LUGARES XEOMÉTRICOS. CÓNICAS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LUGARES XEOMÉTRICOS. CÓNICAS"

Transcript

1 LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo do plano π con e. b = 0 b > a b = a b < a π PASA POLO VÉRTICE π NON PASA POLO VÉRTICE punto circunferencia recta b = 0 b > a b = a b < a π PASA POR EL VÉRTICE punto punto recta V dos rectas que se cortan en V π NO PASA POR EL VÉRTICE circunferencia elipse parábola hipérbola Páxina. Determina as ecuacións dos seguintes lugares xeométricos: a) Mediatriz do segmento de extremos A(, ), B(7, ). Comproba que é unha recta perpendicular ao segmento no seu punto medio. b) Circunferencia de centro O(, ) e raio. Comproba que pasa pola orixe de coordenadas. c) Bisectrices dos ángulos formados polas rectas: r : x + y + = 0 r : x y + 6 = 0 Comproba que as bisectrices son dúas rectas perpendiculares que se cortan no mesmo punto ca r e r.

2 a) Los puntos X (x, y) deben cumplir dist (X, A) = dist (X, B): (x + ) + (y + ) = (x 7) + (y ) Elevamos al cuadrado y desarrollamos: x + 0x + + y + 6y + = x x + + y y + 0x + x + 6y + y + 0 = 0 8 x + 8y 6 = 0 x + y = 0 8 y = x + El punto medio de AB es M(, ) que, efectivamente, está en la recta (pues verifica la ecuación). La pendiente de la recta es m r =, y la del segmento es: ( ) m AB = = = 7 ( ) Cumplen que m r m AB = ( ) ( ) = 8 AB r b) Los puntos X(x, y) son tales que: dist (X, O) = 8 (x + ) + (y ) = 8 x + 6x + + y 8y + 6 = 8 8 x + y + x 8y + = 8 x + y + x 8y = 0 c) Son los puntos X (x, y): x + y + dist (X, r ) = dist (X, r ) 8 = 6 x y + 6 Se dan dos casos: (x + y + ) = 6 (x y + 6) (x + y + ) = 6 (x y + 6) Son dos rectas: b : ( ) x + ( + ) y + 6 = 0 Sus pendientes son: m = b : ( + ) x + ( ) y = 0 m = m m = = = 8 b b 6 Calculamos el punto de corte de las rectas iniciales y comprobamos que está también en ambas bisectrices: r : x + y + = 0 8 y = x r : x y + 6 = 0 ( 6 ) + 6 ( + 6 ) x + 0x = 0 8 x = 8 x = x ( x ) + 6 = 0 8

3 UNIDADE Luego: y = ( ) = 7 El punto de corte es (, 7), que se puede comprobar fácilmente que está en b y b sustituyendo en sus ecuaciones respectivas: b : ( ) ( ) + ( + ) = = = 0 b : ( + ) ( ) + ( ) = = = 0 Por tanto, b y b son dos rectas perpendiculares que se cortan en el mismo punto que r y r. 6 6 Páxina 7. Indica a ecuación da circunferencia de centro (, ) e raio. Comproba que pasa polo punto (0, 0). (x + ) + (y ) = 6 8 x + y + 0x y = 0 Si sustituimos x = 0, y = 0 en la ecuación, esta se verifica. Por tanto, la circunferencia pasa por (0, 0).. Cal é o lugar xeométrico dos puntos do plano cuxo cociente de distancias aos puntos M (6, 0) e N (, 0) é (é dicir, PM/ PN = )? Si P(x, y) es un punto del lugar geométrico, entonces: PM (x 6) = 8 + y PN = (x + ) + y (x 6) + y = [(x + ) + y ] x x y = [x + x + + y ] x x y = x + 6x y 8x + 8y + 8x = 0 x + y + 6x = 0 Es la circunferencia de centro (, 0) y radio. Páxina 8. Estuda a posición relativa da circunferencia C: x + y 6x y = 0 respecto ás rectas: s : x y 6 = 0 s : x 8y + 60 = 0 s : x y = 0 s : x = Indica os puntos de corte e de tanxencia, se os houbese.

4 C: x + y 6x y = 0 s : x y 6 = 0 ( y + 8 x = y x = y y y + y 8y y = y y +y 7y 68 6y 08 = y + 00y + 00 = 0 8 y +y + = 0 8 (y +) = y = (solución única) 6 x = ( ) + 8 x = 6 C y s son tangentes en el punto (6, ). C: x + y 6x y = 0 8 s : x 8y + 60 = 0 8 x = 8y 60 8 x = y 8 y + y 8 6 y y = 0 8 ( 6 ) ) ( ( + y 6 6 y + y = 0 8 ) ) 6 8 y + y + y y = y y + y y 00 = y 060y = 0 8 No tiene solución. s es exterior a la circunferencia C. C: x + y 6x y = 0 s : x y = 0 8 x = y + 8 x = y + y + + y ( 6 y + y = 0 8 ) ( ) 6 8 y y + y 8y y = y + + 8y +y 7y 8 6y 08 = y 00y = 0 8 y y y = 0 = 8 x = 7 y = 8 x = C y s son secantes en los puntos (7, ) y (, ). C: x + y 6x y = y 0 y = 0 8 y y 7 = 0 s : x = 6 ± 6 ( 7) ± 8 ± y = = = = ± C y s se cortan en los puntos (, + ) y (, ). y = + y =

5 UNIDADE. Para que valores de b a recta y = x + b é tanxente á circunferencia x + y =? La recta será tangente a la circunferencia si la distancia del centro de la circunferencia a la recta es igual al radio de la circunferencia. C: x + y = 8 O = (0, 0), R = r: y = x + b 8 x y + b = b b dist (O, r) = = = 8 b = ± + ( ). Di a posición relativa de C: x + y 6x + 8y = 0 respecto ás rectas: r : x + y = 0 r : x + y + 0 = 0 r : x y = 0 r : y = C: x + y 6x + 8y = 0 8 O = (, ), r = 0 dist (O, r ) = = 7,78 > 8 r es exterior a C. + + ( ) dist (O, r ) = = = < 8 r y C se cortan en dos puntos. 6 + ( ) dist (O, r ) = = = 8 r y C son tangentes dist (O, r ) = = = < 8 r y C se cortan en dos puntos. 0 + Páxina. Determina a potencia de P(, 8) ás circunferencias: C : x + y x + 0 = 0 C : O(, ), r = 0 Di se P é interior ou exterior a C e a C. C : x + y x + 0 = 0 8 O = (7, 0), r = 0 = C : O (, ), r = 0 P (, 8) P (P a C ) = (7 + ) + (0 8) ( ) = = > P es exterior a C. P (P a C ) = ( + ) + ( 8) (0) = + 00 = 0 < P es interior a C.

6 . Indica o eixe radical destas circunferencias: C : x + y x + y = 0 C : x + y 6y = 0 Comproba que é unha recta perpendicular á liña dos seus centros. Calculamos las potencias de un punto genérico P(x, y) a C y a C : P (P a C ) = x + y x + y = 0 P (P a C ) = x + y 6y = 0 Igualamos ambas expresiones: x + y x + y = x + y 6y 8 x +8y = 0 Ecuación del eje radical: x 8y + = 0 8 m = = 8 Centro de C 8 O = (, 6) Ä8 O O = (, ) 8 Centro de C 8 O = (0, ) 8 La pendiente de la recta que une O y O es m' =. Como m m' = ( ) ( ) =, el eje radical y la recta que une O y O son perpendiculares. Páxina. Indica a ecuación da elipse de focos F (, 0), F (, 0) e cuxa constante é 0. Unha vez posta a ecuación inicial, pasa unha raíz ao segundo membro, eleva ao cadrado (atención co dobre produto!), simplifica, illa a raíz, volve elevar ao cadrado e simplifica ata chegar á ecuación x + y =. Si P (x, y) es un punto de la elipse, entonces: dist (P, F ) + dist (P, F ) = 0 (x ) + y + (x + ) + y = 0 (x ) + y = 0 (x + ) + y Elevamos al cuadrado: (x ) + y = 00 + (x + ) + y 0 (x + ) + y Operamos: x 8x y = 00 + x + 8x y 0 (x + ) + y 0 (x + ) + y = 6x + 00 (x + ) + y = x + Elevamos al cuadrado: (x + 8x y ) = 6x + 00x + 6 Simplificamos: x + 00x y = 6x + 00x x + y = 6

7 UNIDADE. Indica a ecuación da hipérbole de focos F (, 0), F (, 0) e cuxa constante é 6. Simplifica coma no exercicio anterior ata chegar á expresión 6x y =. Si P (x, y) es un punto de la hipérbola, entonces: dist (P, F ) dist (P, F ) = 6 dist (P, F ) dist (P, F ) = ±6 (x ) + y (x + ) + y = ±6 (x + ) + y = ±6 + (x + ) + y Elevamos al cuadrado: x 0x + + y = 6 + x + 0x + + y ± (x + ) + y ± (x + ) + y = 0x + 6 ± (x + ) + y = x + Elevamos al cuadrado: (x + 0x + + y ) = x + 0x + 8 x + 0x + + y = x + 0x + 8 6x y =. Indica a ecuación da parábola de foco F (, 0) e directriz r: x =. Simplifica ata chegar á expresión y = x. Si P (x, y) es un punto de la parábola, entonces: dist (P, F) = dist (P, r) (x + ) + y = x Elevamos al cuadrado: x + x + + y = x x + Simplificamos: y = x Páxina. Unha elipse ten os seus focos nos puntos F (, 0) e F' (, 0) e a súa constante é k = 6. Indica os seus elementos característicos e a súa ecuación reducida. Represéntaa. Semieje mayor: k = 6 8 a = 6 8 a = Semidistancia focal: FF' = 0 8 c = 0 8 c = Semieje menor: b = a c = 6 = = = 8 b = c Excentricidad: = 0,8 8 a F' F 8 exc 0,8 x y Ecuación reducida: + = 6 7

8 Páxina. Representa e di a súa excentricidade: (x + ) (y ) + = 6 c = 6 = exc = 0,87. Representa e di a súa excentricidade: (x ) (y 7) + = 6 6 c = 6 6 = 8 8 exc = 0, Páxina 6. Unha hipérbole ten os seus focos nos puntos F (, 0) e F (, 0) e a súa constante é k = 6. Indica os seus elementos característicos e a súa ecuación reducida. Represéntaa. Semieje: k = a = 6 8 a = Semidistancia focal: F F = 0 8 c = Cálculo de b: b = c a 8 8 b = = 6 = 8 b = c Excentricidad: exc = = a,67 F F Asíntotas: y = x; y = x x y Ecuación reducida: = 6 8

9 UNIDADE Páxina 7 (x + ) (y ). Representa: = 6 (y 7) (x ). Representa: = Páxina 8. Indica a ecuación reducida da parábola de foco F (,; 0) e directriz x =,. Si P (x, y) es un punto de la parábola: dist (P, F) = dist (P, d), donde d es la directriz y F el foco. (x,) + y = x +, x x +, + y = x + x +, 8 De otra forma: Distancia del foco a la directriz: p = Ecuación reducida: y = 6x y = 6x

10 . Indica a ecuación reducida da parábola de foco F (0, ) e directriz y =. Si P (x, y) es un punto de la parábola: dist (P, F) = dist (P, d), donde d es la directriz y F el foco. x +(y ) = y + x + y y + = y + y + 8 x = 8y De otra forma: Distancia del foco a la directriz: p = Ecuación reducida: x = 8y 0

11 UNIDADE Páxina EXERCICIOS E PROBLEMAS PROPOSTOS PARA PRACTICAR Lugares xeométricos Indica, en cada caso, o lugar xeométrico dos puntos que equidistan de A e B. a) A(, ) B(, 0) b) A(, ) B(, ) c) A(, 7) B(, ) a) (x ) +(y +) = (x ) + y 8 8 x 0x + + y +6y + = x x + +y 8 8 6x +6y + 0 = 0 8 x + y + = 0. Es la mediatriz de AB. b) (x ) +(y ) = (x +) +(y ) 8 8 x 6x + = x +8x x 7 = 0 8 x + = 0 c) (x ) +(y 7) = (x ) +(y +) 8 8 y y + = y + y + 8 6y + 8 = 0 8 y = 0 Indica o lugar xeométrico dos puntos P(x, y) cuxa diferenza de cadrados de distancias aos puntos A(0, 0) e B(6, ) é. Que figura obtés? [dist (P, A)] [dist (P, B)] = x + y [(x 6) + (y ) ] = Desarrollamos y simplificamos: x + y x 6 + x y + 6y = 8 8 x + 6y 60 = 0 8 r: x + y 0 = 0 Veamos que la recta obtenida es perpendicular al segmento AB: 8 AB = (6, ) 8 pendiente: m AB = = 6 La pendiente de r es m r =. 8 m AB m r = ( ) = 8 AB r

12 Indica o lugar xeométrico dos puntos cuxa distancia á recta x y + = 0 é 6. O valor absoluto dará lugar a dúas rectas. x y + P (x, y) cumple que dist (P, r) = 6 8 = x y + = 0 r 8 x y + = : x y = 0 x y + = 0 r : x y + = 0 Son dos rectas paralelas entre sí y paralelas, a su vez, a la recta dada. Indica o lugar xeométrico dos puntos que equidistan das rectas: r: x y + = 0 s: x y + = 0 Interpreta as liñas obtidas. P (x, y) donde d (P, r) = d (P, s) 8 x y + x y + = 8 8 x y + = x y + 8 = Imposible!! x y + = x + y 8 6x 0y + = 0 8 r: x y + 7 = 0 Es una recta paralela a las dos rectas dadas que, a su vez, son paralelas entre sí, como puede verse por sus coeficientes, pues: A B C = =? = A' B' C' Indica as ecuacións das bisectrices dos ángulos que forman as rectas r e s: r: x y + 8 = 0 s: x + y 7 = 0 Son todos los puntos P (x, y) tales que d (P, r) = d (P, s): x y + 8 x + y 7 x y + 8 x + y 7 = 8 = 8 6 (x y + 8) = (x + y 7) 8 8 (x y + 8) = (x + y 7) x y + 0 = 60x + y 8 8 x y + 0 = 60x y + 8x + 6y = 0 x y + 6 = 0 Luego hay dos soluciones, bisectrices de los ángulos cóncavo y convexo que forman las rectas r y s. Ambas bisectrices se cortan en el punto de corte de las rectas r y s, y son perpendiculares. s r

13 UNIDADE Circunferencia 6 Cal é o lugar xeométrico dos puntos que distan unidades do punto P (, )? Represéntao graficamente e indica a ecuación. Es una circunferencia de centro P(, ) y radio. Ecuación:(x + ) +(y ) = x + y + 6x y = 0 (, ) 7 Escribe as ecuacións das circunferencias de centro C e raio r. a) C = (0, 0), r = b) C = (, 0), r = / c) C = (, /), r = / a) (x 0) +(y 0) = ( ) 8 x + y = b) (x ) +(y 0) = c) (x +) + y + ( ) ( ( 8 x + y 6x = 0 = 8 x + y + x +y + 6 = 0 8 Determina cales das seguintes expresións corresponden a circunferencias e, nelas, determina o centro e o raio: a) x + y 8x + y + 0 = 0 b) x y + x + y = 0 c) x + y + xy x + y 8 = 0 d) x + y 6x + = 0 e) x + y + 6x + 0y = 0 a) Los coeficientes de x e y son. No hay término en xy. A ( ) + ( B ) C = = 7 > 0 Es una circunferencia de centro (, ) y radio 7. b) Los coeficientes de x e y no son iguales. No es una circunferencia. c) Hay un término xy. No es una circunferencia. ) )

14 d) Los coeficientes de x e y son iguales y no tiene término en xy. Dividimos entre la igualdad: x + y 8x + = 0. A ( ) + ( B ) C = = > 0 Es una circunferencia de centro (, 0) y radio =. e) Los coeficientes de x e y son. No hay término en xy. A ( ) + ( B ) C = + 0 = > 0 Es una circunferencia de centro (, ) y radio. Escribe as ecuacións das seguintes circunferencias: a) Centro en C(, ) e pasa polo punto P(0, ). b) Un dos seus diámetros é o segmento AB onde A(, ) e B(, 6). c) Centro en C(, ) e é tanxente á recta x = 0. d) Centro en C(, ) e é tanxente á recta x + y = 0. 8 a) Radio = CP = (0 + ) + ( ) = Ecuación: (x +) +(y ) = b) Centro: Punto medio de AB , = (, ) AB 8 ( ) + (6 ) 0 Radio = = = = Ecuación: (x ) +(y ) = c) Radio: Distancia de C(, ) a la recta x = 0. R = = Ecuación: (x +) +(y + ) = + d) Radio: dist (C, r) = = = + Ecuación: (x ) +(y ) = ( ) Posicións relativas de rectas e de circunferencias 0 Estuda a posición da recta x + y = 0 con relación á circunferencia: x + y + 6x + y + 6 = 0 El centro de la circunferencia es C (, ) y su radio es r = + 6 = =.

15 UNIDADE Hallamos la distancia de C a la recta s: x + y = 0: d = dist (C, s) = = = =,8 > = r La recta es exterior a la circunferencia. Estuda a posición relativa da circunferencia x + y 6x y + = 0 respecto de cada unha das seguintes rectas: r : x y = 0 r : x + y = 0 r : x y + = 0 Hallamos el centro y el radio de la circunferencia: x 6x + +y y + = (x ) +(y ) = C (, ), R = Calculamos la distancia del centro a cada una de las rectas y la comparamos con el radio: dist (C, r ) = = < 8 r es secante. + + dist (C, r ) = = = > 8 r es exterior dist (C, r ) = = = 8 r es tangente. +( ) Para que valor de b a recta y = x + b é tanxente á circunferencia x + y =? El centro de la circunferencia es C (0, 0) y su radio es r =. Hallamos la distancia de C a la recta s: x y + b = 0: d = dist (C, s) = b Para que la recta sea tangente a la circunferencia, ha de ser d = r, es decir: b b = = 8 b = b = Calcula a distancia do centro da circunferencia x + y y = 0 á recta r: x y + = 0. Cal coidas que é a posición de r respecto á circunferencia? El centro de la circunferencia es C (0, ) y su radio es R =. La distancia de C a r es: + dist (C, r) = = 0,8 <, Luego la circunferencia y la recta son secantes.

16 Potencia dun punto a unha circunferencia Calcula a potencia dos puntos P(, ), Q(, ) e R(, 0) á circunferencia: C: x + y 6x y + = 0. Utilízao para estudar a posición relativa de P, Q e R respecto de C. C: x + y 6x y + = 0 8 O(, ), r = P (, ) 8 P = ( ) + ( ) = 0 = 0; por tanto, P pertenece a C. Q(, ) 8 P = ( ) + ( ) = < 0; por tanto, Q es un punto interior a C. R(, 0) 8 P = ( ) + (0 ) = 6 > 0; por tanto, R es un punto exterior a C. Páxina 6 Indica o eixe radical dos seguintes pares de circunferencias: a) C : (x + ) + (y ) = C : (x + ) + (y + ) = b) C : (x ) + (y ) = C : (x 6) + (y ) = c) C : (x + ) + (y + ) = C 6 : (x 6) + (y + ) = Represéntao. a) C : (x + ) + (y ) = 0 Igualamos: C : (x + ) + (y + ) = 0 (x +) +(y ) = (x +) +(y +) 8 8 y y + = y + y y 6 = 0 8 y =. Eje radical. C (, ) (, ) C y = b) C : (x ) + (y ) = 0 Igualamos: C : (x 6) + (y ) = 0 (x ) +(y ) = (x 6) +(y ) 8 x + x = x + 6 x x 7 = 0 8 x =. Eje radical. 8 C (, ) (6, ) 7 x = 8 C 6

17 UNIDADE c) C : (x + ) + (y + ) = 0 Igualamos: C 6 : (x 6) + (y + ) = 0 (x +) +(y +) = (x 6) +(y +) 8 8 x +8x y +6y + = x x y + y x + y = 0 8 x + y = 0. Eje radical. C 6 C (6, ) (, ) x + y = 0 Elipse 6 Determina os vértices, os focos, as excentricidades, e representa as elipses dadas polas súas ecuacións: x y a) + = 00 6 b) + = 6 00 c) x + y = d) x + y = x y a) Vértices: (0, 0); ( 0, 0); (0, 6) y (0, 6) Focos: c = 00 6 = 8 F (8, 0) y F'( 8, 0) 8 Excentricidad: exc = = 0, F' F 0 6 b) Vértices: (8, 0); ( 8, 0); (0, 0) y (0, 0) Focos: c = 00 6 = 6 = 6 F (0, 6) y F'(0, 6) 6 Excentricidad: exc = = 0,6 0 0 F 8 8 F' 0 7

18 c) x + y = 8 + = / Vértices: (, 0) ( ; ), 0 ; (0, ) y (0, ) Focos: c = = = 6 F (, 0) ( y F' ), 0 Excentricidad: exc = / = = 0,8 / x y F' F d) x + y = 8 + = / / Vértices: (, 0) ( ; ), 0 ; ( 0, ) y ( 0, ) Focos: c = = = 6 F ( ) 0, ( ) y F' 0, 6 x y 6 6 F F' 7 Indica as ecuacións das elipses determinadas dos modos seguintes: a) Focos (, 0), (, 0). Lonxitude do eixe maior, 0. b) F (, 0) e F' (, 0) e cuxa excentricidade é igual a 0,. c) Eixe maior sobre o eixe X, igual a 0. Pasa polo punto (, ). d) Eixe maior sobre o eixe Y e igual a. Excentricidade, /. a) c = ; a = 0 8 a = ; b = a c = = x y Ecuación: + = c c b) c = ; exc = = 0, 8 a = = = 6 a 0, 0, b = a c = 6 = 7 x y Ecuación: + = 6 7 8

19 UNIDADE x c) a = 0 8 a = ; + = b Como pasa por (, ) 8 + = 8 b + = b 8 b 8 6b = 8 b = 6 x x 6y Ecuación: y + =, o bien, + = /6 c d) exc = = 8 c = (a =, pues a = ) b = a c = = x x Ecuación: y + =, o bien, + y = / y 8 Indica a ecuación do lugar xeométrico dos puntos cuxa suma de distancias a P (, 0) e Q (, 0) é 0. Es una elipse de focos P(, 0) y Q(, 0), y constante k = 0, es decir, a = 0 y c =. Así: a = ; b = a c = 6 = x y La ecuación será: + = Escribe a ecuación da elipse que ten por focos os puntos F(0, ) e F'(0, ), e cuxa constante é igual a. Si P(x, y) es un punto de la elipse, entonces: dist (P, F ) + dist (P, F' ) = a, es decir: x +(y ) + x +(y +) = 8 8 x +(y ) = 6 + x +(y +) 8 x +(y +) 8 8 x + y y + = 6 + x + y +y + 8 x +(y +) 8 8 y 6 = 8 x +(y +) 8 (y + 6) = 6[x +(y +) ] 8 8 6y y = 6x +6y y 8 x y 8 = 6x + 8y 8 + =

20 De otra forma: El centro de la elipse es el punto medio del segmento que une F con F', es decir: (0, 0) Por otra parte: 8 c = dist (F, F') = F'F = (0, ) = 8 c = a = 8 a = 8 a = b = a c = = x y Por tanto, la ecuación es: + = 0 Determina a ecuación da elipse que pasa polo punto (, ) e que ten os seus focos en (, 0) e (, 0). x a y b La ecuación es: + = Como pasa por (, ) 8 + = a b Como a = b + c y sabemos que c = 8 a = b + 6 Teniendo en cuenta las dos condiciones anteriores: + = 8 b + b + 6 = b + 6b 8 b + 6b 6 = 0 b +6 b b 6 ± ± 00 = = = Así: a = + 6 = 8 Por tanto, la ecuación de la elipse será: + = 8 x 6 ± 0 y b = b = 8 (No vale) Hipérbole Indica os vértices, os focos, as excentricidades e as asíntotas, e debuxa as hipérboles dadas polas ecuacións: x a) y x = b) y = c) x y = d) x y = y x e) = f) y 6x = 6 6 g) x y = 6 h)x y + 6 = 0 0

21 UNIDADE a) a = 0, b = 6, c = a + b = 6 =, exc =,7 0 Vértices: (0, 0) y ( 0, 0) Focos: F (, 0) y F'(, 0) Asíntotas: y = x; y = x 6 F' 0 0 F 6 x b) y x y = 8 = 6 6/ 6 a =, b =, c = + / =, exc = = =, / Vértices: (, 0) ( y ), 0 Focos: F (, 0) ( ) y F', 0 Asíntotas: y = x; y = x F' F x y c) x y = 8 = / a =, b =, c = + / =, exc = =,

22 Vértices: (, 0) y (, 0). Focos: F (, 0) ( y F' ), 0 Asíntotas: y = x; y = x F' F x d) x y = 8 = a =, b =, c = + =, exc =, Vértices: (, 0) y (, 0) Focos: F(, 0) y F'(, 0) Asíntotas: y = x; y = x y F' F e) Vértices: (0, ) y (0, ) Focos: F(0, 0 ) y F'(0, 0 ) 0 exc =,6. Asíntotas: y = x; y = x F 6 6 F'

23 UNIDADE y f) y 6x = 6 8 = 6 Vértices: (0, ) y (0, ) x F Focos: F(0, 7 ) y F'(0, 7 ) 7 exc =,0 Asíntotas: y = x; y = x F' x y g) x y = 6 8 = Vértices: (, 0) y (, 0) Focos: F (, 0) y F'(, 0) exc =,80 Asíntotas: y = x; y = x F' F h) x y + 6 = 0 8 y x = 6 8 = 6 Vértices: (0, ) y (0, ) Focos: F ( 0, 0) y F'( 0, 0) 0 exc =, Asíntotas: y = x; y = x y x F F'

24 Indica as ecuacións das hipérboles determinadas dos modos seguintes: a) Focos (, 0), (, 0). Distancia entre vértices,. b) Asíntotas, y = ± x. Vértice, (, 0). c) Asíntotas, y = ± x. Pasa polo punto (, ). d) Focos (, 0), (, 0). Excentricidade,. a) c = ; a = 8 a = ; b = c a = 6 = La ecuación es: = b b b) a = ; = 8 = 8 b = a x Ecuación: y x y =, o bien, = / b c) = 8 b = a 8 = a a a Como pasa por (, ) 8 = 8 6 = a a a = a 8 a = 8 b = a = x Ecuación: y x y =, o bien, = / c d) c =, = = 8 a = a a b = c a = = 8 x x y Ecuación: = 8 y x y Indica o lugar xeométrico dos puntos cuxa diferenza de distancias a F' (, 0) e F (, 0) é 6. Es una hipérbola de focos F y F' y constante a = 6. Por tanto, a =, c =, b = c a = 6 = 7. x y La ecuación es: = 7

25 UNIDADE Determina a ecuación da hipérbole que ten por focos os puntos F (, 0) e F' (, 0) e que pasa polo punto P (8, ). Hallamos la constante de la hipérbola: dist (P, F ) dist (P, F' ) = a 8 8 FP F'P = a 8 (, ) (, ) = a = a 8 0 = a 8 = a 8 a = Como a = y c =, entonces b = c a = =. x y La ecuación es: = Parábola Determina os vértices, os focos e as directrices das seguintes parábolas, e represéntaas: a) y = 6x b) y = 6x c) y = x x d) y = e) y = (x ) f) (y ) = 8x g) x = (y + ) h)(x ) = 6y y a) = px p p = 6 8 p = 8 = y = 6x Vértice: (0, 0) Foco: (, 0) Directriz: x = F b) Vértice: (0, 0) Foco: ( ), 0 Directriz: x = F

26 c) Vértice: (0, 0) Foco: ( ) 0, Directriz: y = F d) Vértice: (0, 0) Foco: (0, ) Directriz: y = F e) Vértice: (, 0) Foco: (, 0) Directriz: x = 0 F f) Vértice: (0, ) Foco: (, ) Directriz: x = F g) Vértice: (0, ) Foco: (0, 0) F Directriz: y = 6

27 UNIDADE h) Vértice: (, 0) Foco: ( ), Directriz: y = F 6 Indica as ecuacións das parábolas determinadas dos seguintes modos: a) Directriz, x =. Foco, (, 0). b) Directriz, y =. Vértice, (0, 0). c) Vértice (0, 0) e pasa por (, ). ( solucións). p a) = 8 p = 0 8 p = 0. Ecuación: y = 0x b) El foco será F(0, ). Si P(x, y) es un punto de la parábola y d: y = 0 es la directriz, entonces: dist (P, F) = dist (P, d) 8 x +(y + ) = y 8 8 x + y + 6y + = y 6y + 8 x = y c) Hay dos posibilidades: I) Eje horizontal: y = px. Como pasa por (, ), entonces: = p 8 p = 8 y = x II) Eje vertical: x = py. Como pasa por (, ), entonces: = 6p 8 p = = 8 x = y 6 7 Indica o lugar xeométrico dos puntos que equidistan do punto (, 0) e da recta y =. Es una parábola cuyo foco es F(, 0) y cuya directriz es d: y + = 0. Si P(x, y) es un punto de la parábola, entonces: dist (P, F ) = dist (P, d) 8 (x ) + y = y + 8 O bien: (x ) = 6( ) y + 8 x 6x + + y = y + 6y + 8 y = x 6 x 7

28 8 Escribe a ecuación da parábola de foco F (, ) e directriz y + = 0. Si P(x, y) es un punto de la parábola, F(, ) el foco, y d: y + = 0 la directriz, entonces: dist (P, F ) = dist (P, d) 8 (x ) + (y ) = y (x ) + (y ) = (y + ) 8 8 (x ) + y y + = y + 6y (x ) = 8y (x ) = 8(y + ) Páxina 7 PARA RESOLVER Identifica as seguintes cónicas, calcula os seus elementos característicos e debúxaas: a) x + y = 6 b) 6x y = c) x + y = d) x y = 6 e) y = x f)x + y = 00 x a) x + y = = Es una elipse 8 a =, b =, c = exc = 0,7 x y y b) 6x y = 8 = 6 F' F Es una hipérbola 8 a =, b =, c = ; exc =,67 Asíntotas: y = x ; y = x F' F 8

29 UNIDADE c) x + y = 8 x + y = Es una circunferencia de centro (0, 0) y radio. / / / / x y d) x y = 6 8 = 6 Es una hipérbola 8 a =, b =, c = ; exc = =, Asíntotas: y = x ; y = x F' F e) Es una parábola. Vértice: (0, 0) 7 Foco: (, 0) Directriz: x = 7 F

30 f) x + y = 00 8 = 6 / x y Es una elipse 8 a = 6, b =, c = exc = 0, / 6 F' F 6 / 0 Escribe a ecuación dunha elipse con centro na orixe de coordenadas e focos no eixe de abscisas, se sabes que pasa polo punto P (8, ) e que o seu eixe maior é igual ao dobre do menor. El eje mayor es igual al doble del menor, es decir: a = b. Además, pasa por el punto P(8, ). Luego: x a y + = = = 8 = 8 b b b b b b 8 = b ; a = b = 00 x y La ecuación es: + = 00 Indica a ecuación da hipérbole de centro na orixe de coordenadas e os focos no eixe de abscisas, se sabes que pasa polo punto P ( /, ) e que unha das asíntotas é a recta y = x. b La pendiente de la asíntota es = 8 b = a a x y Luego = es la ecuación. a a Como pasa por el punto P( /, ), entonces: / = 8 0 = a 8 = a 8 a = a a 8 b = a = x La ecuación será: y x y =, es decir: = / 0

31 UNIDADE Chámaselle hipérbole equilátera a aquela en que a = b. Indica a ecuación da hipérbole equilátera cuxos focos son (, 0) e (, 0). La ecuación será: = Como c = a + b, y sabemos que c = y que a = b, entonces: = a 8 a = Por tanto, la ecuación es: =, o bien, x y = / / Indica a ecuación da hipérbole cuxas asíntotas son as rectas y = ± x e os focos (, 0) e (, 0). Si los focos son (, 0) y (, 0), entonces c =. b Si las asíntotas son y = ± x, entonces: = a Como c = a + b, tenemos que a + b =. Teniendo en cuenta los dos últimos resultados: b = a a + b = x a y a x y a a + a = 8 = 8 a = a = = 8 b = a = 7 7 x Por tanto, la ecuación será: y 7x 7y =, o bien, = 0/7 8/7 0 8 Determina as ecuacións das seguintes parábolas: a) Foco (0, 0); directriz y =. b) Foco (, 0); directriz x =. c) Foco (, ); vértice (, ). a) Si P(x, y) es un punto de la parábola, debe cumplir: dist (P, F) = dist (P, d); donde F es el foco y d la directriz. x + y = y + 8 x + y = y + y + 8 x = (y + ) b) Si P(x, y) es un punto de la parábola: dist (P, F) = dist (P, d); siendo F el foco y d la directriz. (x ) + y = x + 8 x x + + y = x + x + ( ) y = 6x 8 y = 6 x

32 c) Si el foco es F(, ) y el vértice es ( ),, la directriz tiene que ser la recta d: y = 0, ya que la distancia del vértice al foco ha de ser igual a la distancia del vértice a la directriz. Así, si P(x, y) es un punto de la parábola: dist (P, F) = dist (P, d) (x ) + (y ) = y 8 (x ) + y y + = y (x ) = y 8 (x ) = ( ) y Aplica dous métodos diferentes que permitan decidir se a recta r: x + y 8 = 0 é exterior, tanxente ou secante á circunferencia: (x 6) +(y ) = MÉTODO I Calculamos la distancia del centro de la circunferencia, O(6, ), a la recta r: dist (O, r) = = = + Como coincide con el radio de la circunferencia, son tangentes. MÉTODO II Resolvemos el sistema formado por las dos ecuaciones: x +y 8 = 0 8 y x = x x y 6y + = 0 x x + y 6y + 0 = 0 8 y 8 y ( ) + y 6y + 0 = 0 6 8y +y 6y y 6y + 0 = y +y + y 8 + 6y 6y + 0 = 0 y = 0 8 y = 0 8 y x = = Por tanto, hay un único punto de corte entre la circunferencia y la recta, P(, 0); es decir, son tangentes. 6 Indica os puntos de intersección de cada parella de circunferencias e di cal é a súa posición relativa: x x a) + y 6x 6 = 0 b) + y 6x y + = 0 x + y = x + y 6x + y + = 0

33 UNIDADE a) x + y 6x 6 = 0 x + y = 6x 6 = 0 8 6x = 8 x = +y = 8 y = 0 8 y = 0 Las circunferencias se cortan en el punto (, 0). La primera circunferencia tiene centro en (, 0) y radio ; la segunda tiene centro en (0, 0) y radio. La distancia entre sus centros es d =. Como la diferencia entre sus radios es = = d, las circunferencias son tangentes interiores. b) x + y 6x y + = 0 x + y 6x + y + = 0 Restando a la. a ecuación la. a : 6y = 0 8 y = 0 x 6x + = 0 8 (x ) = 0 8 x = Las circunferencias se cortan en el punto (, 0). La primera circunferencia tiene su centro en (, ) y radio ; la segunda tiene su centro en (, ) y radio. La distancia entre sus centros es d =, igual que la suma de sus radios. Por tanto, las circunferencias son tangentes exteriores. 7 Describe as seguintes cónicas. Obtén os seus elementos e debúxaas. (x ) a) (y + ) + (x ) = b) (y + ) + = (x ) (y + ) (y + ) (x ) c) = d) = 6 6 a) Es una elipse de centro P(, ). a =, b = c = a b = = 6 = Los focos son F(7, ) y F'(, ). F' P F La excentricidad es: exc = = 0,8 b) Es una elipse de centro P(, ). a =, b =, c = Los focos son F(, ) y F'(, 6). La excentricidad es: exc = = 0,8 F P F'

34 c) Es una hipérbola de centro P(, ). a =, b =, c = 6 + = 0 = Los focos son: F( +, ) y F'(, ) La excentricidad es: exc = =, Las asíntotas son: y + = (x ); y + = (x ) F' F d) Es una hipérbola de centro P(, ). b =, a =, c = 0 = F Los focos son: F(, + ) y F'(, ) La excentricidad es: exc = = Las asíntotas son: y + = (x ); y + = (x ) F' 8 a) Indica a ecuación da circunferencia cuxo centro é C (, ) e que é tanxente á recta x y = 0. b) De todas as rectas paralelas á bisectriz do primeiro cuadrante, encontra as que sexan tanxentes á circunferencia determinada na epígrafe anterior. a) El radio, r, de la circunferencia es la distancia del centro C (, ) a la recta s: x y = 0; es decir: 0 r = dist (C, s) = = = + 6 La ecuación será: (x + ) +(y ) =, o bien, x + y + x y = 0 b) Las rectas paralelas a la bisectriz del primer cuadrante son de la forma y = x + k, es decir, t: x y + k = 0. La recta t es tangente a la circunferencia cuando la distancia del centro de la circunferencia, C (, ), a la recta es igual al radio,. Es decir: + k k dist (C, t) = = 8 = 8 8 k = k = 8 k = 8 k = + k = Hay dos rectas: y = x + + y = x +

35 UNIDADE Indica a ecuación da circunferencia cuxo centro é o punto C (, ) e unha de cuxas rectas tanxentes ten por ecuación x y = 0. Determina se o punto X (, ) é interior, é exterior ou está na circunferencia. El radio, r, de la circunferencia es igual a la distancia del centro, C (, ), a la recta s: x y = 0; es decir: 6 r = dist (C, s) = = 6 + La ecuación es: (x ) +(y ) =, o bien, x + y 6x y = x + y 0x 00y = 0 Veamos si X(, ) es interior, exterior o está en la circunferencia: 8 dist (C, X) = CX = (0, ) = > radio = Luego el punto es exterior a la circunferencia. 0 a) Considera o lugar xeométrico dos puntos do plano que son centro das circunferencias que pasan polos puntos P (, 0) e Q (0, ). Determina a súa ecuación. b) A orixe de coordenadas pertence a unha circunferencia de lonxitude 6π. Calcula o centro desta circunferencia se impoñemos que debe ser un punto do lugar definido en a). a) Si C (x, y) es el centro de la circunferencia, la distancia de C a P y a Q ha de ser la misma, es decir: dist (C, P) = dist (C, Q) PC = QC y (x ) + y = x +(y ) Q x 8x y = x + y y x y = 0 Obtenemos una recta, que es la mediatriz del segmento PQ. P x b) Longitud = πr = 6π 8 radio = r = Su centro está en un punto de la recta x y = 0 y pasa por el punto P(0, 0). El centro es de la forma C (x, x ): 8 r = dist (P, C) = PC = x +(x ) = x +x x + = 8 x x = 0 Hay dos soluciones: C (0, ) y C (, ) x = 0 x = /

36 Determina as ecuacións das seguintes circunferencias: a) Pasa polos puntos A(, 0), B(0, ) e mais C(, ). Mira o problema resolto. b) Pasa pola orixe de coordenadas e polos puntos A (, 0) e B (0, ). c) Ten o seu centro na recta x y = 0 e pasa polos puntos (, ) e (, 6). d) Pasa polos puntos (, ) e (, ) e ten o centro na recta x + y =. a) El centro pertenece a la mediatriz de AB. Ecuación de la mediatriz de AB: (x +) + y = x +(y ) 8 x +y = 0 También pertenece a la mediatriz de AC: Ecuación: (x +) + y = (x +) +(y ) 8 x +y = 0 Resolviendo el sistema: x +y = 0 x +y = 0 ( ) 8 Centro:,. Radio: AC = Ecuación: (x +) + ( y ) x = y = / = 8 x + y +x y + = 0 b) El centro pertenece a la mediatriz del segmento que une O(0, 0) y A(, 0), es decir, pertenece a la recta x =. También pertenece a la mediatriz del segmento que une O(0, 0) y B(0, ), es decir, pertenece a la recta y =. Por tanto, el centro de la circunferencia es C ( ),. El radio es la distancia del centro a cualquiera de los tres puntos: 8 r = dist (C, O) = OC = + = = La ecuación es: (x ) + ( y ) =, o bien, x + y x y = 0 c) Si el centro está sobre la recta x y = 0, es de la forma C(y, y). El centro está a igual distancia de A(, ) que de B(, 6). Además, esta distancia es el radio, r, de la circunferencia: r = dist (A, C ) = dist (B, C ) 8 AC = BC (y + ) +(y ) = (y ) + (y 6) 6

37 UNIDADE y + + 6y + y + 6 8y = y + 8y + y + 6 y 8y = 8 8 y = 8 x = y = Por tanto, el centro de la circunferencia está en C (, ), y su radio es: r = AC = 6 + = = La ecuación es: (x ) +(y ) =, o bien, x + y 6x y = 0 d) Si el centro está en la recta x + y =, es de la forma C ( y, y). El centro está a igual distancia de A(, ) y de B(, ). Además, esta distancia es el radio, r, de la circunferencia: 8 8 r = dist (A, C) = dist (B, C) 8 AC = BC 8 8 ( y) +(y ) = ( y) +(y ) y 8y + y + 6y = y + y + 0y = 0y +8y +6y 8 = y 8 y = 8 x = y = Por tanto, el centro de la circunferencia está en C(, ), y su radio es: 8 r = AC = 8 +0 = 8 La ecuación es: (x ) +(y ) = 6 Páxina 8 8 Calcula a ecuación da elipse cuxos focos son os puntos F (, ) e F' (, ) e cuxa excentricidade é igual a /. El centro de la elipse es el punto medio entre los focos: + + (, ) = (, ) La semidistancia focal es c =. c La excentricidad es exc = = = a a 8 a = 6 Obtenemos b 8 b = a c = 6 = (x ) (y ) La ecuación es: + = 6 F F' 7

38 A parábola y y 6x = 0 ten por foco o punto (0, ). Encontra a súa directriz. y y = 6x + 8 y y + = 6x (y ) = 6 ( ) x + El vértice de la parábola es V (, ). Como el foco es F(0, ), entonces la directriz es x =. V F Indica a ecuación do lugar xeométrico de todos os puntos do plano tales que a súa distancia ao punto (, 0) é o dobre da súa distancia á recta x =. Comproba que ese lugar xeométrico é unha cónica e indica os seus focos. Sea P(x, y) uno de los puntos del lugar geométrico. La distancia de P al punto Q(, 0) ha de ser el doble que la distancia de P a la recta s: x = 0; es decir: dist(p, Q) = dist(p, s) 8 (x ) + y = x (x ) + y = (x ) 8 x 8x y = (x x + ) x 8x y = x 8x + 8 x y = 8 = Es una hipérbola, centrada en (0, 0). a = ; b = 8 c = a + b = 6 8 c = Por tanto, los focos son F (, 0) y F (, 0). x y Determina a ecuación do lugar xeométrico dos puntos cuxa distancia ao punto (, 0) é igual á metade da distancia á recta x 6 = 0. Representa a curva que obtés. Sea P(x, y) uno de los puntos del lugar geométrico. La distancia de P a (, 0) ha de ser igual a la mitad de la distancia de P a la recta x 6 = 0; es decir: (x ) + y = x 6 (x ) + y = (x 6) x 8x y = (x x + 6) x x y = x x + 6 x + y = 8 + = 6 8 Es una elipse, en la que a = 8 y b = 8 6,. x y 8

39 UNIDADE La representamos: Los focos están en F(, 0) y F '(, 0). c La excentricidad es: exc = = = = 0, a F' F Indica o lugar xeométrico dos puntos P (x, y) tales que o produto das pendentes das rectas trazadas desde P aos puntos: A (, ) e B (, ) sexa igual a. Que figura obtés? Represéntaa. y La pendiente de la recta que une P con A es: x + y + La pendiente de la recta que une P con B es: x El producto de las pendientes ha de ser igual a, es decir: y ( ) ( ) y + = 8 y = 8 y = x x + x x x y = 8 = Es una hipérbola, en la que a = b = y c = 6. Los focos son F ( 6, 0) y F ( 6, 0). Las asíntotas son: y = x e y = x c 6 La excentricidad es: exc = = =, a y x F' F

40 7 a) Determina o lugar xeométrico de todos os puntos P(x, y) do plano cuxa suma de cadrados de distancias aos puntos A(, 0) e B(, 0) é 68. Podes comprobar facilmente que se trata dunha circunferencia de centro O(0, 0). Cal é o seu raio? b) Xeneraliza: Indica o lugar xeométrico dos puntos do plano cuxa suma de cadrados de distancias a A( a, 0) e B(a, 0) é k (constante), e comproba que se trata dunha circunferencia de centro O(0, 0). Di o valor do seu raio en función de a e de k. Que relación deben cumprir os parámetros a e k para que realmente sexa unha circunferencia? a) [dist (A, P)] + [dist (B, P)] = 68 8 (x + ) + y + (x ) + y = x + 6x + + y + x 6x + + y = x + y = x + y = x + y =, que es la ecuación de una circunferencia de centro P (0, 0) y radio r =. Comprobemos que, efectivamente, se trata de esa circunferencia. Despejamos y 8 y = x 8 P (x, y) = (x, x ) Debe verificarse que: Es decir, que: x + y dist (O, P) = r = 8 x + ( x ) = 8 = Por tanto, como se cumple la condición, podemos asegurar que se trata de esa circunferencia. b) [dist (A, P)] + [dist (B, P)] = k 8 (x + a) + y + (x a) + y = k 8 8 x + ax + a + y + x ax + a + y = k 8 8 x + y = k a 8 x + y k = a que es la ecuación de una circunferencia de centro (0, 0) y radio: k r = a Para que realmente sea una circunferencia, debe ocurrir que r > 0. Por tanto, debe verificarse: k a > 0 8 k > a 0

41 UNIDADE 8 Asocia cada unha das seguintes ecuacións a unha das gráficas que se mostran a continuación: x a) + = b) x + = c) + = x x d) + y = e) x y + y = f ) = g) y = h) + y = 0 i ) y = 0 x y x x j) y = 0 k) x y = l ) xy = y x x y I II DOS RECTAS y = x a) VI UNA RECTA III (0, 0) IV V VI y = x b) V c) IV UN PUNTO d) I VII VIII e) VIII f) XI IX X g) XII h) III i) II XI XII j) VII k) IX l) X

42 Páxina REFLEXIONA SOBRE A TEORÍA Un segmento PQ de cm de lonxitude móvese apoiándose tanxencialmente sobre a circunferencia x + y x + 6y + = 0. Se o extremo P é o punto de tanxencia, cal é o lugar xeométrico que describe o outro extremo Q? La circunferencia dada tiene su centro en (, ) y su radio es + =. Como la tangente es perpendicular al radio, la distancia de Q al centro será siempre la misma: x = + = Por tanto, Q describe una circunferencia con el mismo centro que la dada y radio. P Q x Su ecuación será: (x ) +(y + ) = ; o bien x + y x + 6y = 0 0 Pon a ecuación do lugar xeométrico dos puntos P (x, y) que equidistan do punto F (6, ) e da recta r: x y = 0. (Encontrarás unha ecuación complicada. Non te molestes en simplificala). De que figura se trata? Para responder esta pregunta, fíxate en como se definiu e non en cal é a súa ecuación. Representa r e F. Como haberá que situar uns novos eixes coordenados para que a ecuación desa curva sexa y = kx? Canto vale k? Ecuación: (x 6) + (y + ) = x y El lugar geométrico de los puntos que equidistan de un punto (foco) y de una recta (directriz) es una parábola. La ecuación de la parábola respecto a los nuevos ejes es y = px, donde p es la distancia del foco a la directriz: dist (F, r) = = = + 6 Si p =, entonces k = 8.

43 UNIDADE La ecuación es y = 8x respecto a los nuevos ejes. r F NUEVO EJE Y NUEVO EJE X Dúas circunferencias córtanse nos puntos (0, 0) e (0, 8). Cal é o seu eixe radical? Xustifica a resposta. Su eje radical será la recta que pasa por los puntos (0, 0) y (0, 8); es decir: x = 0. PARA AFONDAR Indica a ecuación da circunferencia inscrita no triángulo de lados: y = 0 x y = 0 x + y 0 = 0 x y = 0 6 r (8, 6) P(x, y) (0, 0) (,; 0) y = 0 6 r x + y 0 = 0 6 r Si P(x, y) es el centro de la circunferencia, entonces: dist (P, r ) = dist (P, r ) 8 x y = y 8 y = x y y = x y 8 y = x 8 x = y y = x + y 8 y = x 6 No vale; la bisectriz que buscamos es la otra. dist (P, r ) = dist (P, r ) 8 x + y 0 = y 8 y = x + y 0 y = x + y 0 8 y = x 6 No vale; es la otra bisectriz. y = x y x + y =

44 El punto de corte de las dos bisectrices es el incentro, es decir, el centro de la circunferencia inscrita en el triángulo. x = y x + y = El centro es P (, ). El radio es dist (P, r ) = y = = radio x x + + y y + = La ecuación es: ( x ) + ( y ) = ; o bien: x + y x y + = 0 8 x + y 60x 0y + = 0 Indica a ecuación da circunferencia que pasa por (, ) e (, ) e é tanxente ao eixe OX. Si P(x, y) es el centro de la circunferencia, y llamamos a los puntos A(, ) y B(, ); la distancia de P a los dos puntos y al eje OX ha de ser la misma. Además, esta distancia es igual al radio de la circunferencia. dist [P, eje OX] = y dist (P, A) = (x +) +(y ) dist (P, B) = (x ) +(y ) 6y + y = 8 0y = 8 y = = 0 x = y = han de ser iguales. (x +) +(y ) = (x ) +(y ) x + 6x + + y y + = x 8x y y + x y = 0 8 7x y = 0 8 y = 7x (x +) +(y ) = y x + 6x + + y y + = y x + 6x (7x ) + = 0 x + 6x 8x = 0 8 x x + = 0 ± 8 8 ± 00 x = = = ± 0 x = 8 y = x = 8 y = Hay dos soluciones:. a ) Centro (, ) y radio : (x ) +(y ) = 0; o bien: x + y x 0y + = 0

45 UNIDADE. a ) Centro (, ) y radio : (x ) + (y ) = ; o bien: x + y x 0y + = 0 Determina a ecuación da circunferencia de raio 0 que, no punto (7, ), é tanxente á recta x y = 0. El centro pertenece a la recta perpendicular a la dada que pasa por (7, ). Una recta perpendicular a x y = 0 es de la forma x + y + k = 0. Como (7, ) pertenece a la recta: k = 0 8 k =. El centro pertenece a la recta: x + y = 0 8 y = x + La distancia de C al punto (7, ) es igual al radio, que es 0, es decir: x + (x 7) + ( ) = 0 El centro es C ( x, ). x + (x 7) + ( ) = 00 x + x 6x x + + x + 78 = 00 x 6x + + 6x x + 78 = 00 x 0x + = 0 8 x x + = 0 ± 6 ± ± x = 8 y = 6 x = = = x = 8 y = 0 Hay dos soluciones:. a ) Centro (, 6) y radio 0: (x ) +(y + 6) = 00 8 x + y 6x + y + 0 = 0. a ) Centro (, 0) y radio 0: (x ) + (y 0) = 00 8 x + y x 0y + = 0 Indica a ecuación da parábola de vértice no punto (, ) e que pasa polo punto (, ). Hay dos posibilidades: ) (y ) = p (x ) Como pasa por (, ) 8 = p 8 p = (y ) = (x )

46 ) (x ) = p'(y ) Como pasa por (, ) 8 = p' 8 p' = (x ) = (y ) 6 Indica os vértices, os focos e a excentricidade das cónicas seguintes: a) x + 6y 6x + 6y + 6 = 0 b) x y x = 0 c) x + y + 6y + 7 = 0 a) x + 6y 6x + 6y + 6 = 0 x 6x y + 6y = 0 (x 6) +(y + ) = 0 [(x )] + [(y + )] = (x ) + 6(y + ) = (x ) (y + ) + = 6 Es una elipse de centro (, ). a =, b =, c = a b = 7 Vértices: (6, ); (, ); (, 0) y (, 6) Focos: ( + 7, ) y ( 7, ) c 7 Excentricidad: exc = = 0,66 a b) x y x = 0 x x + y = 0 (x ) y = (x ) y = 6

47 UNIDADE Es una hipérbola de centro (, 0). a =, b =, c = + = Vértices: (, 0) y (, 0) Focos: ( +, 0) y ( +, 0) Excentricidad: exc =, c) x + y + 6x + 7 = 0 x + (y + y) + 7 = 0 x + (y + ) = 0 x + (y + ) = x (y + ) + = Es una elipse con a =, b =, c = 8. Vértices: (, 0), (, 0), (0, ), (0, ) Focos: ( 0, 0), ( 0, 0) c 8 Excentricidad: exc = = 0, a 7

48 Páxina AUTOAVALIACIÓN. Determina a ecuación da bisectriz dos ángulos formados polas seguintes rectas: r : x = r : x y + = 0 Los puntos X (x, y) deben cumplir: dist (X, r ) = dist (X, r ) dist (X, r ) = x x y + dist (X, r )= + x = x y + Eliminando los valores absolutos obtenemos dos ecuaciones, las que corresponden a las dos bisectrices, perpendiculares entre sí: (x ) = x y + 8 x + y 6 = 0 8 x + y 8 = 0 (x ) = x y + 8 8x y = 0 8 x y 7 = 0. Escribe a ecuación da circunferencia cuxo centro é o punto C(, ) e que pasa polo punto A(, 0). La ecuación de la circunferencia es de la forma (x ) +(y +) = r. Para determinar r, sustituimos A (, 0) en la ecuación: ( ) + = r 8 r = La ecuación de la circunferencia es, por tanto, (x ) +(y +) =. O, en su forma simplificada, x + y x + 6y = 0.. Consideramos a circunferencia x + y x = 0 e a recta x y + k = 0. Calcula os valores que debe tomar k para que r sexa interior, tanxente ou exterior á circunferencia. Hallamos primero el centro, O C, y el radio, R, de la circunferencia: x + y x = 0 8 (x ) + y = 8 O C = (, 0) y R = Calculamos la distancia del centro de la circunferencia, O C, a la recta r: x y + + k = 0: 0 + k d = dist (O C, r) = = + + k 8

49 UNIDADE Para que r sea interior a la circunferencia, ha de ser d < R =. + k + k < 8 k < < 8 Es decir, k é ( 8, ). + k + k < 8 > 8 k > 8 Para que r sea tangente a la circunferencia, ha de ser d = R =. + k = 8 + k = 8 k = + k = 8 k = 8 Para que r sea exterior a la circunferencia, ha de ser d > R =. + k + k > 8 k > > 8 Es decir, + k + k > 8 < 8 k < 8 k é 8) «(, +@).. Dados os puntos F(, ) e F'(, ) e a recta r: x + y = 0, obtén as ecuacións de: a) A elipse de focos F e F' cuxa constante é. b) A hipérbole de focos F e F' cuxa constante é 6. c) A parábola de foco F e directriz r. Non é necesario que simplifiques a expresión da ecuación. a) Elipse de focos F (, ) y F'(, ) y constante k = 6. Semieje mayor, a: k = 6 = a 8 a = FF' ( ) +( ) 0 Semidistancia focal, c = = = = Semieje menor, b: b = a c = = 8 b = Por tanto, la ecuación de la elipse es + =. b) Hipérbola de focos F (, ) y F'(, ) y constante k =. Semieje a: k = = a 8 a = FF' Semidistancia focal, c = = c = a + b 8 b = c a = = 8 b = Por tanto, la ecuación de la hipérbola es =. x x y y

50 c) Parábola de foco F (, ) y recta directriz r: x + y = 0. En una parábola de ecuación y = px, p = dist (F, r): + p = = = = + Por tanto, la ecuación de la parábola es y = x.. Describe as seguintes cónicas. Obtén os seus elementos e debúxaas: x y a) = 6 (x ) (y + ) b) = 6 x y a) = 6 Es una hipérbola en la que: a =, b = Asíntotas: y = x, y = x Semidistancia focal: c = a + b = Focos: F (, 0) y F'(, 0) Vértices: V (, 0) y V'(, 0) Y F' O F X (x ) (y + ) b) = 6 Es una hipérbola igual a la del apartado anterior pero centrada en el punto (, ). a =, b =, c = 7 Asíntotas: y = x ; y = x + Focos: F (0, ), F'(0, ) Vértices: V (8, ), V'(, ) O Y F' F X 6. Obtén a ecuación da elipse de focos F(, 0) e F'(, 0) e excentricidade 0,8. F (, 0) F'(, 0) exc = 0,8 FF' c = = 0

51 UNIDADE c exc = = = 0,8 8 a = a a b = a c = 6 = 8 b = x y La ecuación de la elipse es + =. 7. Indica os focos, a excentricidade e as asíntotas da hipérbole x 6y =. Debúxaa. x y x 6y = 8 = 6 a = 6 8 a = b = 8 b = c = a + b = = Los focos son F(, 0) y F'(, 0). c Excentricidad: exc = = a Asíntotas: y = x e y = x Y F' O F X 8. Escribe a ecuación da parábola que ten por directriz a recta x =, e como vértice, a orixe de coordenadas. d: x = En una parábola y p = px, la recta directriz es x =. p Por tanto, = 8 p = 6 La ecuación de la parábola es y = x.. Indica o eixe radical ás circunferencias: C : x + y x y + = 0 C : x + y x 8y + = 0 Representa as circunferencias e o eixe radical. Sea P (x, y) un punto del eje radical de ambas circunferencias. Como las potencias de P a C y de P a C deben coincidir: x + y x y + = x + y x 8y + 8 6y = 0 8 y = El eje radical de las circunferencias es y =.

52 Para hacer la representación, calculamos el centro y el radio de cada circunferencia: C C A = B = C = A = B = 8 C = O C = (, ) r = + = O C = (, ) r' = + 8 = 8 Y C y = / C X

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz: NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

INICIACIÓN AO CÁLCULO DE DERIVADAS. APLICACIÓNS

INICIACIÓN AO CÁLCULO DE DERIVADAS. APLICACIÓNS INICIACIÓN AO CÁLCULO DE DERIVADAS. APLICACIÓNS Páina 0 REFLEXIONA E RESOLVE Coller un autobús en marca Na gráfica seguinte, a liña vermella representa o movemento dun autobús que arranca da parada e vai,

Διαβάστε περισσότερα

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109 PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL)

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL) L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro Condiciones de contorno. Fuerzas externas aplicadas sobre una cuerda. condición que nos describe un extremo libre en una cuerda tensa. Ecuación

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

VII. RECTAS E PLANOS NO ESPAZO

VII. RECTAS E PLANOS NO ESPAZO VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación

Διαβάστε περισσότερα

NÚMEROS REAIS. Páxina 27 REFLEXIONA E RESOLVE. O paso de Z a Q. O paso de Q a Á

NÚMEROS REAIS. Páxina 27 REFLEXIONA E RESOLVE. O paso de Z a Q. O paso de Q a Á NÚMEROS REAIS Páxina 7 REFLEXIONA E RESOLVE O paso de Z a Q Di cales das seguintes ecuacións se poden resolver en Z e para cales é necesario o conxunto dos números racionais, Q. a) x 0 b) 7x c) x + d)

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

PAU XUÑO 2016 MATEMÁTICAS II

PAU XUÑO 2016 MATEMÁTICAS II PAU XUÑO 06 Código: 6 MATEMÁTICAS II (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio = 3 puntos, exercicio = 3 puntos, exercicio

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

f) cotg 300 ctg 60 2 d) cos 5 cos 6 Al ser un ángulo del primer cuadrante, todas las razones son positivas. Así, tenemos: tg α 3

f) cotg 300 ctg 60 2 d) cos 5 cos 6 Al ser un ángulo del primer cuadrante, todas las razones son positivas. Así, tenemos: tg α 3 .9. Calcula el valor de las siguientes razones trigonométricas reduciéndolas al primer cuadrante. a) sen 0 c) tg 0 e) sec 0 b) cos d) cosec f) cotg 00 Solucionario a) sen 0 sen 0 d) cosec sen sen b) cos

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE O ESPAZO VECTORIAL DOS VECTORES LIBRES DEFINICIÓN DE VECTOR LIBRE MATEMÁTICA II 06 Exames e Textos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atribución Compartir igual 40 Internacional

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

XUÑO 2018 MATEMÁTICAS II

XUÑO 2018 MATEMÁTICAS II Proba de Avaliación do Bacharelato para o Acceso áuniversidade XUÑO 218 Código: 2 MATEMÁTICAS II (Responde só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

TEMA IV: FUNCIONES HIPERGEOMETRICAS

TEMA IV: FUNCIONES HIPERGEOMETRICAS TEMA IV: FUNCIONES HIPERGEOMETRICAS 1. La ecuación hipergeométrica x R y α, β, γ parámetros reales. x(1 x)y + [γ (α + β + 1)x]y αβy 0 (1.1) Dividiendo en (1.1) por x(1 x) obtenemos (x 0, x 1) y + γ (α

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Sistemas e Inecuacións

Sistemas e Inecuacións Sistemas e Inecuacións 1. Introdución 2. Sistemas lineais 2.1 Resolución gráfica 2.2 Resolución alxébrica 3. Método de Gauss 4. Sistemas de ecuacións non lineais 5. Inecuacións 5.1 Inecuacións de 1º e

Διαβάστε περισσότερα

1_2.- Os números e as súas utilidades - Exercicios recomendados

1_2.- Os números e as súas utilidades - Exercicios recomendados 1_.- Os números e as súas utilidades - Exercicios recomendados 1. Ordena de menor a maior as seguintes fraccións: 1 6 3 5 7 4,,,,, 3 5 4 8 6 9. Efectúa as seguintes operacións e simplifica o resultado:

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

Inecuacións. Obxectivos

Inecuacións. Obxectivos 5 Inecuacións Obxectivos Nesta quincena aprenderás a: Resolver inecuacións de primeiro e segundo grao cunha incógnita. Resolver sistemas de ecuacións cunha incógnita. Resolver de forma gráfica inecuacións

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Ecuacións de segundo grao e sistemas de ecuacións. Módulo 3 Unidade didáctica 8

Ámbito científico tecnolóxico. Ecuacións de segundo grao e sistemas de ecuacións. Módulo 3 Unidade didáctica 8 Educación secundaria para persoas adultas Ámbito científico tecnolóxico Módulo 3 Unidade didáctica 8 Ecuacións de segundo grao e sistemas de ecuacións Páxina 1 de 45 Índice 1. Programación da unidade...3

Διαβάστε περισσότερα

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 09/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Διαβάστε περισσότερα

Lógica Proposicional. Justificación de la validez del razonamiento?

Lógica Proposicional. Justificación de la validez del razonamiento? Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento? os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

CADERNO Nº 2 NOME: DATA: / / Os números reais

CADERNO Nº 2 NOME: DATA: / / Os números reais CADERNO Nº NOME: DATA: / / Os números reais Contidos. Os números reais Números irracionais Números reais Aproximacións Representación gráfica Valor absoluto Intervalos. Radicais Forma exponencial Radicais

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Problemas xeométricos

Problemas xeométricos Problemas xeométricos Contidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores e segmentos 2. Corpos xeométricos Prismas Pirámides Troncos de pirámides

Διαβάστε περισσότερα

Caderno de traballo. Proxecto EDA 2009 Descartes na aula. Departamento de Matemáticas CPI A Xunqueira Fene

Caderno de traballo. Proxecto EDA 2009 Descartes na aula. Departamento de Matemáticas CPI A Xunqueira Fene Departamento de Matemáticas CPI A Xunqueira Fene Nome: 4º ESO Nº Páx. 1 de 36 FIGURAS SEMELLANTES 1. CONCEPTO DE SEMELLANZA Intuitivamente: Dúas figuras son SEMELLANTES se teñen a mesma forma pero distinto

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21 PRIMEIRA PARTE (Parte Común) (Nesta primeira parte tódolos alumnos deben responder a tres preguntas. Unha soa pregunta de cada un dos tres bloques temáticos: Álxebra Lineal, Xeometría e Análise. A puntuación

Διαβάστε περισσότερα

Lógica Proposicional

Lógica Proposicional Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

I.E.S. CADERNO Nº 6 NOME: DATA: / / Semellanza

I.E.S. CADERNO Nº 6 NOME: DATA: / / Semellanza Semellanza Contidos 1. Semellanza Figuras semellantes Teorema de Tales Triángulos semellantes 2. Triángulos rectángulos. Teoremas Teorema do cateto Teorema da altura Teorema de Pitágoras xeneralizado 3.

Διαβάστε περισσότερα

CADERNO Nº 2 NOME: DATA: / / Polinomios. Manexar as expresións alxébricas e calcular o seu valor numérico.

CADERNO Nº 2 NOME: DATA: / / Polinomios. Manexar as expresións alxébricas e calcular o seu valor numérico. Polinomios Contidos 1. Monomios e polinomios Expresións alxébricas Expresión en coeficientes Valor numérico dun polinomio 2. Operacións Suma e diferenza Produto Factor común 3. Identidades notables Suma

Διαβάστε περισσότερα

Expresións alxébricas

Expresións alxébricas 5 Expresións alxébricas Obxectivos Crear expresións alxébricas a partir dun enunciado. Atopar o valor numérico dunha expresión alxébrica. Clasificar unha expresión alxébrica como monomio, binomio,... polinomio.

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

Semellanza e trigonometría

Semellanza e trigonometría 7 Semellanza e trigonometría Obxectivos Nesta quincena aprenderás a: Recoñecer triángulos semellantes. Calcular distancias inaccesibles, aplicando a semellanza de triángulos. Nocións básicas de trigonometría.

Διαβάστε περισσότερα

Obxectivos. polinomios. Valor. por diferenza. Factor común. ao cadrado. Suma. Resumo. titor. numérico. seu grao. Polinomios. Sacar factor. común.

Obxectivos. polinomios. Valor. por diferenza. Factor común. ao cadrado. Suma. Resumo. titor. numérico. seu grao. Polinomios. Sacar factor. común. Polinomios Obxectivos Nesta quincena aprenderás a: Manexar as expresiónss alxébricas e calcular o seu valor numérico. Recoñecer os polinomios e o seu grao. Sumar, restar e multiplicar polinomios. Sacar

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

Funcións e gráficas. Obxectivos. 1.Funcións reais páx. 4 Concepto de función Gráfico dunha función Dominio e percorrido Funcións definidas a anacos

Funcións e gráficas. Obxectivos. 1.Funcións reais páx. 4 Concepto de función Gráfico dunha función Dominio e percorrido Funcións definidas a anacos 9 Funcións e gráficas Obxectivos Nesta quincena aprenderás a: Coñecer e interpretar as funcións e as distintas formas de presentalas. Recoñecer o dominio e o percorrido dunha función. Determinar se unha

Διαβάστε περισσότερα

Expresións alxébricas

Expresións alxébricas Expresións alxébricas Contidos 1. Expresións alxébricas Que son? Como as obtemos? Valor numérico 2. Monomios Que son? Sumar e restar Multiplicar 3. Polinomios Que son? Sumar e restar Multiplicar por un

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao medio CMPM001. Proba de. Código. Matemáticas. Parte matemática. Matemáticas.

Probas de acceso a ciclos formativos de grao medio CMPM001. Proba de. Código. Matemáticas. Parte matemática. Matemáticas. Probas de acceso a ciclos formativos de grao medio Proba de Matemáticas Código CMPM001 Páxina 1 de 9 Parte matemática. Matemáticas 1. Formato da proba Formato A proba consta de vinte cuestións tipo test.

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

Filipenses 2:5-11. Filipenses

Filipenses 2:5-11. Filipenses Filipenses 2:5-11 Filipenses La ciudad de Filipos fue nombrada en honor de Felipe II de Macedonia, padre de Alejandro. Con una pequeña colonia judía aparentemente no tenía una sinagoga. El apóstol fundó

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos

x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos º- Dados os puntos A(,, ), B(, 4), C( 5,, ) EXERCICIOS XEOMETRÍA Acha as coodenadas dun cuato punto D coa condición que o cuadiláteo ABCD sexa un paalelogamo º- Escibi as ecuacións paaméticas, na foma

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

PAAU (LOXSE) XUÑO 2005 MATEMÁTICAS APLICADAS ÁS CC. SOCIAIS

PAAU (LOXSE) XUÑO 2005 MATEMÁTICAS APLICADAS ÁS CC. SOCIAIS PAAU (LOXSE) XUÑO 005 MATEMÁTICAS APLICADAS ÁS CC. SOCIAIS Código: 61 O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. Puntuación máxima de cada un dos exercicios: Álxebra

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS

EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS. ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

Volume dos corpos xeométricos

Volume dos corpos xeométricos 11 Volume dos corpos xeométricos Obxectivos Nesta quincena aprenderás a: Comprender o concepto de medida do volume e coñecer e manexar as unidades de medida do S.M.D. Obter e aplicar expresións para o

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

1. Formato da proba [CM.PM.001.Z]

1. Formato da proba [CM.PM.001.Z] [CM.PM.00.Z]. Formato da proba Formato! A proba consta de vinte cuestións tipo test.! As cuestións tipo test teñen tres posibles respostas das que soamente unha é correcta. Puntuación! Puntuación: 0,50

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura.

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura. - Universidad Me gustaría matricularme en la universidad. Indicar que quieres matricularte Me quiero matricular. Indicar que quieres matricularte en una asignatura en un grado en un posgrado en un doctorado

Διαβάστε περισσότερα

Las Funciones Trigonométricas

Las Funciones Trigonométricas Caítulo 3 Las Funciones Trigonométricas 3.. El círculo trigonométrico Vamos a suoner conocido el sistema cartesiano en lo que se refiere a concetos fundamentales como son los de abscisa y ordenada de un

Διαβάστε περισσότερα

Funcións e gráficas. Obxectivos. Antes de empezar. 1.Funcións páx. 4 Concepto Táboas e gráficas Dominio e percorrido

Funcións e gráficas. Obxectivos. Antes de empezar. 1.Funcións páx. 4 Concepto Táboas e gráficas Dominio e percorrido 9 Funcións e gráficas Obxectivos Nesta quinceer na aprenderás a: Coñecer e interpretar as funcións e as distintas formas de presentalas. Recoñecer ou dominio e ou percorrido dunha función. Determinar se

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano Abstract Una visión alberiana del tema - democracia, república y emprendedores; - - alberdiano El marco teórico *** - 26 LIBERTAS SEGUNDA ÉPOCA - - - - - - - - revolución industrial EMPRENDEDORES, REPÚBLICA

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2 EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS Dds s ecucións seguintes indic s que son lineis: ) + + b) + u c) + d) + Dd ecución linel + comprob que s terns ( ) e ( ) son lgunhs ds sús solucións

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα