4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ"

Transcript

1 4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑ (STRATIFIED RANDOM SAMPLING) Στην τυχαία δειγµατοληψία κατά στρώµατα ο πληθυσµός των Ν µονάδων (πρόκειται για τον στατιστικό πληθυσµό και τις στατιστικές µονάδες) χωρίζεται σε υπο-πληθυσµούς Ν, Ν,..., Ν L, µονάδων αντίστοιχα. Αυτοί οι υπο-πληθυσµοί δεν επικαλύπτονται (ένα άτοµο ή µονάδα ανήκει µόνο σε ένα υπο-πληθυσµό) και όλοι µαζί περιέχουν το σύνολο των µονάδων του πληθυσµού. Κάθε υπο-πληθυσµός καλείται "στρώση" (stratum). Αφού οι στρώσεις έχουν ορισθεί από κάθε µία παίρνουµε ένα τυχαίο δείγµα. Το µέγεθος αυτών των δειγµάτων είναι,,..., L αντίστοιχα. Η στρωµατοποίηση είναι κοινή στρατηγική. Πρακτικοί αλλά και θεωρητικοί λόγοι οδηγούν σ'αυτή: Για κάποιο µέρος του πληθυσµού απαιτείται ιδιαίτερη ακρίβεια στις εκτιµήσεις. Ο πληθυσµός είναι ήδη στρωµατοποιηµένος (π.χ. ένα σύνολο λιµνών, το σύνολο των δήµων µιας πόλης). Ο πληθυσµός είναι ετερογενής αλλά στο εσωτερικό του περιέχει µέρη (οµάδες, συνιστώσες) τα οποία δείχνουν µια σχετική οµοιογένεια. Αυτές οι συνιστώσες θα αποτελέσουν τις στρώσεις. Όσο πιο οµοιογενείς στο εσωτερικό τους είναι οι στρώσεις και όσο περισσότερο διαφέρουν µεταξύ τους, τόσο πιο αποδοτική είναι η στρωµατοποίηση. Απόδοση εδώ σηµαίνει ότι µε το ίδιο κόστος µελέτης η εκτίµησή είναι πιο ακριβής. Σε γενικές γραµµές η τυχαία δειγµατοληψία κατά στρώµατα είναι πιο ακριβής από την τυχαία δειγµατοληψία. Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

2 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΟΥ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΕΚΤΙΜΗΤΕΣ Ο πληθυσµός είναι χωρισµένος σε L στρώσεις εδοµένα στρώση : υ, υ, υ 3,..., υ i,..., υ στρώση : στρώση : υ, υ, υ 3,..., υ i,..., υ υ, υ, υ 3,..., υ i,..., υ Η υπέρµετρη αύξηση του αριθµού των στρώσεων δεν οδηγεί σε ακριβέστερες εκτιµήσεις. Ο αριθµός των 6 στρώσεων αναφέρεται από τον Cocra (977) σαν ένα λογικό όριο. στρώση L: υ L, υ L, υ L3,..., υ Li,..., υ L Ο δείκτης υποδεικνύει τη στρώση και ο δείκτης i τη µονάδα µέσα σε κάθε στρώση. Παράµετροι του δείγµατος Τά ακόλουθα σύµβολα αναφέρονται στη στρώση. Ανάλογοι τύποι ισχύουν και για τις υπόλοιπες στρώσεις του πληθυσµού. N: συνολικός αριθµός µονάδων του πληθυσµού, Ν : συνολικός αριθµός µονάδων της στρώσης, : αριθµός µονάδων στο δείγµα της στρώσης (τα,,...,,..., L µπορούν να είναι διαφορετικά), υ i : τιµή της µονάδας i στη συγκεκριµένη στρώση W N = βάρος της στρώσης f N κλάσµα της στρώσης y y i = = στρώσης i µέση τιµή στρώσης s = δειγµατοληπτικό N ( y y ) i i= = Εκτίµηση της µέσης τιµής (Γ) του πληθυσµού διασπορά $ Y = y = L = N N y = W y = L L N s L W s v( y) = s = ( f ) = ( f ) y N = = το τυπικό σφάλµα είναι s = v ( y ) y P{y t s < Y < y + t s = α y α y} α / / Εκτίµηση του συνόλου (Δ) του πληθυσµού

3 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 45 $Y = N y v( Y $ ) = s = N v( y) = N s Y$ y PY { $ t vy ( $ ) < Y < Y$ + t vy ( $ )} = α α/ α/ το t ακολουθεί την κατανοµή του Studet µε e βαθµούς ελευθερίας. Σύµφωνα µε τον Sattertwaite, 946 ( αναφορά Cocra, 977) το e είναι περίπου ίσο µε e = L ( g s ) = L = g s 4 µε g = N ( N ) ΠΑΡΑ ΕΙΓΜΑ 4. Μια προκαταρτική µελέτη έδειξε ότι η συγκέντρωση ατόµων συγκεκριµένου είδους ψαριού είναι άµεσα συνδεδεµένη µε την φύση του βυθού (αριστερό διάγραµµα). Κατά τη διάρκεια δειγµατοληψίας στην περιοχή που παρουσιάζει το δεξί διάγραµµα συλλέχθηκαν 0 δείγµατα. Οι συγκεντρώσεις που ανεβρέθηκαν ανά µονάδα επιφάνειας καθώς και η φύση του βυθού στην περιοχή φαίνονται στο ίδιο διάγραµµα. Με βάση αυτή την πληροφορία εκτιµήστε την συνολική αφθονία του είδους στην περιοχή του δεξιού διαγράµµατος (εκτίµηση του συνολικού αριθµού και υπολογισµός του διαστήµατος εµπιστοσύνης της εκτίµησης). Πυκνότητα (άτοµα/m) Κατανοµή είδους ψαριού Βράχος Χαλίκι Άµµος Ποιότητα βυθού Βράχος Χαλίκι Άµµος Από το παραπάνω διάγραµµα φαίνεται καθαρά ότι το συγκεκριµµένο είδος προτιµά τους αµµώδεις βυθούς. Η πυκνότητα του σ αυτές τις περιοχές είναι κατά πολύ µεγαλύτερη απ ότι σε βραχώδεις ή σε περιοχές µε χαλίκια. Από τη στιγµή που η πληροφορία αυτή είναι

4 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 46 γνωστή είναι λογικό να προσπαθήσουµε να την εκµεταλλευτούµε σχεδιάζοντας µια δειγµατοληψία κατά στρώµατα. Χρησιµοποιούµε τον τοπογραφικό χάρτη της περιοχής για να ορίσουµε 3 στρώσεις ανάλογα µε τη φύση του βυθού. Περιµένουµε λοιπόν τα δείγµατα που θα συλλεχθούν από κάθε στρώση να µοιάζουν µεταξύ τους ενώ τα δείγµατα από διαφορετικές στρώσεις να διαφέρουν µεταξύ τους εµφανώς. Αφού καθορίσουµε τις τρείς στρώσεις, τις χωρίζουµε σε βασικές δειγµατοληπτικές µονάδες και επιλέγουµε τυχαία κάποιες από αυτές. Στο συγκεκριµένο παράδειγµα επιλέγουµε 3 µονάδες από τη βραχώδη και την περιοχή µε τα χαλίκια και 4 από την αµµώδη στρώση. Έτσι έχουµε: Συνολικός αριθµός δειγµατοληπτικών µονάδων Ν= Αριθµός στρώσεων L= Στρώση (βράχος) Στρώση (χαλίκι) Στρώση 3 (άµµος) εδοµένα υ i = Αριθµός µονάδων στο δείγµα κάθε στρώσης = Αριθµός µονάδων ανά στρώση N = Βάρος των στρώσεων W =N /N= ειγµατοληπτικό κλάσµα στρώσης f = /N = Μέση τιµή στρώσεων ύ ιασπορά στρώσεων θ g = g s = (g s 4 )/( -) Βαθµοί ελευθερίας ( e )= Τιµή t (5%) = Μέση τιµή στον πληθυσµό ύ

5 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 47 ιασπορά µέσης τιµής θ Τυπικό σφάλµα µέσης τιµής ι ιάστηµα εµπιστοσύνης (95%) Κατώτερο όριο Ανώτερο όριο <Ύ< Σύνολο πληθυσµού Δ ιασπορά συνόλου Τυπικό σφάλµα συνόλου ιάστηµα εµπιστοσύνης (95%) Κατώτερο όριο Ανώτερο όριο <Υ< ΠΑΡΑ ΕΙΓΜΑ Η ΣΤΡΩΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΠΑΡΑ ΕΙΓΜΑ 4. ΠΙΝΑΚΑΣ 4. Πληθυσµός µικρών τρωκτικών αποτελούµενος από 9 άτοµα που χαρακτηρί-ζονται από τις τιµές y που αντιπροσωπευουν το ολικό ύψος των ατόµων (cm). Α: αρσενικά, Θ: θηλυκά. (πρόκειται για τα δεδοµένα του παραδείγµατος.) y 8,9,9,0,0,0,,, Α,Α,Α,Θ,Θ,Θ,Θ, Θ, Θ Ν=9 Ύ=0.0 σ =.333 Για να γίνουν κατανοητές οι συνέπειες της στρωµατοποίησης θα χρησιµοποιήσουµε τα δεδοµένα του παραδείγµατος. µόνο που τα άτοµα του πληθυσµού εκτός από το ύψος τους χαρακτηρίζονται και από το φύλο (αρσενικά και θηλυκά). Γνωρίζοντας ότι το φύλο παιζει συχνά καθοριστικό ρόλο στο µέγεθος των ατόµων µπορούµε να χωρίσουµε τον πληθυσµό του παραδείγµατος 4. σε δυο στρώσεις που περιλαµβάνουν τα αρσενικά και τα θηλυκά. Όπως και στο παράδειγµα. θα προσπαθήσουµε να σχηµατίσουµε όλα τα δυνατά δείγµατα ολικού µεγέθους 6 ατόµων από τον υποθετικό αυτό πληθυσµό. Μάλιστα για να απλοποιήσουµε την κατάσταση θα κρατήσουµε το ίδιο δειγµατοληπτικό κλάσµα και στις δυο στρώσεις. Έτσι από τη στρώση που περιλαµβάνει τα αρσενικά θα πάρουµε ένα δείγµα ατόµων (f=/3) και από τη στρώση (τα θηλυκά) δείγµα 4 ατόµων (f=4/6=/3). Οι συνδυασµοί ατόµων από 3 είναι 3 και 4 ατόµων από 6 είναι 5. Οι τελικοί συνδυασµοί των δειγµάτων των δυο στρώσεων είναι 45 (5x3). Παίρνοντας λοιπόν όλα τα δυνατά δείγµατα της στρωµατοποιηµένης δειγµατοληψίας και εφαρµόζοντας τους τύπους της προηγουµένης παραγράφου υπολογίζουµε (εκτιµούµε) το µέσο ύψος των ατόµων του πληθυσµού, τη διασπορά του µέσου ύψους καθώς και το διάστηµα εµπιστοσύνης. Στο παράδειγµα. είχαµε πάρει όλα τα δυνατά δείγµατα µεγέθους 6 από τον πληθυσµό αυτό µε µια απλή τυχαία δειγµατοληψία.

6 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 48 Μπορούµε λοιπόν να συγκρίνουµε την στρωµατοποιηµένη µε την απλή τυχαία δειγµατοληψία κοιτάζοντας τα διαστήµατα εµπιστοσύνης που δίνουν οι δυο αυτές στρατηγικές. Θυµίζουµε ότι το κόστος της δειγµατοληψίας είναι το ίδιο και στις δυο περιπτώσεις (ν=6 και ν=ν +ν =+4=6) και συνεπώς η στρατηγική που δίνει τα στενότερα διαστήµατα εµπιστοσύνης που περιέχουν την πραγµατική µέση τιµή είναι η καλύτερη. Η σύγκριση µπορεί να γίνει στο διάγραµµα 4.. Από το διάγραµµα αυτό φαίνεται ότι: η στρωµατοποιηµένη τυχαία δειγµατοληψία δίνει σηµαντικά ακριβέστερες εκτιµήσεις από την απλή τυχαία όλα τα διαστήµατα εµπιστοσύνης της στρωµατοποιηµένης δειγµατοληψίας περιέχουν την πραγαµατική µέση τιµή του πληθυσµού (που σ αυτή την περίπτωση του εικονικού αυτού πληθυσµού είναι γνωστή) Φαίνεται λοιπόν ότι µε το ίδιο κόστος η στρωµατοποίηση δίνει καλύτερα αποτελέσµατα από την απλή τυχαία δειγµατοληψία. Η αύξηση της ακρίβειας µεγαλώνει θεαµατικά µε την αύξηση της οµοιογένειας στο εσωτερικό των στρώσεων. Θεωρήστε για παράδειγµα στον προηγούµενο πληθυσµό όλα τα αρσενικά άτοµα να είχαν ύψος 9 cm και όλα τα θηλυκά cm.. Τότε η διασπορά των στρώσεων θα είναι 0 και συµφωνα µε τους τύπους της προηγούµενης παραγράφου η διασπορά της µέσης τιµής του πληθυσµού θα είναι και αυτή µηδενική. Μόνο ένα από τα 84 δυνατά δείγµατα 6 ατόµων της απλής τυχαίας δειγµατοληψίας θα έδινε µηδενική διασπορά (αυτό που περιλαµβάνει τα 6 θηλυκά άτοµα) αλλά δυστυχώς αυτό το δείγµα θα έδινε µια εκτίµηση της µέσης τιµής που θα ήταν µακριά από την πραγµατική του πληθυσµού.

7 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 49.5 Απλή τυχαία δειγµατοληψία ύψος (cm) α/α Στρωµατοποιηµένη δειγµατοληψία ύψος (cm) α/α ΣΧΗΜΑ 4. Σύγκριση των εκτιµήσεων της απλής τυχαίας και της στρωµατοποιηµένης δειγµατοληψίας. Παρουσιάζονται εκτιµήσεις της µέσης τιµής και των διαστηµάτων εµπιστοσύνης (κατακόρυφα ευθύγραµµα τµήµατα) που προέρχονται από όλα τα δυνατά δείγµατα µεγέθους 6 ατόµων από τον πληθυσµό του παραδείγµατος 4.. ΠΑΡΑ ΕΙΓΜΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΤΗΣ ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗΣ ΤΥΧΑΙΑΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Πλεονεκτήµατα Συνήθως οδηγεί σε ακριβέστερες εκτιµήσεις από την απλή τυχαία δειγµατοληψία. Οι εκτιµητές είναι αµερόληπτοι (εκτός από τον εκτιµητή λόγου όταν αυτός χρησιµοποιείται στα πλαίσια αυτής της στρατηγικής). Μειονεκτήµατα Ένα λάθος στον υπολογισµό του βάρους των στρώσεων οδηγεί σε µεροληψίες που δεν εξαλείφονται όσο κι αν µεγαλώσει το µέγεθος του δείγµατος. Για τον παραπάνω λόγο η διπλή δειγµατοληψία απαιτεί µια ευρεία πρώτη φάση.

8 4. Στρωµατοποιηµένη τυχαία δειγµατοληψία 50 Είναι µια ευκολοπροσάρµοστη στρατηγική που συνδυάζεται και µε άλλες οδηγώντας σε περίπλοκους σχεδιασµούς που όµως επιτρέπουν τον υπολογισµό της ακρίβειας των εκτιµητών και τη δηµιουργία διαστηµάτων εµπιστοσύνης. Επιτρέπει την κατ επιλογή µεγαλύτερη συµµετοχή στο δείγµα ατόµων του πληθυσµού που προέρχονται από συγκεκριµένες στρώσεις (αυτό µπορεί να εξυπηρετήσει παράλληλες µελέτες). Επιτρέπει την ανάλυση της επίδρασης πάνω στα άτοµα του πληθυσµού της παραµέτρου που χρησιµοποιήθηκε για τη στρωµατοποίηση. Επιτρέπει τη διεξαγωγή της δειγµατοληψίας ακόµα κι αν διακυµάνσεις στην κατανοµή της προσπάθειας στο χώρο ή το χρόνο είναι αναπόφευκτες (σε κάποιες περιοχές η πρόσβαση είναι δύσκολη ή υπάρχουν δυσχέρειες για κάποιες περιόδους π.χ. νύχτα ή αργίες). Ακόµα κι αν γίνουν λάθη στη στην κατανοµή των ατόµων στις στρώσεις οι εκτιµήσεις παραµένουν αµερόληπτες. Ακόµα κι αν δεν υπάρχουν πληροφορίες για µια έστω και στοιχειώδη στρωµατοποίηση η στρατηγική αυτή εφαρµόζεται κατόπιν διπλής δειγµατοληψίας (µια πρώτη χαλαρή δειγµατοληψία για τη µελέτη των χαρακτηριστικών του πληθυσµού και του περιβάλλοντος του και στη συνέχεια µε βάση αυτή την πληροφορία µια στρωµατοποιηµένη δειγµατοληψία για τις τελικές εκτιµήσεις). Σ αυτή την περίπτωση το κέρδος στην ακρίβεια της εκτίµησης φυσικά µειώνεται. Λόγω της εκ των προτέρων διαίρεσης του πληθυσµού σε στρώσεις (κατηγορίες, οµάδες) κάποιες από τις στατιστικές αναλύσεις δεν εφαρµόζονται άµεσα.

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING)

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING) 6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLIG) ΣΧΗΜΑ 6.1 Συστηµατική δειγµατοληψία στον Πατραϊκό κόλπο (17 σταθµοί). Η συστηµατική δειγµατοληψία είναι µια στρατηγική που µοιάζει απλή και λογική και επιλέγεται

Διαβάστε περισσότερα

7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ

7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ ΙΑΦΟΡΩΝ ΜΕΘΟ ΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 7.. ΣΥΓΚΡΙΣΗ ΤΩΝ ΒΑΣΙΚΩΝ ΣΤΡΑΤΗΓΙΚΩΝ Στα προηγούµενα κεφάλαια αναφέρθηκαν λεπτοµερώς τα πλεονεκτήµατα και µειονεκτήµατα των διαφόρων στρατηγικών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Οι τεχνικές δειγματοληψίας είναι ένα σύνολο μεθόδων που επιτρέπει να μειώσουμε το μέγεθος των δεδομένων που

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά

Διαβάστε περισσότερα

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ορεστιάδα 7 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Παράγωγες κατανοµές

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Επιλογή δείγματος Κατερίνα Δημάκη Αν. Καθηγήτρια Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 1 Τρόποι Συλλογής Δεδομένων Απογραφική

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Έρευνα Μάρκετινγκ Ενότητα 4

Έρευνα Μάρκετινγκ Ενότητα 4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 : Δειγματοληψία Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Μετά την παρουσίαση των βασικών εννοιών, της φιλοσοφίας, και των πρακτικών εφαρµογών της θεωρίας της δειγµατοληψίας, θα ασχοληθούµε σε αυτό το κεφάλαιο µε την πρακτική οργάνωση

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

ειγµατοληπτική κατανοµή

ειγµατοληπτική κατανοµή Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 ειγµατοληπτική κατανοµή 1. Εισαγωγή Με την ενότητα αυτή, µπαίνουµε στις έννοιες της επαγωγικής

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

Στατιστική Ι. Τιµόθεος Αγγελίδης

Στατιστική Ι. Τιµόθεος Αγγελίδης Στατιστική Ι Τιµόθεος Αγγελίδης 1 Σκοπός Μαθήµατος Στο µάθηµα αυτό παρουσιάζονται οι βασικές αρχές και έννοιες της στατιστικής. Το µάθηµα χωρίζεται σε τρία βασικά µέρη: Περιγραφική Στατιστική Στο πρώτο

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) 5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου

επ. Κωνσταντίνος Π. Χρήστου 1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης

Διαβάστε περισσότερα

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός 1 ΔΕΙΓΜΑΤΟΛΗΨΙΑ -Είναι γνωστό, ότι στη Στατιστική, όταν χρησιμοποιούμε τον όρο πληθυσμός, δηλώνουμε, το σύνολο των ατόμων ή αντικειμένων, στα οποία αναφέρονται οι παρατηρήσεις μας Τα στοιχεία του συνόλου

Διαβάστε περισσότερα

Β ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Ενδεικτικές Απαντήσεις A Λυκείου Νοέµβριος 2013 ΘΕΜΑ Α ΘΕΜΑ Β

Β ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Ενδεικτικές Απαντήσεις A Λυκείου Νοέµβριος 2013 ΘΕΜΑ Α ΘΕΜΑ Β Ενδεικτικές Απαντήσεις Λυκείου Νοέµβριος 0. β Φυσική ΘΕΜΑ Α γενιικής παιιδείίας. γ. β. γ 5. α 6. α Λάθος β Σωστό γ Λάθος δ Λάθος ε Σωστό. α β γ δ ε ΘΕΜΑ Β. Α. ευθύγραµµη οµαλή κίνηση Β. ακινησία Γ. ευθύγραµµη

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 8 Ιουνίου 005 Εξεταστική περίοδος Ιουνίου 005 ΘΕΜΑΤΑ Εστω X = (X,, X n ), n, τυχαίο δείγµα από κατανοµή Bernoull B(, θ), θ Θ = (0, ) (α) (0 µονάδες) Να δειχθεί

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. ηµήτρης Ιωαννίδης. Email: dimioan@uom.gr. Τµήµα Οικονοµικών Επιστηµών. Μεθοδολογία Έρευνας: Μάθηµα 1 ο

ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. ηµήτρης Ιωαννίδης. Email: dimioan@uom.gr. Τµήµα Οικονοµικών Επιστηµών. Μεθοδολογία Έρευνας: Μάθηµα 1 ο ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ηµήτρης Ιωαννίδης Τµήµα Οικονοµικών Επιστηµών Email: dimioan@uom.gr 1 Εξέταση: Μεθοδολογία Έρευνας: Μάθηµα 1 ο 1. Οµαδική εργασία 30% 2. Ατοµική εργασία 70% 2 Σκοπός του µαθήµατος:

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS)

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) ΙωάννηςΝικολαΐδης, Ελληνική Στατιστική Αρχή Προϊστάµενος του Τµήµατος Μεθοδολογίας, Ανάλυσης και Μελετών e-mail: giannikol@statistics.gr 1. Ερευνώµενος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο Στατιστική ΙI Ενότητα : Εκτίμηση Διαστήματος Δρ. Χρήστος Εμμανουηλίδης Aν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική ΙΙ, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης, cemma@eco.auth.gr 1 Εκτίμηση

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ

ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ Επιιστηµονιική Υποστήριιξη Νέων Αγροτών Καιινοτόµες µέθοδοιι καλλιιέργειιας ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ σελ. 1 Τι σηµαίνει; Τι σηµαίνει και

Διαβάστε περισσότερα

Εκλογικό Βαρόµετρο της για τον ΣΚΑΪ και την ΚΑΘΗΜΕΡΙΝΗ Κύµα 1ο, Αυγούστου 2007

Εκλογικό Βαρόµετρο της για τον ΣΚΑΪ και την ΚΑΘΗΜΕΡΙΝΗ Κύµα 1ο, Αυγούστου 2007 ΕκλογικόΒαρόµετροτης γιατονσκαϊκαιτηνκαθημερινη Κύµα 1 ο, 22-24 Αυγούστου 2007 ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΕΡΕΥΝΑΣ ΕΤΑΙΡΕΙΕΣ : PUBLIC ISSUE (Α.Μ. ΕΣΡ: 8) / VPRC (Α.Μ. ΕΣΡ: 9). Μέλος του ΣΕ ΕΑ, της ESOMAR και της WAPOR.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Γενική Οικολογία

ΜΑΘΗΜΑ: Γενική Οικολογία ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΜΑΘΗΜΑ: Γενική Οικολογία 1 η Άσκηση Έρευνα στο πεδίο - Οργάνωση πειράματος Μέθοδοι Δειγματοληψίας Εύρεση πληθυσμιακής

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ Στην ενότητα αυτή θα παρουσιαστεί η µεθοδολογία της έρευνας και η διαδικασία µε την οποία διεξήχθη η συλλογή των ερωτηµατολογίων. 3.1 Μεθοδολογία Έρευνας & ειγµατοληπτική Τεχνική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος Eπιστημονικό Bήμα, τ. 10, - Ιανουάριος 2009 Επίδοση στο γυμνάσιο και εγκατάλειψη της εννιάχρονης υποχρεωτικής εκπαίδευσης για τους μαθητές που προέρχονται από ολιγοθέσια και πολυθέσια δημοτικά σχολεία

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη

Διαβάστε περισσότερα

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων ) Περιγραφή ιακριτών Ποσοτικών εδοµένων Για να περιγράψουµε διακριτά ποσοτικά δεδοµένα µε λίγες τιµές ( σε περίπτωση πολλών τιµών τα θεωρούµε ως συνεχή) κάνουµε: Πίνακας συχνοτήτων Ραβδόγραµµα, Κυκλικό

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Έγιναν καλά εν έγιναν καλά Οµάδα Α (µε φάρµακο) Οµάδα Β (χωρίς φάρµακο) 35 15

Έγιναν καλά εν έγιναν καλά Οµάδα Α (µε φάρµακο) Οµάδα Β (χωρίς φάρµακο) 35 15 Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Ιουνίου 009 στη Στατιστική 9/06/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 1. Ο χρόνος ζωής ενός εξαρτήµατος εργαστηριακού οργάνου σε εκατοντάδες ώρες περιγράφεται

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Στάδιο Εκτέλεσης

Στάδιο Εκτέλεσης 16 ΚΕΦΑΛΑΙΟ 1Ο 1.4.2.2 Στάδιο Εκτέλεσης Το στάδιο της εκτέλεσης μίας έρευνας αποτελεί αυτό ακριβώς που υπονοεί η ονομασία του. Δηλαδή, περιλαμβάνει όλες εκείνες τις ενέργειες από τη στιγμή που η έρευνα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

Έρευνα Μάρκετινγκ. Η δευτερογενής έρευνα

Έρευνα Μάρκετινγκ. Η δευτερογενής έρευνα Έρευνα Μάρκετινγκ ρ. Παναγιώτης Μπάλλας E-mail: ballas@staff.teicrete.gr Η δευτερογενής έρευνα ευτερογενή είναι τα στοιχεία που υπάρχουν έτοιµα να αναζητηθούν από κάποια πηγή και δεν χρειάζεται να τα συλλέξουµε

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Κεϕάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεϕάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Επιλογή Δείγματος Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Δειγματοληψία Να κατανοηθούν: Γιατί κάνουμε δειγματοληψία Ορισμοί δειγματοληψίας Αντιπροσωπευτικότητα Κύριοι μέθοδοι δειγματοληψίας Λάθη

Διαβάστε περισσότερα

Εκτίµηση περιβαλλοντικών επιπτώσεων:

Εκτίµηση περιβαλλοντικών επιπτώσεων: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Εκτίµηση περιβαλλοντικών επιπτώσεων: Παράµετροι που επηρεάζουν την ανιχνευτική

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα

δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα ΕΙΓΜΑΤΟΛΗΨΙΑ : Βασικές έννοιες βασικές έννοιες Πληθυσµός: είγµα: Το σύνολο των στοιχείων για τα οποία απαιτείται συγκεκριµένη πληροφορία.

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΘΕΜΑ: ΤΟ ΕΝΔΙΑΦΕΡΟΝ ΤΩΝ ΦΟΙΤΗΤΩΝ ΓΙΑ ΤΙΣ ΣΠΟΥΔΕΣ ΤΟΥΣ ΣΤΟ

Διαβάστε περισσότερα

Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί

Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί από τον αριθµό µητρώου του. Συγκεκριµένα υπολογίζει

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου Κεφάλαιο 2

επ. Κωνσταντίνος Π. Χρήστου Κεφάλαιο 2 Κεφάλαιο 2 Μεταβλητές Είδη Μεταβλητών Πείραµα (ένα παράδειγµα, Bandura, Ross & Ross, 1963) Υπόθεση: ένα από τα αίτια της συµπεριφοράς µπορεί να είναι η παρατήρηση ενός επιθετικού προτύπου Διαδικασία: τα

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ Τα δηµογραφικά δεδοµένα τα οποία προέρχονται από τις απογραφές πληθυσµού, τις καταγραφές της φυσικής και µεταναστευτικής κίνησης του πληθυσµού

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Προσδιορισμός Δείκτη Ποιότητας Κτηματολογικής Βάσης

Προσδιορισμός Δείκτη Ποιότητας Κτηματολογικής Βάσης Προσδιορισμός Δείκτη Ποιότητας Κτηματολογικής Βάσης Ιωάννης Καββάδας Αγρ. Τοπογράφος Μηχανικός, MSc Υποψήφιος Διδάκτωρ Ε.Μ.Π. Προϊστάμενος Τμήματος Ελέγχων & Διαχείρισης Ποιότητας Έργων Διεύθυνση Έργων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Μέτρα θέσης και διασποράς

Μέτρα θέσης και διασποράς Μέτρα θέσης και διασποράς Η επικρατούσα τιμή ως μέτρο κεντρικής τάσης Εύκολο στον υπολογισμό Επικρατούσα τιμή Η πιο συχνή ή η πιο συχνά εμφανιζόμενη τιμή σε ένα σύνολο τιμών 11, 3, 8, 2, 1, 5, 3, 7 Επικρατούσα

Διαβάστε περισσότερα