On Curvature Tensors in Absolute Parallelism Geometry

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Curvature Tensors in Absolute Parallelism Geometry"

Transcript

1 arxv:gr-qc/ v1 26 Apr 2006 On Curvature Tensors n Absolute Parallelsm Geometry Nabl L. Youssef and Amr M. Sd-Ahmed Department of Mathematcs, Faculty of Scence, Caro Unversty e-mal: nyoussef@frcu.eun.eg e-mal: amrs@maler.eun.eg Abstract In ths paper we dscuss curvature tensors n the context of Absolute Parallelsm geometry. Dfferent curvature tensors are expressed n a compact form n terms of the torson tensor of the canoncal connecton. Usng the Banch denttes some other denttes are derved from the expressons obtaned. These denttes, n turn, are used to reveal some of the propertes satsfed by an ntrgung fourth order tensor whch we refer to as Wanas tensor. A further condton on the canoncal connecton s mposed, assumng t s sem-symmetrc. The formulae thus obtaned, together wth other formulae (Rcc tensors and scalar curvatures of the dfferent connectons admtted by the space) are calculated under ths addtonal assumpton. Consderng a specfc form of the sem-symmetrc connecton causes all nonvanshng curvature tensors to concde, up to a constant, wth the Wanas tensor. Physcal aspects of some of the geometrc objects consdered are mentoned. 1 Introducton After the success of hs general theory of gravtaton (GR), Ensten searched for a more general theory that would approprately descrbe electromagnetc phenomena together wth gravty. Hs search for such a unfed theory led hm to consder Absolute Parallelsm (AP) geometry [3]. The reason for ths s that AP-geometry s wder than the standard Remannan geometry. Accordng to GR, the ten degrees of freedom (the metrc components for n = 4) are just suffcent to descrbe gravtatonal phenomena alone. AP-geometry, on the other hand, has sxteen degrees of freedom. Remannan geometry s thus relatvely 1

2 lmted compared to AP-geometry whch has sx extra degrees of freedom. These extra degrees of freedom could be used to descrbe physcal phenomena other than gravty. Ths dea of ncreasng the number of degrees of freedom from ten to sxteen s another alternatve to the dea of ncreasng the dmensons of the underlyng manfold n the so-called Kaluza-Klen theory. Moreover, as opposed to Remannan geometry whch admts only one symmetrc affne connecton and hence only one curvature tensor, the AP-space admts at least four bult-n (natural) affne connectons, two of whch are non-symmetrc. AP-geometry also admts tensors of thrd order, a number of second order skew and symmetrc tensors and a non-vanshng torson [8]. These extra geometrc structures, whch have no counterpart n Remannan geometry, make AP-geometry much rcher n ts content and hence a potental canddate for geometrc unfcaton schemes. A further advantage s that assocated to an AP-space there s a Remannan structure defned n a natural way; thus the AP-space contans wthn ts geometrc structure all the mathematcal machnery of Remannan geometry. Ths facltates comparson between the results obtaned n the context of AP-geometry wth the classcal GR based on Remannan geometry. Fnally, calculatons wthn the framework of AP-geometry are relatvely easer than those used n the context of Remannan geometry. In the present paper we nvestgate the curvature tensors correspondng to the dfferent natural connectons defned n an AP-space. The paper s organzed n the followng manner. In secton 2, we gve a bref account of the basc elements of AP-geometry; we focus our attenton on the fundamental concepts that wll be needed n the sequel. In secton 3, we consder the curvature tensors of the dual and symmetrc connectons assocated to the canoncal connecton Γ together wth the Remannan curvature. Smple and compact expressons for such curvature tensors, n terms of the torson of Γ, are deduced. We then use the Banch denttes to derve some further nterestng denttes whch smplfy the formulae thus obtaned. In secton 4, we study some of the propertes satsfed by an ntrgung fourth order tensor, whch we call Wanas tensor (or smply W-tensor) after M.I. Wanas who frst defned and used such a tensor [11]. The W-tensor s shown to have some propertes whch are smlar to those of the Remannan curvature tensor. In secton 5, we further study the consequences of assumng that the canoncal connecton s sem-symmetrc. All curvature tensors wth ther assocated contractons (Rcc tensors and scalar curvatures) are then derved n ths case. We next consder an nterestng specal case whch consderably smplfes the formulae thus obtaned and show that all nonvanshng curvature tensors admtted by the space concde (up to a constant factor) wth the W-tensor. Physcal aspects or physcal nterpretatons of some geometrc objects consdered are ponted out. 2

3 2 A Bref account of AP geometry In ths secton, we gve a bref account of the geometry of absolute parallelsm spaces. For more detals concernng ths geometry, we refer for example to [8], [13], [10]. An absolute parallelsm space (AP-space) s an n-dmensonal C manfold M whch admts n lnearly ndependent global vector felds λ ( = 1,...,n) on M. Such a space s also known n the lterature as parallelzable manfold [2]. Let λ µ (µ = 1,...,n) be the coordnate components of the -th vector feldλ. The summaton conventon s appled on both Latn (mesh) and Greek (world) ndces. The covarant components of λ µ are gven va the relatons The n 3 functons Γ α µν defned by λ µ λ ν = δ ν µ, λ µ λ µ = δ j. j Γ α µν := λ α λ µ,ν transform as the coeffcents of a lnear connecton under a change of coordnates (where, ν denotes partal dfferentaton wth respect to the coordnate x ν ). The connecton Γ α µν s clearly non-symmetrc and s referred to as the canoncal connecton of the space. As easly checked, we have λ µ ν = 0, λ µ ν = 0, where the stroke denotes covarant dfferentaton wth respect to the canoncal connecton Γ α µν. The above relaton s known n the lterature as the condton of absolute parallelsm. Let Λ α µν := Γα µν Γα νµ denote the torson tensor of Γα µν. It s of partcular mportance to note that the condton of absolute parallelsm together wth the commutaton formula λ α µν λ α νµ = λ ǫ Rǫµν α + λ α ǫ Λ ǫ νµ ; forces the curvature tensor R α µνσ of the canoncal connecton Γ α µν to vansh dentcally. It s for ths reason that many authors thnk that the AP-space s a flat space. Ths s by no means true. In fact, t s meanngless to speak of curvature wthout reference to a connecton. All we can say s that the AP-space s flat wth respect to ts canoncal connecton, or that ts canoncal connecton s flat. However, there are other three natural (bult-n) connectons whch are nonflat. Namely, the dual connecton Γ α µν := Γα νµ, 3

4 the symmetrc connecton ˆΓ α µν := 1 2 (Γα µν + Γα νµ ) = Γα (µν) and the Remannan connecton (Chrstoffel symbol) Γ α µν := 1 2 {gαǫ (g ǫν,µ + g ǫµ,ν g µν,ǫ )} assocated to the metrc structure defned by wth nverse g µν := λ µ λ ν g µν = λ µ It s to be noted that the condton of absolute parallelsm mples that the canoncal connecton Γ α µν s metrc: λ ν. g µν σ = 0, g µν σ = 0. Consequently, the covarant dfferentaton defned by the canoncal connecton commutes wth contracton by the metrc tensor g µν and ts nverse g µν. The contorton tensor s defned by γ α µν := Γα µν Γ α µν. Snce Γ α µν s symmetrc, t follows that Moreover, t can be shown that [8] Λ α µν = γα µν γα νµ. γ α µν = λ α λ µ o ν, where denotes covarant dfferentaton wth respect to the connecton Γ α µν. Fnally, the contorton tensor can be expressed n terms of the torson tensor n the form [4]: γ µνσ = 1 2 (Λ µνσ + Λ σνµ + Λ νσµ ), where γ µνσ = g ǫµ γ ǫ νσ and Λ µνσ = g ǫµ Λ ǫ νσ. It s to be noted that Λ µνσ s skew-symmetrc n the last par of ndces, whereas γ µνσ s skew symmetrc n the frst par of ndces. It s to be noted also that the contorton tensor vanshes f and only f the torson tensor vanshes. 4

5 We have four types of covarant dervatves correspondng to the four connectons mentoned above, namely A µ ν = A µ,ν + Γ µ ǫν Aǫ, A µ ν = A µ,ν + Γ µ ǫν Aǫ, A µ ˆ ν = A µ,ν + ˆΓ µ ǫνa ǫ, A µ o ν = A µ,ν + Γ µ ǫνa ǫ, where A µ s an arbtrary contravarant vector. In concluson, the AP-space has four curvature tensors R α µνσ, R α µνσ, ˆR α µνσ and R α µνσ correspondng to the four connectons Γ α µν, Γ α µν, ˆΓ α µν and Γ α µν respectvely. As already mentoned, only one of these curvature tensors vanshes dentcally (the curvature Rµνσ α of the canoncal connecton). The other three do not vansh n general. The vanshng of Rµνσ α enables us to express the other three curvature tensors n terms of the torson tensor Λ α µν as wll be revealed n the next secton. Summary of the geometry of the AP-space Connecton Coeffcents Covarant Torson Curvature Metrcty dervatve Canoncal Γ α µν Λ α µ ν 0 metrc Dual Γα µν Λ α µ ν R α µνσ non-metrc Symmetrc ˆΓα µν ˆ 0 ˆRα µνσ non-metrc Remannan Γ α µν 0 R α µνσ metrc 5

6 3 Curvature Tensors and the Banch denttes n AP-geometry Let (M, λ) be an AP-space of dmenson n where λ ( = 1,...,n) are the n lnearly ndependent vector felds defnng the AP-structure on M. Let Γ α µν be the canoncal connecton on M defned by Γ α µν = λ α λ µ,ν. Let Γ α µν, ˆΓ α µν and Γ α µν be respectvely the dual connecton assocated to Γ α µν, the symmetrc connecton assocated to Γα µν and the Remannan connecton defned by the metrc tensor g µν = λ µ λ ν. As n the prevous secton, covarant dfferentaton wth respect to Γ α µν, Γ α µν ˆΓ α µν and Γ α µν wll be denoted by,, ˆ and respectvely. Theorem 3.1. The curvature tensors R α µνσ, ˆRα µνσ and R α µνσ of the connectons Γ α µν, ˆΓ α µν and Γ α µν are expressed n terms of the torson tensor Λ α µν of the canoncal connecton Γ α µν as follows: (a) R α µνσ = Λ α σν µ. (b) ˆR α µνσ = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µνλ α σǫ Λ ǫ µσλ α νǫ) (Λǫ σνλ α ǫµ). (c) R α µνσ = (γα µν σ γα µσ ν ) + (γǫ µσ γα ǫν γǫ µν γα ǫσ ) + γα µǫ Λǫ νσ. Proof. We start by provng the frst relaton: R α µνσ = Γ α µσ,ν Γ α µν,σ + Γ ǫ µσ Γ α ǫν Γ ǫ µν Γ α ǫσ = Γ α σµ,ν Γ α νµ,σ + Γ ǫ σµγ α νǫ Γ ǫ νµγ α σǫ = {Γ α σµ,ν + Γǫ σµ (Λα νǫ + Γα νǫ )} {Γα νµ,σ + Γǫ νµ (Λα σǫ + Γα ǫσ )} = (Γ α σµ,ν + Γǫ σµ Γα ǫν ) (Γα νµ,σ + Γǫ νµ Γα ǫσ ) (Γǫ σµ Λα ǫν + Γǫ νµ Λα σǫ ) = (R α σνµ + Γ α σν,µ + Γ ǫ σνγ α ǫµ) + (R α νµσ Γ α νσ,µ Γ ǫ νσγ α ǫµ) (Γ ǫ σµλ α ǫν + Γ ǫ νµλ α σǫ). Takng nto account the fact that Rµνσ α = 0, we get R µνσ α = Λα σν,µ + Γα ǫµ Λǫ σν Γǫ σµ Λα ǫν Γǫ νµ Λα σǫ = Λα σν µ. We then prove the second relaton: We have, by defnton, ˆR µνσ α = ˆΓ α µσ,ν ˆΓ α µν,σ + ˆΓ ǫ µσˆγ α ǫν ˆΓ ǫ µνˆγ α ǫσ. Now, ˆΓ ǫ µσˆγ α ǫν = 1 4 (Λǫ σµ + 2Γǫ µσ )(Λα νǫ + 2Γα ǫν ) = 1 4 Λǫ µσλ α νǫ 1 2 Λǫ µσγ α ǫν 1 2 Λα ǫνγ ǫ µσ + Γ ǫ µσγ α ǫν. 6

7 Smlarly, ˆΓ ǫ µνˆγ α ǫσ = 1 4 Λǫ µν Λα σǫ 1 2 Λǫ µν Γα ǫσ 1 2 Λα ǫσ Γǫ µν + Γǫ µν Γα ǫσ. Moreover, ˆΓ α µσ,ν = 1 2 Λα µσ,ν + Γα µσ,ν and ˆΓ α µν,σ = 1 2 Λα µν,σ + Γα µν,σ. Hence, notng that Rµνσ α = 0, we get ˆR α µνσ = 1 4 (Λǫ µνλ α σǫ Λ ǫ µσλ α νǫ) {(Λα µν,σ + Λ ǫ µνγ α ǫσ Λ α ǫνγ ǫ µσ) (Λ α µσ,ν + Λǫ µσ Γα ǫν Λα ǫσ Γǫ µν )} = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ). The proof of relaton (c) s carred out n the same manner and we omt t. It s clear that the torson tensor plays the key role n all denttes obtaned above. The vanshng of the torson tensor forces the three connectons Γ α µν, Γ α µν and ˆΓ α µν to concde wth the Remannan connecton Γ α µν ; the Remannan space n ths case s trvally flat. Consequently, the non-vanshng of any of the three curvature tensors suffces for the non-vanshng of the torson tensor. Remark 3.2. The frst and second formulae (resp. The thrd formula) of the above theorem reman (resp. remans) vald n the more general context n whch Γ α µν s any gven non-symmetrc lnear connecton on a manfold M (resp. a Remannan manfold (M, g)) wth vanshng curvature. We now derve some relatons that wll prove useful later on. Proposton 3.3. The followng relatons hold: (a) Λ α µν σ Λα µν σ = S µ,ν,σ Λ ǫ µν Λα ǫσ. (b) Λ α µν σ Λα µνˆ σ = 1 2 (S µ,ν,σ Λ ǫ µν Λα ǫσ ). (c) Λ α µν σ Λα µν o σ = Λǫ µν γα ǫσ + Λα νǫ γǫ µσ + Λα ǫµ γǫ νσ. where the notaton S µ,ν,σ denotes a cyclc permutaton of the ndces µ, ν, σ and summaton. Proof. The three relatons follow from the defnton of the covarant dervatve wth respect to the approprate connecton. Let M be a dfferentable manfold equpped wth a lnear connecton wth torson T and curvature R. Then the Banch denttes are gven locally by [7] 7

8 (a) S µ,ν,σ R α µνσ = S µ,ν,σ (T α µν;σ + T ǫ µνt α ǫσ), (frst Banch dentty) (b) S µ,ν,σ (R α βµν;σ + Rα βµǫ T ǫ νσ) = 0. (second Banch dentty) where ; denotes covarant dfferentaton wth respect to the gven connecton. In what follows, we derve some denttes usng the frst and second Banch denttes. Some of the derved denttes wll be used n smplfyng some of the formulae thus obtaned. Theorem 3.4. The frst Banch dentty for the connectons Γ α µν, Γ α µν, ˆΓ α µν and Γ α µν reads: (a) S µ,ν,σ (Λ α µν σ + Λǫ µνλ α ǫσ) = 0. (b) S µ,ν,σ Rα µνσ = S µ,ν,σ (Λ α νµ σ + Λǫ µν Λα ǫσ ). (c) S µ,ν,σ ˆRα µνσ = 0. (d) S µ,ν,σ R α µνσ = 0. The second Banch dentty for the connecton Γ α µν, ˆΓ α µν and Γ α µν reads: (e) S µ,ν,σ Rα βµν σ = S µ,ν,σ Λ ǫ σνλ α ǫµ β. (f) S µ,ν,σ ˆRα βµνˆ σ = 0. (g) S µ,ν,σ R α βµν o σ = 0. Proof. Identtes (a) and (b) follow respectvely from the fact that R α µνσ vanshes dentcally and that Λ α µν = Λ α νµ. Identty (e) results from Theorem 3.1 (a) together wth the fact that Λ α µν = Λ α νµ. The remanng denttes are trval because of the symmetry of the connectons ˆΓ α µν and Γ α µν. Proposton 3.5. The followng denttes hold: (a) S µ,ν,σ Λ α µν σ = 0. (b) S µ,ν,σ Rα µνσ = S µ,ν,σ (Λ ǫ µνλ α ǫσ). Proof. Takng nto account Theorem 3.4 (b) together wth Theorem 3.1 (a) we get S µ,ν,σ (Λ α νσ µ + Λǫ µν Λα ǫσ ) = S µ,ν,σ Λ α µν σ. By Theorem 3.4 (a), the left hand sde of the the above equaton vanshes and the frst dentty follows. The second dentty s a drect consequence of theorem 3.4 (b), takng nto consderaton dentty (a) above. The next result s crucal n smplfyng some of the denttes obtaned so far and n provng other nterestng results. 8

9 Theorem 3.6. The torson tensor satsfes the dentty S µ,ν,σ Λ ǫ µν Λα ǫσ = 0. Proof. Applyng the frst Banch dentty to ˆR µνσ α Theorem 3.1 (b), we get as expressed n 1 2 S µ,ν,σ (Λ α µν σ Λα µσ ν )+1 4 S µ,ν,σ (Λ ǫ µνλ α σǫ Λ ǫ µσλ α νǫ)+ 1 2 S µ,ν,σ Λ ǫ νσλ α µǫ = 0. ( ) Consderng each of the above three terms separately, and takng nto account Theorem 3.4 (a), we obtan respectvely 1 2 S µ,ν,σ (Λ α µν σ Λα µσ ν ) = 1 2 S µ,ν,σ (Λ α µν σ +Λα σµ ν ) = S µ,ν,σ Λ α µν σ = S µ,ν,σ Λ ǫ µν Λα σǫ, 1 4 S µ,ν,σ (Λ ǫ µν Λα σǫ Λǫ µσ Λα νǫ ) = 1 4 S µ,ν,σ (Λ ǫ µν Λα σǫ +Λǫ σµ Λα νǫ ) = 1 2 S µ,ν,σ Λ ǫ µν Λα σǫ and 1 2 S µ,ν,σ Λ ǫ νσ Λα µǫ = 1 2 S µ,ν,σ Λ ǫ µν Λα σǫ. The requred dentty results by substtutng the above three equatons nto ( ). Corollary 3.7. The followng denttes hold: (a) Λ α µν σ = Λα µν σ = Λα µνˆ σ. (b) S µ,ν,σ Λ α µν σ = 0. (c) S µ,ν,σ Rα µνσ = 0. (d) S µ,ν,σ, Λ α νµ βσ = S µ,ν,σ Λ ǫ σν Λα ǫµ β (Λα νµ βσ := Λα νµ β σ ). (e) S µ,ν,σ (γ α µν σ γα νµ σ ) = 0. Proof. Takng nto account Theorem 3.6, relaton (a) follows from Proposton 3.3 (a) and (b), whereas denttes (b) and (c) follow from Theorem 3.4 (a) and Proposton 3.5 (b) resp. Identty (d) follows from Theorem 3.4 (e) takng nto account Theorem 3.1 (a) together wth relaton (a) above. Fnally, the last dentty follows from dentty (b) above together wth the relaton Λ α µν = γα µν γα νµ. In vew of Theorem 3.6, the curvature tensor ˆR α µνσ can be further smplfed as revealed n Proposton 3.8. The curvature tensor ˆR µνσ α can be expressed n the form: ˆR µνσ α = 1 2 Λα σν µ Λǫ σν Λα ǫµ. 9

10 Proof. The curvature tensor ˆR α µνσ has the form (Theorem 3.1 (b)): ˆR α µνσ = 1 2 (Λα µν σ Λα µσ ν ) (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) (Λǫ σν Λα ǫµ ). Takng nto account dentty (b) n Corollary 3.7 and Theorem 3.6, we get ˆR α µνσ = 1 2 {(S µ,ν,σ Λ α µν σ ) Λα νσ µ } Λǫ νσλ α µǫ {(S µ,ν,ǫ Λ ǫ µν Λα σǫ ) Λǫ νσ Λα µǫ } = 1 2 Λα σν µ Λǫ σνλ α ǫµ. The formula obtaned for the curvature tensors R α µνσ n Theorem 3.1 s strkngly compact and elegant. The formula obtaned for ˆR α µνσ s however less elegant but stll relatvely compact. These two formulae, together wth the frst Banch dentty, enabled us to derve, n a smple way, the crucal denttes S µ,ν,σ Λ α µν σ = 0 and S µ,ν,σ Λ ǫ µν Λα ǫσ = 0 whch, n turn, smplfed the formula obtaned for ˆR α µνσ (whch s now more elegant). The last two denttes wll play an essental role n the rest of the paper. It should be noted however that a drect proof of these denttes s far from clear. Remark 3.9. All results and denttes concernng the connectons Γ α µν, Γ α µν and ˆΓ α µν (resp. the connecton Γ α µν) reman vald n the more general context n whch Γ α µν s a non-symmetrc lnear connecton on a manfold M (resp. a Remannan manfold (M, g)) wth vanshng curvature. 10

11 4 The Wanas Tensor (W-tensor) Let (M, λ) be an AP-space of dmenson n, whereλ are the n lnearly ndependent vector felds defnng the AP-structure on the manfold M. Let R µνσ α and Λ α µν be the curvature and the torson tensors of the dual connecton Γ α µν. Defnton 4.1. The tensor feld Wµνσ α of type (1,3) on M defned by the formula λ ǫ Wµνσ ǫ := λ µ νσ λ µ σν wll be called the Wanas tensor, or smply the W-tensor, of the AP-space (M, λ). The W-tensor has been frst defned by M.I Wanas [11] n 1975 and has been used by F. Mkhal and M. Wanas [9] n 1977 to construct a geometrc theory unfyng gravty and electromagnetsm. The next result gves qute a smple expresson for such a tensor. Theorem 4.2. Let (M, λ) be an AP-space. Then the W-tensor can be expressed n the form W α µνσ = Λα σν µ Λǫ σν Λα ǫµ, where Λ α µν s the torson tensor of the canoncal connecton Γα µν. Proof. Consder the commutaton formula wth respect to the connecton Γ α µν: λ µ νσ λ µ σν = λ ǫ Rǫ µνσ + λ µ ǫ Λǫ νσ. Multplyng both sdes by λ α, usng the defnton of the W-tensor together wth the defnton of Γ α µν and takng nto account Theorem 3.1 (a), we get W α µνσ = Λ α σν µ + λ α ( λ µ,ǫ λ β Γ β ǫµ)λ ǫ σν = Λ α σν µ + (Γα µǫ Γα ǫµ )Λǫ σν = Λ α σν µ Λǫ σνλ α ǫµ. Remark 4.3. The W-tensor can be also defned contravarantly as follows: λ µ Wµνσ α = λ α λ νσ α = λ σν ǫ Rα ǫσν + λ α Λǫ ǫ νσ. Ths defnton gves the same formula for the W-tensor as n Theorem 4.2. Proposton 4.4. The Wanas tensor has the followng propertes: (a) W α µνσ s skew symmetrc n the last par of ndces. 11

12 (b) W α µνσ β W α µνσ β = Λα σν µβ Λα σν µβ. Proof. The frst property s trval. The second property holds as a result of Theorem 4.2 together wth corollary 3.7 (a). Theorem 4.5. The W-tensor satsfes the followng dentty: S µ,ν,σ W α µνσ = 0. Proof. Follows drectly from Theorem 4.2, takng nto account Theorem 3.6 together wth Corollary 3.7 (b). The dentty satsfed by the W-tensor n Theorem 4.5 s the same as frst Banch dentty of the Remannan curvature tensor. The dentty correspondng to the second Banch dentty s gven by: Theorem 4.6. The W-tensor satsfes the followng dentty: S ν,σ,β W α µνσ β = S ν,σ,β {Λ ǫ νσ(λ α ǫβ µ + Λα ǫµ β )}. Proof. Takng nto account the second Banch dentty, Theorem 4.2, Theorem 3.1 (a) and Corollary 3.8 (a) and (b), we get S ν,σ,β W α µνσ β = S ν,σ,β { R α µνσ β (Λǫ σν Λα ǫµ ) β } = S ν,σ,β ( R α µνǫ Λ ǫ βσ Λǫ σν Λα ǫµ β ) = S ν,σ,β (Λ α ǫν µ Λǫ σβ Λα ǫµ β Λǫ σν ) = S ν,σ,β {Λ ǫ νσ(λ α ǫβ µ + Λα ǫµ β )}. We conclude ths secton by some comments: (1) The W-tensor s unque n the sense that t can be defned only n terms of the connecton Γ α µν. The same defnton usng the three other connectons gves nothng new. In fact, the commutaton formula for the connecton Γ α νµ s trval (snce λ α µ = 0), whereas the commutaton formulae for ˆΓ α µν and Γ α µν gve rse to ˆR α νµσ and R α µνσ respectvely (snce the torson tensor vanshes n the latter two cases.) (2) The vanshng of the torson tensor mples the vanshng of the W-tensor whch s equvalent to the commutatvty of successve covarant dfferentaton (of the vector feldsλ); a strkng property whch does not exst n Remannan geometry (or even n other geometres, n general). (3) The W-tensor has some propertes common wth the Remannan curvature tensor (for example, Proposton 4.4 (a) and Theorem 4.5). Nevertheless, there are sgnfcant devatons from the Remannan curvature tensor (for example, the vanshng of the W- tensor does not necessarly mply flatness). 12

13 (4) The expresson of the W-tensor comprses, n addton to the term contanng the curvature tensor R α µνσ, a term contanng a torson contrbuton. Thus, roughly speakng, the W-tensor expresses geometrcally the nteracton between curvature and torson. On the other hand, as gravty s descrbed n terms of curvature and electromagnetsm s descrbed n terms of torson [12], we can roughly say that the W-tensor expresses physcally the nteracton between gravty and electromagnetsm [9]. 5 The Sem-Symmetrc Case Defnton 5.1. Let M be a dfferentable manfold. A sem-symmetrc connecton on M s a lnear connecton on M whose torson tensor T s gven by [14] T α µν = δ α µw ν δ α ν w µ, for some scalar 1-form w µ. Sem-symmetrc connectons have been studed by many authors (cf. for example [1], [5], [15], [16]). In what follows, we consder an n- dmensonal AP-space (M, λ) wth the addtonal assumpton that the canoncal connecton Γ α µν s sem-symmetrc. Then, by Defnton 5.1, we have Λ α µν = δµw α ν δν α w µ. Moreover, t can be shown that [6] Γ α µν = Γ α µν + δ α µw ν g µν w α, where Γ α µν s the Remannan connecton defned n secton 2 and w α = g αµ w µ. Hence, γ α µν = δ α µw ν g µν w α. Theorem 5.2. The curvature tensors R α µνσ, ˆRα µνσ and R α µνσ of the connectons Γ α µν, ˆΓ α µν and Γ α µν are expressed n terms of w µ n the form (a) R α µνσ = δα σ w ν µ δ α ν w σ µ. (b) ˆR α µνσ = 1 2 (δα σ w ν µ δ α ν w σ µ) w µ(δ α σ w ν δ α ν w σ). (c) R α µνσ = δα µ (w ν σ w σ ν ) + (g µσ w α ν g µν w α σ) + 2w α (g µσ w ν g µν w σ ). Consequently, f R αµνσ = g αǫ Rǫ µνσ wth smlar expressons for ˆR αµνσ and R αµνσ, we get (a) Rαµνσ = g ασ w ν µ g αν w σ µ. 13

14 (b) ˆRαµνσ = 1 2 (g ασw ν µ g αν w σ µ ) w µ(g ασ w ν g αν w σ ). (c) Rαµνσ = g αµ (w ν σ w σ ν )+(g µσ w α ν g µν w α σ )+2w α (g µσ w ν g µν w σ ). Proof. The frst two relatons hold by substtutng Λ α µν n the formulae expressng R µνσ α (Theorem 3.1 (a)) and ˆR µνσ α (Proposton 3.8) respectvely. The thrd relaton holds by substtutng Λ α µν and γµν α n the formula expressng R α µνσ (Theorem 3.1 (c)). The remanng relatons are straghtforward. Proposton 5.3. Let Rµν = R α µνα and R = g µν Rµν, wth smlar expressons for ˆRα µνσ and R α µνα. Then (a) R µν = (n 1)w ν µ, R = (n 1)w µ µ. (b) ˆR µν = 1 4 (n 1)(2w ν µ + w µ w ν ), ˆR = 1 4 (n 1)(2wµ µ + w µ w µ ). (c) R µν = w ν µ g µν w σ σ + 2(w ν w µ g µν w σ w σ ), 2w µ w µ ). R = (1 n)(w µ µ + Proof. Follows drectly from the relatons obtaned n Theorem 5.2 by applyng the sutable contractons. Theorem 5.4. The second order covarant tensor w ν µ s symmetrc: w µ ν = w ν µ. Proof. Follows drectly from Proposton 5.3 (c) notng that R µν s symmetrc, beng the Rcc tensor of the Remannan connecton. Ths can be also deduced from Theorem 5.2 (c) notng that R µ µνσ = 0. A drect consequence of the above theorem s the followng Corollary 5.5. The followng propertes hold: (a) R µν and ˆR µν are symmetrc. (b) R µ µνσ = 0. (c) ˆR µ µνσ = 0. Theorem 5.6. The W-tensor has the form (a) W α µνσ = δα σ (w ν µ w µ w ν ) δ α ν (w σ µ w σ w µ ). (b) W αµνσ = g ασ (w ν µ w µ w ν ) g αν (w σ µ w σ w µ ) (W αµνσ = g αǫ W ǫ µνσ ). Proof. Follows drectly from Theorem 4.2 by substtutng the expresson of Λ α µν n terms w µ. Corollary 5.7. Let W µν = W ǫ µνǫ and W = g µν W µν. Then 14

15 (a) W µν = (n 1)(w ν µ w µ w ν ). (b) W = (n 1)(w µ µ w µ w µ ). (c) W µ µνσ = 0. Consequently, W µν s symmetrc. Comparng Corollary 5.7 (a) and Theorem 5.6 (a), we obtan Corollary 5.8. Let dm M 2. A suffcent condton for the vanshng of the W-tensor s that W µν = 0. Fnally, n vew of Theorem 1 of K. Yano [14], the followng result follows: Theorem 5.9. If the canoncal connecton Γ α µν of an AP-space s semsymmetrc, then the assocated Remannan metrc g µν s conformally flat. Specal case. In the followng we assume that the canoncal connecton Γ α µν s a sem-symmetrc connecton whose defnng 1-form w µ satsfes the condton w µ w ν = δ ν µ. It s easy to see that the above condton mples that w µ ν = 0 and that w µ w ν = g µν. Under the gven assumpton, the dfferent curvature tensors and the Wanas tensor, accordng to Theorems 5.2, 5.6, take the form R α µνσ = 0, ˆR α µνσ = 1 4 (δα σ g µν δ α ν g µσ ), R α µνσ = 2(δα ν g µσ δ α σ g µν), W α µνσ = δα ν g µσ δ α σ g µν. Consequently, W α µνσ = 4 ˆR α µνσ = 1 2 R α µνσ and Rαµνσ = 2(g αν g µσ g ασ g µν ). In ths case, the W-tensor becomes a curvature-lke tensor [7] and the above formulae mply the followng result: 15

16 Theorem Let the canoncal connecton Γ α µν of an AP-space (M, λ) be a sem-symmetrc connecton whose defnng 1-form w µ satsfes the condton w µ w ν = δµ. ν Then, all nonvanshng curvature tensors of (M, λ) concde, up to a constant, wth the W-tensor and the AP-space becomes a Remannan space of constant curvature. It should be noted that, n ths partcular case, the AP-character of the space recedes, whereas the Remannan aspects of the AP-space become domnant. Physcally speakng, the latter result seems to suggest that, n ths partcular case, electromagnetc effects are absent. Ths partcular case can thus be consdered, n some sense, as a lmtng case. References [1] O. C. Andone et D. Smaranda. Certanes connexons semsymétrque. Tensor, N.S., Vol. 31 (1977) [2] F. Brckell and R. S. Clark. Dfferentable manfolds. Van Nostrand Renhold Co., [3] A. Ensten. Unfed feld theory based on Remannan metrcs and dstant parallelsm. Math. Annal., 102 (1930), [4] K. Hayash and T. Shrafuj. New general relatvty. Phys. Rev. D 19 (1979), [5] T. Ima. Notes on sem-symmetrc metrc connectons. Tensor, N.S., Vol. 24 (1972), [6] T. Ima. Notes on sem-symmetrc metrc connectons. Tensor, N.S., Vol. 27 (1973), [7] S. Kobayash and K. Nomzu. Foundatons of dfferental geometry. Vol. I. Interscence Publshers, [8] F. I. Mkhal. Tedrad vector felds and generalzng the theory of relatvty. An Shams Sc. Bull., No. 6 (1962), [9] F. I. Mkhal and M.I. Wanas. A generalzed feld theory, I. Feld equatons. Proc. R. Soc. London, A. 356 (1977), [10] H. P. Robertson. Groups of moton n spaces admttng absolute parallelsm. Ann. Math, Prnceton (2), 33 (1932), [11] M. I. Wanas. A generalzed feld theory and ts applcatons n cosmology. Ph.D Thess. Caro Unversty, [12] M. I. Wanas and S.A. Ammar. Space-tme structure and electromagnetsm. Electroncally avalable at arxv.gr-qc/

17 [13] M. I. Wanas. Absolute parallelsm geometry: Developments, applcatons and problems. Stud. Cercet, Stn. Ser. Mat. Unv. Bacau, No. 10, (2001) [14] K. Yano. On sem-symmetrc metrc connecton. Rev. Roumane Math. Pures. Appl., T. 15 (1970), [15] N. L. Youssef. Connexons métrque sem-symétrques sembasques. Tensor, N.S., Vol. 40 (1983), [16] N. L. Youssef. Vertcal sem-symmetrc metrc connectons. Tensor, N.S., Vol. 49 (1990),

Extended Absolute Parallelism Geometry

Extended Absolute Parallelism Geometry Extended Absolute Parallelsm Geometry arxv:0805.1336v4 [math.dg] 5 Aug 2009 Nabl. L. Youssef and A. M. Sd-Ahmed Department of Mathematcs, Faculty of Scence, Caro Unversty, Gza, Egypt nlyoussef2003@yahoo.fr,

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv:0704.2001v1 [gr-qc] 16 Apr 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

arxiv: v2 [math.dg] 14 Oct 2017

arxiv: v2 [math.dg] 14 Oct 2017 Invarants of Thrd Type Almost Geodesc Mappngs of Generalzed Remannan Space arxv:1710.04504v2 [math.dg] 14 Oct 2017 Nenad O. Vesć Abstract e studed rules of transformatons of Chrstoffel symbols under thrd

Διαβάστε περισσότερα

arxiv: v1 [math.dg] 11 Oct 2017

arxiv: v1 [math.dg] 11 Oct 2017 NONUNIQUE INVARIANTS of Thrd Type Almost Geodesc Mappngs arxv:1710.04504v1 [math.dg] 11 Oct 2017 Nenad O. Vesć Abstract Famles of nvarants of specal almost geodesc mappngs of the thrd type are obtaned

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space Flomat 9:0 (05), 4 47 DOI 0.98/FI504Z ublshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba valable at: htt://www.mf.n.ac.rs/flomat On Integrablty Condtons of Dervaton Equatons n a Subsace

Διαβάστε περισσότερα

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007 1 LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/0604111v2 8 Feb 2007 Nabil L. Youssef and Amr M. Sid-Ahmed Department of Mathematics, Faculty of Science,

Διαβάστε περισσότερα

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces Gemetry f parallelzable manflds n the cntext f generalzed Lagrange spaces M.I. Wanas, Nabl L. Yussef and A.M. Sd-Ahmed Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds,

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010 MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng,

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces 1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv:0704.2001v2 [gr-qc] 30 Nv 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

arxiv:q-alg/ v1 21 Jul 1997

arxiv:q-alg/ v1 21 Jul 1997 NBI-HE-97-3 July 997 Explct Decompostons of Weyl Reflectons n Affne Le Algebras arxv:q-alg/970706v Jul 997 Jørgen Rasmussen The Nels Bohr Insttute, Blegdamsvej 7, DK-00 Copenhagen Ø, Denmark Abstract In

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα