ ΓΑ - Εισαγωγικά Γενετικοί αλγόριθµοι (Genetic algorithms)

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. 4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων... Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54

Διαβάστε περισσότερα

Βασικές έννοιες προγραμματισμού

Βασικές έννοιες προγραμματισμού Κεφάλαιο 7 Βασικές έννοιες προγραμματισμού 7.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να συντάσσουν και να εκτελούν σε δομημένη γλώσσα προγραμματισμού

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ÊÁËÁÌÁÔÁ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ÊÁËÁÌÁÔÁ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα,

Διαβάστε περισσότερα

Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους

Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους Πολυτεχνείο Κρήτης Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους Διατριβή που υπεβλήθη για την μερική ικανοποίηση των απαιτήσεων για

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με

Διαβάστε περισσότερα

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον

Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον Δανάη Κούτρα Eργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων Εθνικό Μετσόβιο Πολυτεχνείο Θέματα Σκοπός της διπλωματικής

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα : Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Δρομολόγησης Στόλου Οχημάτων- Μέρος ΙΙ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι. Εισαγωγή

Γενετικοί Αλγόριθμοι. Εισαγωγή Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ

ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ Μετά το άλλοτε ταχύ και άλλοτε χρονοβόρο πέρασμα από τα τηλεπικοινωνιακά συστήματα των τριών πρώτων γενεών, η αλματώδης εξέλιξη στις τηλεπικοινωνίες αντικατοπτρίζεται σήμερα

Διαβάστε περισσότερα

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από

Διαβάστε περισσότερα

Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282

Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Η. Ξυδιάς: Βιογραφικό Σημείωμα (Μάιος 12) i Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων 84100 Ερμούπολη,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε πρόβλημα; Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2. Τι ονομάζουμε επίλυση προβλήματος;

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός

Διαβάστε περισσότερα

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Kιτ μετατροπής CNC για φρέζες. Κιτ μετατροπής CNC για τόρνους

Kιτ μετατροπής CNC για φρέζες. Κιτ μετατροπής CNC για τόρνους Kιτ μετατροπής CNC για φρέζες Κιτ μετατροπής CNC για τόρνους Ελεγκτες CNC Καμπίνες CNC Τόρνοι CNC Φρέζες CNC CNC SOFTWARE MEGA NC 2010 MegaNC 2D/3D, το πανίσχυρο πακέτο CAD / CAM CNC βασικό λογισμικό "NC

Διαβάστε περισσότερα

Γενετικές Μέθοδοι Βελτιστοποίησης Ερωτηµάτων σε Βάσεις εδοµένων

Γενετικές Μέθοδοι Βελτιστοποίησης Ερωτηµάτων σε Βάσεις εδοµένων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γενετικές Μέθοδοι Βελτιστοποίησης Ερωτηµάτων σε Βάσεις εδοµένων Κ. Πατρούµπας 27 Ιανουαρίου 2005 27/01/2005 Τεχνητά Νευρωνικά

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Μοντέλα Περιγραφής Τρισδιάστατων αντικειμένων

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Μοντέλα Περιγραφής Τρισδιάστατων αντικειμένων Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Μοντέλα Περιγραφής Τρισδιάστατων αντικειμένων 3Δ Αναπαράσταση Μοντέλα Περιγραφής Τρισδιάστατων αντικειμένων 1. Μοντέλα

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations Research ή Operational Research) είναι ένας επιστημονικός

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2010 73

ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2010 73 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2010 73 ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΠΤΥΣΣΟΝΤΑΣ ΠΡΟΗΓΜΕΝΑ ΕΝΙΑΙΑ ΜΟΝΤΕΛΑ ΕΚΤΙΜΗΣΗΣ ΚΟΣΤΟΥΣ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ 7 ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΘΕΜΑΤΑ Α Α. ΚΙΝΗΣΗ - ΜΕΤΑΤΟΠΙΣΗ ΧΡΟΝΟΣ ΤΑΧΥΤΗΤΑ Στις ακόλουθες προτάσεις να διαλέξετε την σωστή απάντηση: 1. Ένα σημειακό αντικείμενο κινείται σε ευθύγραμμο δρόμο ο οποίος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος

«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος Τα μικρά Υδροηλεκτρικά Εργα γνωρίζουν τα τελευταία χρόνια σημαντική ανάπτυξη, τόσο στην Ευρώπη όσο και στον κόσμο ολόκληρο, είτε με την κατασκευή νέων ή με την ανανέωση του εξοπλισμού των υπαρχόντων σταθμών

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

1.1 Θέματα Προς Απάντηση Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ):

1.1 Θέματα Προς Απάντηση Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ): 1.1 Θέματα Προς Απάντηση 1.1.1 Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ): 1. Πρόβλημα είναι μια μαθηματική κατάσταση που πρέπει να αντιμετωπίσουμε. 2. Αν υποβάλλουμε

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Α4. Όσο επανάλαβε Τέλος_επανάληψης Εμφάνισε Για από μέχρι με_βήμα. Όσο επανάλαβε (Μονάδες 5) Α5. Α[10, 5] Π, Για από μέχρι (1) Για από μέχρι (2) Αν

Α4. Όσο επανάλαβε Τέλος_επανάληψης Εμφάνισε Για από μέχρι με_βήμα. Όσο επανάλαβε (Μονάδες 5) Α5. Α[10, 5] Π, Για από μέχρι (1) Για από μέχρι (2) Αν ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 27/03/2016 - ΑΕΠΠ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ 1. Έστω ότι ο καθηγητής σας δίνει δύο αριθμούς και σας ζητάει να του πείτε πόσο είναι το άθροισμά τους. Διατυπώστε

Διαβάστε περισσότερα