ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής"

Transcript

1 Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια ίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Repeated Games Επαναλαμβανόμενα παιχνίδια 4

5 Γενικά (1/2) Επαναλαμβανόμενα παιχνίδια: Παιχνίδια που παίζονται αυτούσια για πολλούς γύρους. Πεπερασμένων γύρων (Finitely repeated games) Απείρων γύρων (Infinitely repeated games) Η συμπεριφορά των παικτών όταν ένα παιχνίδι επαναλαμβάνεται πολλές φορές είναι εντελώς διαφορετική από όταν το παιχνίδι παίζεται μόνο μια φορά. Εάν οι παίκτες πιστέψουν ότι η «καλή» συμπεριφορά τους θα ανταμειφθεί στο μέλλον, ή ισοδύναμα ότι η «κακή» συμπεριφορά τους θα τιμωρηθεί στο μέλλον, ωθούνται να είναι πιο «ομαδικοί» στο παιχνίδι τους. Οι απειλές για τιμωρία και η αναμονή για ανταμοιβή πρέπει να είναι αξιόπιστες (credible). Η έννοια της αμοιβαιότητας (reciprocity) είναι αυτή που διακρίνει τα επαναλαμβανόμενα παιχνίδια. 5

6 Γενικά (2/2) Κάθε επανάληψη του παιχνιδιού ονομάζεται γύρος (stage). Κάθε γύρος είναι συνήθως ένα παιχνίδι σε στρατηγική μορφή. Στην αρχή του παιχνιδιού οι παίκτες έχουν τη δυνατότητα να «συζητήσουν» και να συναποφασίσουν τις στρατηγικές τους. Μετά από κάθε γύρο οι παίκτες ενημερώνονται για τις «κινήσεις» των αντιπάλων. 6

7 Παραδείγματα: ΔΦ σε 2 γύρους Once repeated prisoners dilemma Α Ο ΔΟ Ο ΔΟ Ο ΔΟ Α Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο ΔΟ Ο Ο ΔΟ Ο ΔΟ ΔΟ 10,10 5,20 20,5 6,6 5,20 0,30 15,15 1,16 20,5 15,15 30,0 16,1 6,6 1,16 16,1 2,2 7

8 Παραδείγματα: Τροποποιημένο ΔΦ Έστω ότι κάθε φυλακισμένος έχει μια ακόμη επιλογή, να ομολογήσει μερικώς (ΜΟ). Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 Το παιχνίδι γύρου έχει δύο σημεία ισορροπίας Nash, το (Ο,Ο) και το (ΜΟ, ΜΟ). Η ισορροπία στο σημείο (ΜΟ,ΜΟ) βασίζεται στο γεγονός ότι μολονότι ένας παίκτης, π.χ. o Α, μπορεί να ομολογήσει και να μετακινήσει το παιχνίδι στο σημείο (Ο, ΜΟ) με αποτέλεσμα (3,7), δεν θα το κάνει γιατί δεν έχει να κερδίσει κάτι. Θεωρούμε δηλαδή ότι μεταξύ ισοδύναμων επιλογών για έναν παίκτη, αυτός θα επιλέξει εκείνη που είναι καλύτερη για τον αντίπαλο. 8

9 Παραδείγματα: Άπειρα επαναλαμβανόμενο ΔΦ Μια τελευταία παραλλαγή του παιχνιδιού ΔΦ είναι η άπειρη επανάληψη της απλής εκδοχής του. Σε αυτή την περίπτωση, όπως και σε όλα τα άπειρα παιχνίδια, θεωρείται ότι το όφελος για τον παίκτη i από την επανάληψη j, u ij, μειώνεται κατά τον παράγοντα δ j, όπου 0<δ<1. U i = j δ u j=0 Ο παράγοντας δ επιδέχεται διάφορες ερμηνείες, ανάλογα με το παιχνίδι, όπως πιθανότητα επανάληψης του παιχνιδιού, αποπληθωρισμό μελλοντικών κερδών κλπ. ij 9

10 Παράδειγμα: Δημοπρασίες ομολόγων Ανά τακτά χρονικά διαστήματα μια κυβέρνηση ανακοινώνει τη δημοπράτηση κρατικών ομολόγων. Πελάτες της κυβέρνησης είναι συνήθως οι τράπεζες. Κάθε ενδιαφερόμενο ίδρυμα υποβάλλει μια προσφορά αγοράς για συγκεκριμένη ποσότητα και τιμή. Το παιχνίδι είναι σαφώς επαναλαμβανόμενο. Μπορεί να θεωρηθεί πεπερασμένων γύρων, υπό την έννοια ότι τα στελέχη των τραπεζών που λαμβάνουν τις αποφάσεις ενδιαφέρονται για τον ισολογισμό του έτους, άρα το παιχνίδι ολοκληρώνεται με το τέλος του έτους. 10

11 Παράδειγμα: OPEC Στην αγορά πετρελαίου παίζεται ένα παιχνίδι μεταξύ των πετρελαιοπαραγωγών χωρών. Κάθε χώρα, ή ομάδα χωρών, αποφασίζει την ποσότητα που θα παράγει (π.χ. ανά μήνα) Το παιχνίδι είναι επαναλαμβανόμενο. Θα μελετηθεί ως απείρως επαναλαμβανόμενο, υπό την έννοια ότι δεν υπάρχει σαφής χρονικός ορίζοντας (π.χ. ανά έτος) που να προσδιορίζει τις αποφάσεις των διαφόρων παικτών. 11

12 Παρατήρηση Η διάκριση των επαναλαμβανόμενων παιχνιδιών σε πεπερασμένων και απείρων πολλές φορές είναι υποκειμενική. Ένα παιχνίδι πεπερασμένου, αλλά αρκετά μεγάλου, αριθμού γύρων μπορεί να μελετηθεί/εξηγηθεί καλύτερα ως άπειρο παιχνίδι. Από την άλλη, αν θεωρήσουμε ότι η ζωή του καθενός είναι πεπερασμένη, θα έπρεπε όλα τα παιχνίδια να μελετούνται ως πεπερασμένα. 12

13 Finitely repeated games Πεπερασμένα επαναλαμβανόμενα παιχνίδια 13

14 ΔΦ σε 2 γύρους Έστω το απλό ΔΦ με επανάληψη σε δύο γύρους. Το συνολικό όφελος (ποινή στην προκειμένη περίπτωση) για κάθε παίκτη είναι το άθροισμα του οφέλους σε κάθε γύρο. Στον δεύτερο γύρο, ο οποίος είναι και ο τελευταίος, κάθε παίκτης επιλέγει την καλύτερη για αυτόν κίνηση, δηλαδή να ομολογήσει, η οποία είναι το γνωστό σημείο ισορροπίας Nash του παιχνιδιού. Η απόφαση αυτή είναι ανεξάρτητη από το τι επέλεξαν οι παίκτες στον πρώτο γύρο! Με δεδομένο λοιπόν ότι η απόφαση του πρώτου γύρου δεν πρόκειται να επηρεάσει την απόφαση των παικτών στον δεύτερο γύρο, οι παίκτες επιλέγουν να ομολογήσουν και στον πρώτο γύρο! 14

15 Γενίκευση Το αποτέλεσμα για το ΔΦ σε 2 γύρους μπορεί να γενικευτεί και για το ΔΦ σε 3 γύρους: Η επιλογή των παικτών στους 2 τελευταίους γύρους είναι να ομολογήσουν, ανεξάρτητα από το τι προηγήθηκε στον πρώτο γύρο. Άρα στον πρώτο γύρο δεν έχουν καλύτερη επιλογή από το να ομολογήσουν επίσης. Το αποτέλεσμα γενικεύεται (θεωρητικά) και για οποιονδήποτε αριθμό επαναλήψεων. Πρόταση: Οποιοδήποτε επαναλαμβανόμενο παιχνίδι, για το οποίο το παιχνίδι γύρου έχει ένα μόνο σημείο ισορροπίας Nash, έχει επίσης ένα μόνο σημείο τέλειας ισορροπίας Nash υποπαιγνίων. 15

16 Στρατηγικές στα επαναλαμβανόμενα παιχνίδια Η έννοια της στρατηγικής στα επαναλαμβανόμενα παιχνίδια πρέπει να καλύπτει όλα τα πιθανά ενδεχόμενα του παιχνιδιού. Για παράδειγμα, στο ΔΦ σε 2 γύρους, κάθε παίκτης έχει να πάρει μια απόφαση για τον πρώτο γύρο και 1 απόφαση στον δεύτερο γύρο για κάθε μία από τις δύο πιθανές αποφάσεις του άλλου παίκτη στον πρώτο γύρο. Με δεδομένο ότι ο κάθε παίκτης έχει 2 βασικές στρατηγικές (Ο και ΔΟ) για το παιχνίδι γύρου, το σύνολο των στρατηγικών του για το παιχνίδι των 2 γύρων είναι 2 3 =8. Σε παιχνίδι ΔΦ τριών γύρων, το σύνολο των στρατηγικών κάθε παίκτη είναι 2 5 =32. 16

17 Τροποποιημένο ΔΦ (1/7) Υπάρχει μεγάλη διαφορά μεταξύ των επαναλαμβανόμενων παιχνιδιών όπου το παιχνίδι γύρου έχει ένα μόνο σημείο ισορροπίας και των παιχνιδιών όπου το παιχνίδι γύρου έχει περισσότερα σημεία ισορροπίας. Έστω ότι το ΤΔΦ παίζεται δύο φορές: Στην δεύτερη επανάληψη οι δύο παίκτες μπορεί να επιλέξουν (κατόπιν συνεννόησης) ένα από τα δύο σημεία ισορροπίας. Εφόσον επιλέξουν ένα από τα δύο σημεία, δεν έχουν λόγο να «εξαπατήσουν» ο ένας τον άλλο, γιατί δεν πρόκειται να κερδίσουν περισσότερο. Κάθε παίκτης μπορεί να επιλέξει την απόφασή του στον δεύτερο γύρο βάσει των κινήσεων που προηγήθηκαν στον πρώτο γύρο. Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 17

18 Τροποποιημένο ΔΦ (2/7) Έστω ότι οι δύο παίκτες συμφωνούν, πριν ξεκινήσει το παιχνίδι, στα εξής: Στον πρώτο γύρο θα επιλέξουν και οι δύο ΔΟ. Στον δεύτερο γύρο, εφόσον τηρήσουν την «υπόσχεσή» τους, θα επιλέξουν και οι δύο ΜΟ, ειδάλλως θα επιλέξουν και οι δύο Ο. Εάν και οι δύο παίκτες τηρήσουν τη συμφωνία τους, τότε η συνολική ποινή τους μετά την ολοκλήρωση των δύο γύρων θα είναι 1+3=4 για τον καθένα. Εάν κάποιος παίκτης, π.χ. ο Α, στον πρώτο γύρο επιλέξει Ο, τότε το τελικό αποτέλεσμα για τους δύο παίκτες θα είναι: Α: 0+5=5 : 15+5=20 Ο παραπάνω συνδυασμός στρατηγικών για τους δύο παίκτες αποτελεί σημείο τέλειας ισορροπίας Nash για υποπαίγνια. Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 18

19 Τροποποιημένο ΔΦ (3/7) Η στρατηγική: ΔΟ στον πρώτο γύρο και ΜΟ στον δεύτερο, ή Ο εφόσον δεν τηρηθεί η συμφωνία για τον πρώτο γύρο αποτελεί σημείο ισορροπίας μόνο όταν ισχύει: u Α (ΔΟ,ΔΟ)+u Α (ΜΟ,ΜΟ)<u Α (Ο,ΔΟ)+u Α (Ο,Ο) u (ΔΟ,ΔΟ)+u (ΜΟ,ΜΟ)<u (ΔΟ,Ο)+u (Ο,Ο) Δηλαδή, όταν κανέναν παίκτη δεν τον συμφέρει να αθετήσει μονομερώς τη συμφωνία! Παρατηρούμε επίσης ότι μια τέλεια ισορροπία υποπαιγνίου μπορεί να περιλαμβάνει για κάποιους γύρους συνδυασμούς στρατηγικών που δεν είναι σημεία ισορροπίας του απλού παιχνιδιού. Ένας παίκτης λοιπόν είναι διατεθειμένος να θυσιάσει βραχυπρόθεσμα οφέλη (εξαπατώντας τον άλλο παίκτη) προκειμένου να μην χάσει τα μακροπρόθεσμα. Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 19

20 Τροποποιημένο ΔΦ (4/7) Ο συνδυασμός στρατηγικών: Και οι δύο παίκτες επιλέγουν ΔΟ και στους δύο γύρους. Αν κάποιος παίκτης αθετήσει τη συμφωνία στον πρώτο γύρο, τότε οι δύο παίκτες επιλέγουν Ο στον δεύτερο γύρο. δεν είναι σημείο ισορροπίας, γιατί κάθε παίκτης μπορεί να αθετήσει τη συμφωνία στον τελευταίο γύρο, χωρίς να ζημιωθεί. ΠΡΟΣΟΧΗ: Το γεγονός ότι οι δύο παίκτες συνεργάζονται για να βρουν ένα συνδυασμό στρατηγικών, δεν σημαίνει ότι το παιχνίδι είναι παιχνίδι συνεργασίας. Πράγματι: Κάθε παίκτης ενδιαφέρεται για το προσωπικό του κέρδος μόνο. Κάθε παίκτης δεν αθετεί τη συμφωνία (εφόσον προκύψει μια τέτοια), επειδή δεν τον συμφέρει να το κάνει μονομερώς (και όχι επειδή «σέβεται» το λόγο του...). Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 20

21 Τροποποιημένο ΔΦ (5/7) Υπάρχουν και άλλα σημεία ισορροπίας για το παιχνίδι των δύο γύρων: Οι δυο παίκτες επιλέγουν (Ο,Ο) και στους δύο γύρους. Η συνολική ποινή των δύο παικτών σε αυτή την περίπτωση είναι 5+5=10. Οποιοσδήποτε παίκτης αθετήσει τη συμφωνία ζημιώνεται, προς όφελος του άλλου. Γενικά ισχύει το εξής: Ένα σημείο τέλειας ισορροπίας Nash υποπαιγνίων στα πεπερασμένα επαναλαμβανόμενα παιχνίδια είναι η επιλογή σε κάθε γύρο ενός σημείου ισορροπίας Nash (όχι απαραίτητα πάντα του ίδιου) του παιχνιδιού γύρου. Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 21

22 Τροποποιημένο ΔΦ (6/7) Έστω ότι το παιχνίδι επαναλαμβάνεται για Τ γύρους. Μια τέλεια ισορροπία υποπαιγνίων είναι η εξής: Οι παίκτες επιλέγουν σε όλους τους γύρους (ΔΟ, ΔΟ), εκτός από τον τελευταίο, όπου επιλέγουν (ΜΟ, ΜΟ). Εάν σε κάποιο γύρο η συμφωνία σπάσει, τότε οι παίκτες συνεχίζουν με (Ο,Ο) μέχρι τέλους. Η αναμενόμενη ποινή για κάθε παίκτη είναι: (Τ-1) 1+3=Τ+2 Εάν στον γύρο t<t κάποιος παίκτης, π.χ. ο Α, σπάσει τη συμφωνία επιλέγοντας να ομολογήσει, τότε η συνολική ποινή και για τους δύο παίκτες θα είναι: Α: (t-1) 1+0+(T-t) 5=5 T-4 t-1=t+4 (T-t)-1 > T+2 : (t-1) 1+15+(T-t) 5=5 T-4 t+14=t+4 (T-t)+14 > T+2 Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 22

23 Τροποποιημένο ΔΦ (7/7) Υπάρχουν και παράξενες ισορροπίες υποπαιγνίων. Έστω η παρακάτω συμφωνία για παιχνίδι Τ γύρων: Οι παίκτες συμφωνούν στον πρώτο γύρο να επιλέξουν (Ο, ΔΟ) και σε όλους τους επόμενους γύρους (ΜΟ,ΜΟ). Εάν σε κάποιο γύρο η συμφωνία σπάσει, οι παίκτες συνεχίζουν με (Ο,Ο) μέχρι τέλους. Η συνολική ποινή των δύο παικτών από την παραπάνω συμφωνία είναι: Α: 0+3 (T-1)=3 (T-1), : 15+(Τ-1) 3 Έστω ότι ο σπάει τη συμφωνία εξαρχής, επιλέγοντας να ομολογήσει στον πρώτο γύρο. Οι ποινές τότε γίνονται: Α: Τ 5, : Τ 5 Σε περίπτωση που Τ 5> 15+(Τ-1) 3 ή ισοδύναμα Τ>6, δεν συμφέρει τον να σπάσει μονομερώς τη συμφωνία. Α Ο ΜΟ ΔΟ Ο 5, 5 3, 7 0, 15 ΜΟ 7, 3 3, 3 2, 8 ΔΟ 15, 0 8, 2 1, 1 23

24 Παρατηρήσεις Παρατηρούμε ότι ένα επαναλαμβανόμενο παιχνίδι μπορεί να έχει πολλούς συνδυασμούς στρατηγικών που αποτελούν ισορροπία για ολόκληρο το παιχνίδι. Πολλοί μάλιστα συνδυασμοί φαίνονται παράλογοι. Εάν υπάρχει κάποιος συνδυασμός στρατηγικών που συμφέρει και τους δύο παίκτες, τότε μπορούν να τον επιλέξουν. Ειδάλλως οι παίκτες πρέπει να βρουν τρόπο να συμφωνήσουν σε έναν συνδυασμό στρατηγικών που ενδεχομένως να είναι περισσότερο ωφέλιμος για τον ένα από τους δύο. Ανάλογο είναι το παιχνίδι της μάχης των φύλων. Στην τελική απόφαση παίζει ρόλο η ισχύς του κάθε παίκτη. 24

25 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (1/8) Έστω ότι η κεντρική τράπεζα εκδίδει κάθε φορά τον ίδιο αριθμό ομολόγων, έστω 100. Έστω ότι υπάρχουν δύο μόνο παίκτες, Α και. Κάθε παίκτης μπορεί να ζητήσει 50 ή 75 ομόλογα. Κάθε παίκτης μπορεί να προσφέρει μια χαμηλή (low) ή μια υψηλή τιμή για τα ομόλογα που ζητά. Σε περίπτωση που ο ένας παίκτης προσφέρει υψηλή τιμή ενώ ο άλλος χαμηλή, πρώτα ικανοποιείται πλήρως η ζήτηση του παίκτη που ζήτησε σε υψηλή τιμή. Σε περίπτωση που και οι δύο παίκτες προσφέρουν την ίδια τιμή, τα 100 ομόλογα μοιράζονται στους δύο παίκτες ανάλογα με την ποσότητα που ζήτησε ο καθένας τους. Για παράδειγμα, εάν ο ένας παίκτης ζήτησε 75 ομόλογα και ο άλλος 50, οι δύο παίκτες θα πάρουν από 60 και 40 αντίστοιχα. 25

26 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (2/8) Θεωρούμε ότι οι παίκτες μπορούν και μεταπωλούν όλα τα ομόλογα που αγόρασαν από την κεντρική τράπεζα. Το κέρδος ανά ομόλογο εξαρτάται από την τιμή αγοράς και είναι u low και u high. Προφανώς ισχύει u low >u high. Η κεντρική τράπεζα έχει δύο τρόπους να καθορίσει την τιμή πώλησης: Μοναδική τιμή: Καθορίζεται ως κοινή τιμή πώλησης για όλους τους παίκτες η τιμή εκείνη στην οποία καλύπτεται ακριβώς όλη η ζήτηση. Πολλαπλές τιμές: Κάθε παίκτης αγοράζει στην τιμή στην οποία έκανε προσφορά, μέχρι τον παίκτη στον οποίο εξαντλούνται τα προς πώληση ομόλογα. Θα προσπαθήσουμε να απαντήσουμε στο ερώτημα: Ποια πολιτική από τις δυο παραπάνω συμφέρει περισσότερο την κεντρική τράπεζα. 26

27 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (3/8) Έστω ο πίνακας μιας δημοπρασίας με μοναδική τιμή πώλησης: Α 50, high 75, high 50, low 75, low 50, high 50u h,50u h 40u h,60u h 50u l,50u l 50u l,50u l 75, high 60u h,40u h 50u h,50u h 75u l,25u l 75u l,25u l 50, low 50u l,50u l 25u l,75u l 50u l,50u l 40u l,60u l 75, low 50u l,50u l 25u l,75u l 60u l,40u l 50u l,50u l Από τον παραπάνω πίνακα φαίνεται ότι οι πολιτικές ζήτησης 50 ομολόγων κυριαρχούνται πλήρως από αυτές των 75 ομολόγων. Άρα οι εταιρείες επιλέγουν πάντα να ζητήσουν 75 ομόλογα. 27

28 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (4/8) Έστω ο πίνακας μιας δημοπρασίας με πολλαπλές τιμές πώλησης: Α 50, high 75, high 50, low 75, low 50, high 50u h,50u h 40u h,60u h 50u h,50u l 50u h,50u l 75, high 60u h,40u h 50u h,50u h 75u h,25u l 75u h,25u l 50, low 50u l,50u h 25u l,75u h 50u l,50u l 40u l,60u l 75, low 50u l,50u h 25u l,75u h 60u l,40u l 50u l,50u l Και σε αυτή την περίπτωση φαίνεται ότι οι πολιτικές ζήτησης 50 ομολόγων κυριαρχούνται πλήρως από αυτές των 75 ομολόγων. Άρα σε όλες τις περιπτώσεις οι εταιρείες επιλέγουν να ζητήσουν 75 ομόλογα. 28

29 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (5/8) Μπορούμε λοιπόν να απλοποιήσουμε τους πίνακες ως εξής: Μοναδική τιμή Α 75, high 75, low 75, high 50u h,50u h 75u l,25u l 75, low 25u l,75u l 50u l,50u l Πολλαπλές τιμές Α 75, high 75, low 75, high 50u h,50u h 75u h,25u l 75, low 25u l,75u h 50u l,50u l 29

30 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (6/8) Έστω 50u h >25u l. Τότε στην περίπτωση της μοναδικής τιμής υπάρχει κυρίαρχη στρατηγική, η (high,high). Α 75, high 75, low 75, high 50u h,50u h 75u l,25u l 75, low 25u l,75u l 50u l,50u l Στην περίπτωση πολλαπλής τιμής όμως, υπάρχει μια δεύτερη ισορροπία, (low,low), εάν ισχύει 50u l >75u h. Α 75, high 75, low 75, high 50u h,50u h 75u h,25u l 75, low 25u l,75u h 50u l,50u l 100u h >50u l >75u h 30

31 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (7/8) Έστω 50u h <25u l. Τότε στην περίπτωση της μοναδικής τιμής υπάρχουν δύο σημεία καθαρής ισορροπίας, τα οποία οι δύο παίκτες μπορούν να επιλέγουν εναλλάξ. Α 75, high 75, low 75, high 50u h,50u h 75u l,25u l 75, low 25u l,75u l 50u l,50u l Στην περίπτωση πολλαπλής τιμής όμως, υπάρχει κυρίαρχη στρατηγική: Α 75, high 75, low 75, high 50u h,50u h 75u h,25u l 75, low 25u l,75u h 50u l,50u l 31

32 Μελέτη περίπτωσης: Δημοπρασία ομολόγων (8/8) Συμφέρει λοιπόν την κεντρική τράπεζα να επιλέγει τη στρατηγική της μοναδικής τιμής: Εάν ισχύει 50u h >25u l, τότε η στρατηγική μοναδικής τιμής έχει κυρίαρχη στρατηγική την (high, high), σε αντίθεση με την στρατηγική πολλαπλών τιμών, η οποία, υπό προϋποθέσεις, έχει δύο σημεία ισορροπίας Nash, με αποτέλεσμα να δίνει τη δυνατότητα στους παίκτες να συνεννοηθούν για χαμηλή τιμή. Εάν ισχύει 50u h <25u l,τότε και οι δύο στρατηγικές της τράπεζας δίνουν χαμηλή τιμή ως αποτέλεσμα. Το «παράξενο» εκ πρώτης όψεως γεγονός έχει την εξήγηση ότι η μέθοδος των πολλαπλών τιμών αποθαρρύνει γενικά τους παίκτες να προσφέρουν υψηλά ποσά. 32

33 Τέλος Ενότητας

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Δυοπώλιο Cournot Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή Οικονομικών

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΘΕΜΑ 1 ο (2.5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Δευτέρα 3 Σεπτεμβρίου 2012 Διάρκεια εξέτασης: 3 ώρες (16:30-19:30)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Δρ. ΑΘΙΑΝΟΣ Καθηγητής ΣΕΡΡΕΣ, ΙΟΥΝΙΟΣ 2015

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ. Θεωρία Παιγνίων και Αποφάσεων Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων Ε. Μαρκάκης Επικ. Καθηγητής Παίγνια πολλών παικτών 2 Παίγνια με > 2 παίκτες Όλοι οι ορισμοί που

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 8: Τέλειος Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 10: Το πρόβλημα της ανεργίας. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 10: Το πρόβλημα της ανεργίας. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 10: Το πρόβλημα της ανεργίας Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Λογιστικές Εφαρμογές Εργαστήριο

Λογιστικές Εφαρμογές Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #7: Αναλυτικό Ημερολόγιο Διαφόρων Πράξεων Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 3: Σκοποί Έρευνας Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Εισαγωγή στη Διοίκηση Επιχειρήσεων Ενότητα 3: Λήψη Αποφάσεων Επίκ. Καθηγητής Θεμιστοκλής Λαζαρίδης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά)

Εισαγωγή στη Διοίκηση Επιχειρήσεων Ενότητα 3: Λήψη Αποφάσεων Επίκ. Καθηγητής Θεμιστοκλής Λαζαρίδης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Εισαγωγή στη Διοίκηση Επιχειρήσεων Ενότητα 3: Λήψη Αποφάσεων Επίκ. Καθηγητής Θεμιστοκλής Λαζαρίδης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ Ενότητα 1: Χρήμα και Προσφορά Χρήματος Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 4: Μεικτές Στρατηγικές Ε. Μαρκάκης Επικ. Καθηγητής Μεικτές στρατηγικές σε παίγνια 2 Σημεία ισορροπίας: Ύπαρξη Δεν έχουν όλα τα παίγνια σημείο ισορροπίας Π.χ. Το Matching

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής

Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής Ενότητα 8 : Τιμολόγηση Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Ενότητα 1: Νικόλαος Χαριτάκης Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Περιεχόμενα Ορισμοί Ισορροπία Nash

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση ΙΙ

Χρηματοοικονομική Διοίκηση ΙΙ Χρηματοοικονομική Διοίκηση ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ζιώγας Ιώαννης Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 2 η Διάλεξη Παίγνια ελλιπούς πληροφόρησης Πληροφοριακά σύνολα Κανονική μορφή παιγνίου Ισοδύναμες στρατηγικές Παίγνια συνεργασίας και μη συνεργασίας Πεπερασμένα και

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Δρ. ΑΘΙΑΝΟΣ Καθηγητής ΣΕΡΡΕΣ, ΙΟΥΝΙΟΣ 2015

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 8 η : Γραφήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 8 η : Γραφήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 8 η : Γραφήματα Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #6: Προεξόφληση στον Απλό Τόκο Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 5: Προσδιορισμός των Τιμών. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 5: Προσδιορισμός των Τιμών. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 5: Προσδιορισμός των Τιμών Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση Λογιστικών Καταστάσεων

Ανάλυση Λογιστικών Καταστάσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανάλυση Λογιστικών Καταστάσεων Ενότητα #1: Εισαγωγή Πέτρος Καλαντώνης Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση Λογιστικών Καταστάσεων

Ανάλυση Λογιστικών Καταστάσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανάλυση Λογιστικών Καταστάσεων Ενότητα #2: Ισολογισμός Πέτρος Καλαντώνης Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Διοικητική των επιχειρήσεων

Διοικητική των επιχειρήσεων 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Διοικητική των επιχειρήσεων Ενότητα 7 : Προγραμματισμός Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και

Διαβάστε περισσότερα

Διδακτική Μεθοδολογία του μαθήματος της Ιστορίας στη δευτεροβάθμια εκπαίδευση (με εφαρμογές)

Διδακτική Μεθοδολογία του μαθήματος της Ιστορίας στη δευτεροβάθμια εκπαίδευση (με εφαρμογές) Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Διδακτική Μεθοδολογία του μαθήματος της Ιστορίας στη δευτεροβάθμια εκπαίδευση (με εφαρμογές) Δημήτρης Κ. Μαυροσκούφης Τμήμα Φιλοσοφίας και Παιδαγωγικής Α.Π.Θ. Θεσσαλονίκη,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Εκτατική μορφή παίγνιων Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ

ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΑΝΘΡΩΠΟΓΕΩΓΡΑΦΙΑ- ΟΙΚΟΝΟΜΙΚΗ ΤΟΥ ΧΩΡΟΥ κ. ΦΟΥΤΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ &ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 4: Η τραγωδία των κοινών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 7: Μετοχικοί τίτλοι Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πολιτική Οικονομία Ενότητα

Πολιτική Οικονομία Ενότητα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 06: Επενδύσεις Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Ενότητα 1: Εισαγωγή: Το αντικείμενο της Μακροοικονομικής Η έννοια και του ΑΕΠ Ονομαστικό και πραγματικό ΑΕΠ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Ενότητα 1: Εισαγωγή: Το αντικείμενο της Μακροοικονομικής Η έννοια και του ΑΕΠ Ονομαστικό και πραγματικό ΑΕΠ Ενότητα 1: Εισαγωγή: Το αντικείμενο της Μακροοικονομικής Η έννοια και του ΑΕΠ Ονομαστικό και πραγματικό ΑΕΠ Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 5: H Διαδικασία της Σχεδίασης της Αλληλεπίδρασης Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΕΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΕΣΕΩΝ ΑΘΙΑΝΟΣ ΣΤΕΡΓΙΟΣ Σεπτέμβριος 2015 Άδειες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος. ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος. ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11 Ολιγοπώλιο Εισαγωγή στην Οικονομική Επιστήμη Ι Αρ. Διάλεξης: 11 Μορφές Αγορών μεταξύ Μονοπωλίου και Τέλειου Ανταγωνισμού Ο Ατελής Ανταγωνισμός αναφέρεται στην διάρθρωση της αγοράς εκείνης η οποία βρίσκεται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: ΑΣΚΗΣΕΙΣ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική. Ενότητα # 8: Αναλυτικές διαδικασίες

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική. Ενότητα # 8: Αναλυτικές διαδικασίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ελεγκτική Ενότητα # 8: Αναλυτικές διαδικασίες Νικόλαος Συκιανάκης Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Αναγωγή _ Εξαγωγή & Έλεγχος. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Αναγωγή _ Εξαγωγή & Έλεγχος. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Αναγωγή _ Εξαγωγή & Έλεγχος ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 7 η : Εντολές Επανάληψης Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ

Διαβάστε περισσότερα

Ηγεσία. Ενότητα 2: Ηγετική συμπεριφορά και αποτελεσματικότητα. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Ηγεσία. Ενότητα 2: Ηγετική συμπεριφορά και αποτελεσματικότητα. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Ηγεσία Ενότητα 2: Ηγετική συμπεριφορά και αποτελεσματικότητα Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών

Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών Ενότητα 1: Εφαρμογή των αρχών του Μάρκετινγκ στον χρηματοπιστωτικό τομέα Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασκήσεις 3 ου Κεφαλαίου

Ασκήσεις 3 ου Κεφαλαίου Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Ασκήσεις 3 ου Κεφαλαίου Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θεωρία Παιγνίων-Ολιγοπώλιο σε ποσότητες

Θεωρία Παιγνίων-Ολιγοπώλιο σε ποσότητες Θεωρία Παιγνίων-Ολιγοπώλιο σε ποσότητες Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 4 Μαρτίου 214 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Παιγνίων-Ολιγοπώλιο σε ποσότητες 4 Μαρτίου 214 1 / 14 Ενα απλούστατο παίγνιο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα