Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης."

Transcript

1 Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης

2 Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και πολύπλοκα προβλήματα (real world problems): σκάκι (chess), πλανόδιος πωλητής (traveling salesperson), Ν-βασίλισσες (N-queens), σάκος (knapsack), κλπ. δρομολόγηση χρονοπρογραμματισμός Απλά προβλήματα (toy problems) κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe), λαβύρινθος (maze), πύργοι του Ανόι (Hanoi towers), κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), δοχεία (water glass), κλπ.

3 κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe),

4 Περιγραφή Προβλημάτων με Χώρο Καταστάσεων Κατάσταση προβλήματος Κατάσταση ενός κόσμου είναι ένα στιγμιότυπο (instance) ή φωτογραφία (snapshot) μίας συγκεκριμένης χρονικής στιγμής της εξέλιξης του κόσμου. Κατάσταση (state) ενός κόσμου είναι μία επαρκής αναπαράσταση του κόσμου σε μία δεδομένη χρονική στιγμή.

5 Παράδειγμα Αντικείμενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Α είναι ελεύθερος Κύβος Α πάνω στον κύβο Β Κύβος Β Κύβος Γ είναι ελεύθερος Κύβος Β πάνω στο Τ Κύβος Γ Τ έχει αρκετό ελεύθερο χώρο Κύβος Γ πάνω στο Τ Τ είναι Τραπέζι Κύβος Β δεν είναι ελεύθερος

6 Αντικείμενα Ιδιότητες Σχέσεις 3 Ιεραπόστολοι Βάρκα δύο ατόμων Ιεραπόστολοι στην αριστερή όχθη 3 Κανίβαλοι Κανίβαλοι στην αριστερή όχθη Βάρκα Βάρκα στην αριστερή όχθη Αριστερή Όχθη Δεξιά Όχθη

7 Τελεστές μετάβασης Τελεστής μετάβασης (transition operator): ενέργεια με την οποία μεταβαίνουμε από μια κατάσταση σε κάποια άλλη. Παράδειγμα Τελεστής: Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά Προϋποθέσεις: Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Ο αριθμός των ιεραποστόλων που θα μείνουν στην αριστερή όχθη να μην είναι μικρότερος από τον αριθμό των κανιβάλων ή να μην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσματα: Ο αριθμός των ιεραποστόλων στην αριστερή όχθη μειώνεται κατά 2. Ο αριθμός των ιεραποστόλων στην δεξιά όχθη αυξάνεται κατά 2. Η βάρκα είναι πλέον δεξιά και όχι αριστερά

8 Χώρος Καταστάσεων Χώρος καταστάσεων (state space ή domain space) ενός προβλήματος ονομάζεται το σύνολο όλων των έγκυρων καταστάσεων. Αρχικές και Τελικές καταστάσεις Η αρχική (initial state) και τελική (final ή goal state) κατάσταση εκφράζουν το δεδομένο και το ζητούμενο αντίστοιχα. Οι τελικές καταστάσεις μπορεί να είναι περισσότερες από μία.

9 Ορισμός προβλήματος Ένα πρόβλημα (Problem) ορίζεται ως η τετράδα P = ( I, G, T, S ) όπου: S είναι ο χώρος καταστάσεων. T είναι το σύνολο των τελεστών μετάβασης, T: S S. Συνήθως δίνονται ως κανόνες οι οποίοι καθορίζουν τις επιτρεπτές ενέργειες σε κάθε κατάσταση. Εφαρμόζοντας μια επιτρεπτή ενέργεια σε μια κατάσταση μεταβαίνουμε σε μια νέα κατάσταση που θεωρείται παιδί της προηγούμενης. Οι ενέργειες μπορεί να έχουν κόστος (υποχρεωτικά μεγαλύτερο του μηδενός). Εάν δεν δίνεται το κόστος ενεργειών θεωρούμε ότι όλες οι ενέργειες έχουν κόστος 1. I είναι η αρχική κατάσταση (Α.Κ), I S G είναι το σύνολο των τελικών καταστάσεων (Τ.Κ), G S

10 Λύση προβλήματος Λύση (Solution) σε ένα πρόβλημα (I, G, T, S), είναι μία ακολουθία από τελεστές μετάβασης t 1, t 2,...t n T με την ιδιότητα g = t n (...(t 2 (t 1 (I)))...), όπου g G Παράδειγμα Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη

11 Αλγόριθμοι Αναζήτησης Τυφλοί (blind search) Όνομα Αλγορίθμου Συντομογραφία Ελληνική Ορολογία Depth-First Search DFS Αναζήτηση Πρώτα σε Βάθος Breadth-First Search BFS Αναζήτηση Πρώτα σε Πλάτος Uniform Cost Search UCS Αναζήτηση Ομοιόμορφου Κόστους Iterative Deepening ID Επαναληπτική Εμβάθυνση Bi-directional Search BiS Αναζήτηση Διπλής Κατεύθυνσης Ευρετικοί (heuristic search) Greedy Search GS Άπληστη Αναζήτηση A* (A-star) A* Α* (Άλφα Άστρο)

12 Αναζήτηση ως διακριτή βελτιστοποίηση Local Search LS Tοπική Αναζήτηση Tabu Search TS Αναζήτηση με Απαγορεύσεις Simulated Annealing SA Προσομοιούμενη Ανόπτηση Προβλήματα Ικανοποίησης Περιορισμών (Constraint Satisfaction Problems) Παίγνια 2 παιχτών Minimax Minimax Αναζήτηση Μεγίστου-Ελαχίστου Alpha-Beta Prunning AB Κλάδεμα Άλφα-Βήτα

13 Χώρος Αναζήτησης Δοθέντος ενός προβλήματος (I,G,T,S), χώρος αναζήτησης (search space) SP είναι το σύνολο όλων των καταστάσεων που είναι προσβάσιμες από την αρχική κατάσταση. Μία κατάσταση s ονομάζεται προσβάσιμη (accessible) αν υπάρχει μια ακολουθία τελεστών μετάβασης t 1,t 2,...t k T τέτοια ώστε s=t k (...(t 2 (t 1 (I)))...). O χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, δηλαδή SP S. Ο χώρος αναζήτησης μπορεί να αναπαρασταθεί με γράφο. Είναι πάντα εφικτό να μετατραπεί ο γράφος σε δένδρο αναζήτησης (search tree), το οποίο όμως μπορεί να έχει μονοπάτια απείρου μήκους.

14 Τμήμα Δένδρου Κόμβος (Node) Ρίζα (Root) Φύλλο (Tip, Leaf) Κλαδί (Branch) Λύση (Solution) Επέκταση (Expansion) Παράγοντας Διακλάδωσης (Branching Factor) Αναπαράσταση Κατάσταση Αρχική Κατάσταση Τελική Κατάσταση ή Αδιέξοδο (Dead Node), δηλαδή κατάσταση στην οποία δεν μπορεί να εφαρμοστεί κανένας τελεστής μετάβασης. Τελεστής Μετάβασης που μετατρέπει μια κατάσταση-γονέα (Parent State) σε μία άλλη κατάσταση-παιδί (Child State). Μονοπάτι (Path) που ενώνει την αρχική με μία τελική κατάσταση Η διαδικασία παραγωγής όλων των καταστάσεων-παιδιών ενός κόμβου. Ο αριθμός των καταστάσεων-παιδιών που προκύπτουν από μία επέκταση. Επειδή δεν είναι σταθερός αριθμός, αναφέρεται και ως Μέσος Παράγοντας Διακλάδωσης (Average Branching Factor). Ο παράγοντας διακλάδωσης (branching factor) εκφράζει τον αριθμό των καταστάσεων που προκύπτουν από μία άλλη κατάσταση.

15 Χώρος Αναζήτησης (Παράδειγμα) Το φαινόμενο της εκθετικής αύξησης του αριθμού των κόμβων του δένδρου αναζήτησης ονομάζεται συνδυαστική έκρηξη (combinatorial explosion).

16 Γενικός Αλγόριθμος Αναζήτησης Μέτωπο της αναζήτησης (search frontier) ενός αλγορίθμου είναι το σύνολο των καταστάσεων που ο αλγόριθμος έχει ήδη επισκεφτεί, αλλά δεν έχουν ακόμη επεκταθεί (φύλλα του δέντρου αναζήτησης). Κλειστό σύνολο (closed set) ενός αλγορίθμου αναζήτησης είναι το σύνολο όλων των καταστάσεων που έχουν ήδη επεκταθεί από τον αλγόριθμο αναζήτησης. Με έναν απλό έλεγχο, αν η κατάσταση προς επέκταση ανήκει ήδη στο κλειστό σύνολο, αποφεύγονται οι βρόχοι (loops). Το κλειστό σύνολο είναι προαιρετικό, διότι αυξάνει κατά πολύ τις απαιτήσεις σε μνήμη. Στις ασκήσεις θα θεωρούμε ότι δεν χρησιμοποιείται κλειστό σύνολο.

17

18 Γενικός Αλγόριθμος Αναζήτησης 1. Βάλε την αρχική κατάσταση στο μέτωπο της αναζήτησης. 2. Αν το μέτωπο αναζήτησης είναι άδειο τότε σταμάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση του μετώπου της αναζήτησης. 4. Αν είναι η κατάσταση αυτή μέρος του κλειστού συνόλου τότε πήγαινε στο βήμα 2. (Προαιρετικό) 5. Αν είναι η κατάσταση αυτή τελική κατάσταση τότε τύπωσε τη λύση και τερμάτισε. 6. Εφάρμοσε τους τελεστές μετάβασης για να παράγεις τις καταστάσεις-παιδιά. 7. Βάλε τις νέες καταστάσεις-παιδιά στο μέτωπο της αναζήτησης (σύμφωνα με κάποιο κριτήριο). 8. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. (Προαιρετικό) 9. Πήγαινε στο βήμα 2. Το κριτήριο με το οποίο επιλέγεται η κατάσταση του μετώπου αναζήτησης που θα επιλεγεί για επέκταση διαφοροποιεί τις μεθόδους αναζήτησης μεταξύ τους Μια κατάσταση εξετάζεται εάν είναι Τελική Κατάσταση κατά την εξαγωγή της και όχι κατά την εισαγωγή της στο μέτωπο αναζήτησης.

19 Χαρακτηριστικά Μεθόδων Αναζήτησης Μια μέθοδος αναζήτησης ονομάζεται πλήρης (complete) αν εγγυάται ότι θα βρει μία λύση για οποιαδήποτε τελική κατάσταση, αν τέτοια λύση υπάρχει. Σε αντίθετη περίπτωση, η μέθοδος ονομάζεται ατελής (incomplete). Μία λύση ονομάζεται βέλτιστη (optimal) εάν έχει το μικρότερο κόστος μονοπατιού. Μια μέθοδος αναζήτησης ονομάζεται πλήρης και βέλτιστη εάν εγγυάται την εύρεση λύσης και επιπλέον εγγυάται ότι η πρώτη λύση που θα βρει θα είναι και η καλύτερη δυνατή (βέλτιση)

20 Κριτήρια Αξιολόγησης Μεθόδων Αναζήτησης Η επιλογή μιας μεθόδου βασίζεται στα εξής κριτήρια: δυνατότητα εύρεσης λύσεων εφόσον αυτές υπάρχουν (πληρότητα) ποιότητα των λύσεων (βελτιστότητα) πολυπλοκότητα σε χρόνο (αριθμός επεκτάσεων) πολυπλοκότητα σε χώρο (μνήμη για την αποθήκευση του μετώπου αναζήτησης) ευκολία υλοποίησης

21 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης (blind search algorithms) δεν αξιοποιούν πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης σε σχέση με την απόστασή τους από τις τελικές καταστάσεις.

22 Αναζήτηση Πρώτα σε Πλάτος Ο αλγόριθμος αναζήτησης πρώτα σε πλάτος (Breadth First Search - BFS) εξετάζει πρώτα όλες τις καταστάσεις που βρίσκονται στο ίδιο βάθος και μετά συνεχίζει στην επέκταση καταστάσεων στο αμέσως επόμενο επίπεδο. Ο αλγόριθμος BFS 1. Βάλε την αρχική κατάσταση στο μέτωπο της αναζήτησης. 2. Αν το μέτωπο της αναζήτησης είναι κενό τότε σταμάτησε. 3. Βγάλε την πρώτη κατάσταση από το μέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση μέλος του κλειστού συνόλου τότε πήγαινε στο βήμα Αν η κατάσταση είναι μία τελική τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήμα 2. Αλλιώς σταμάτησε. 7. Εφάρμοσε τους τελεστές μεταφοράς για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στο τέλος του μετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήμα 2.

23 BFS Οι αριθμοί δηλώνουν τη σειρά με την οποία επεκτείνονται οι κόμβοι

24 Αναζήτηση Πρώτα σε Πλάτος Σχόλια Το μέτωπο της αναζήτησης είναι μια δομή ουράς (Queue FIFO, δηλαδή First In First Out). Επιλογή για επέκταση της κατάστασης του μετώπου αναζήτησης με το μικρότερο βάθος Πλεονεκτήματα: Είναι πλήρης και βέλτιστη. Μειονεκτήματα: Το μέτωπο της αναζήτησης μεγαλώνει πολύ σε μέγεθος (εκθετική πολυπλοκότητα χώρου).

25 Αναζήτηση Ομοιόμορφου Κόστους (uniform cost search) Επιλέγεται για επέκταση ο κόμβος του μετώπου αναζήτησης με το μικρότερο g(n), όπου g(n) είναι το κόστος του μονοπατιού από την ρίζα (Α.Κ) μέχρι τον κόμβο n. H μέθοδος BFS είναι ειδική περίπτωση όταν όλες οι ενέργειες έχουν το ίδιο κόστος. Στην περίπτωση αυτή g(n)=depth(n) Ο αλγόριθμος UCS 1. Βάλε την αρχική κατάσταση στο μέτωπο της αναζήτησης. 2. Αν το μέτωπο της αναζήτησης είναι κενό τότε σταμάτησε. 3. Βγάλε την πρώτη κατάσταση από το μέτωπο της αναζήτησης (κόμβος με το μικρότερο g(n)). 4. Αν είναι η κατάσταση μέλος του κλειστού συνόλου τότε πήγαινε στο βήμα Αν η κατάσταση είναι μία τελική τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήμα 2. Αλλιώς σταμάτησε. 7. Εφάρμοσε τους τελεστές μεταφοράς για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στο μέτωπο αναζήτησης με φθίνουσα σειρά βάσει του κόστους του μονοπατιού g(n) από τη ρίζα μέχρι τον κόμβο n.. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήμα 2.

26 Αναζήτηση Πρώτα σε Βάθος (DFS) Ο αλγόριθμος πρώτα σε βάθος (Depth-First Search - DFS) επιλέγει προς επέκταση την κατάσταση με το μεγαλύτερο βάθος. Ο αλγόριθμος DFS: 1. Βάλε την αρχική κατάσταση στο μέτωπο της αναζήτησης. 2. Αν το μέτωπο της αναζήτησης είναι κενό τότε σταμάτησε. 3. Βγάλε την πρώτη κατάσταση από το μέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση μέλος του κλειστού συνόλου τότε πήγαινε στο βήμα Αν η κατάσταση είναι μία από τις τελικές, τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήμα 2. Αλλιώς σταμάτησε. 7. Εφάρμοσε τους τελεστές μετάβασης για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στην αρχή του μετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήμα 2.

27 DFS Οι αριθμοί δηλώνουν τη σειρά με την οποία επεκτείνονται οι κόμβοι

28 Αναζήτηση Πρώτα σε Βάθος Το μέτωπο της αναζήτησης είναι μια δομή στοίβας (Stack LIFO, Last In First Out) Η εξέταση αμέσως προηγουμένων (χρονικά) καταστάσεων ονομάζεται χρονική οπισθοδρόμηση (chronological backtracking). Πλεονεκτήματα: Έχει μικρές απαιτήσεις σε χώρο διότι το μέτωπο της αναζήτησης δε μεγαλώνει πάρα πολύ (γραμμική πολυπλοκότητα χώρου). Μειονεκτήματα: Δεν εγγυάται ότι η πρώτη λύση που θα βρεθεί είναι η βέλτιστη (μονοπάτι με το μικρότερο μήκος ή με μικρότερο κόστος). Δεν είναι πλήρης, εκτός εάν γίνεται έλεγχος βρόχων με χρήση κλειστού συνόλου (όμως στην περίπτωση αυτή η πολυπλοκότητα χώρου γίνεται εκθετική). Αναζήτηση DFS με όριο βάθους (DFS(dl)) Ιδιος με τον DFS με τη διαφορά ότι υπάρχει όριο βάθους dl (depth limit). Δεν επεκτείνονται κόμβοι που βρίσκονται στο όριο βάθους dl.

29 Αλγόριθμος Επαναληπτικής Εμβάθυνσης Ο αλγόριθμος επαναληπτικής εμβάθυνσης (Iterative Deepening - ID) συνδυάζει με τον καλύτερο τρόπο τους DFS και BFS. Ο αλγόριθμος ID: 1. Όρισε το αρχικό βάθος αναζήτησης dl(συνήθως 1). 2. Εφάρμοσε τον αλγόριθμο DFS μέχρι αυτό το βάθος αναζήτησης (BFS(dl)). 3. Αν έχεις βρει λύση σταμάτησε. 4. Αύξησε το βάθος αναζήτησης (συνήθως κατά 1) (dl:=dl+1). 5. Πήγαινε στο βήμα 2.

30

31 Αναζήτηση ID Σχόλια Μειονεκτήματα: Όταν αρχίζει ο DFS με διαφορετικό βάθος δε θυμάται τίποτα από την προηγούμενη αναζήτηση (μεγάλος αριθμός επεκτάσεων). Πλεονεκτήματα: Είναι πλήρης. Αν το βάθος αυξάνεται κατά 1 σε κάθε κύκλο και ο ID βρει λύση, τότε αυτή η λύση θα είναι η καλύτερη (βέλτιστη μέθοδος). Έχει γραμμική πολυπλοκότητα μνήμης (λόγω του DFS).

32 Αναζήτηση Διπλής Κατεύθυνσης Η ιδέα της αναζήτησης διπλής κατεύθυνσης (Bidirectional Search - BiS) πηγάζει από τη δυνατότητα του παραλληλισμού (parallelism) στα υπολογιστικά συστήματα. Προϋποθέσεις κάτω από τις οποίες μπορεί να εφαρμοστεί: Οι τελεστές μετάβασης είναι αντιστρέψιμοι (reversible). Αναπτύσσονται δύο δέντρα αναζήτησης: ένα από Α.Κ προς Τ.Κ και ένα από Τ.Κ προς Α.Κ. Πλεονέκτημα: μειώνεται στο μισό ο χρόνος αναζήτησης Μειονέκτημα: είναι δύσκολη η υλοποίηση

33

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search) Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Θέμα 1: Robbie και Αναζήτηση

Θέμα 1: Robbie και Αναζήτηση Θέμα : Robbie και Αναζήτηση Ο Robbie, το ρομπότ του παρακάτω σχήματος-χάρτη, κατά τη διάρκεια των εργασιών που κάνει διαπιστώνει ότι πρέπει να γυρίσει όσο το δυνατόν πιο γρήγορα, από την τρέχουσα θέση,

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Διαβάστε περισσότερα

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ 2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Αναζήτηση (Search) 1 Αλγόριθµοι και Πολυπλοκότητα n Ας υποθέσουµε ότι έχουµε δύο διαφορετικούς αλγόριθµους για την επίλυση ενός προβλήµατος. Πως θα βρούµε ποιος είναι ο καλύτερος? g Ποιος τρέχει πιο γρήγορα?

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Επίλυση προβληµάτων µε αναζήτηση

Επίλυση προβληµάτων µε αναζήτηση Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Δατσέρης Γιάννης ΑΜ: 1280 Επιβλέπων καθηγητής Τριανταφυλλίδης

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Αναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

Αναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Αναζήτηση (Search) συνέχεια 1 Ευριστικοί Αλγόριθµοι Αναζήτησης n Ευριστικοί Μηχανισµοί (Heuristics) n Αναζήτηση Πρώτα στο Καλύτερο (Best-First Search) n Αλγόριθµος Α* n Ιδιότητες Ευριστικών Συναρτήσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΡΑΦΗΜΑΤΩΝ... 2 1.1.1 Ορισμός και ιδιότητες γραφημάτων... 2 1.1.2 Δέντρα... 7 1.2 ΑΠΟΘΗΚΕΥΣΗ ΓΡΑΦΩΝ ΚΑΙ ΔΙΚΤΥΩΝ... 11 1.2.1 Μήτρα πρόσπτωσης κόμβων τόξων...

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

Ευρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ

Ευρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ Ευρετικές Μέθοδοι Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 10 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2014-2015 Τεχνητή Νοημοσύνη Πληροφορημένη αναζήτηση και εξερεύνηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση

Τεχνητή Νοημοσύνη Ι. Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση Τεχνητή Νοημοσύνη Ι Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Επίλυση προβλημάτων με

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας. ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής

8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής ΚΕΦΑΛΑΙΟ 8: Αφαιρετικές έννοιες δεδομένων 8.1 Βασικές έννοιες δομών δεδομένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δομών δεδομένων 8.4 Μια σύντομη μελέτη περίπτωσης 8.4 Προσαρμοσμένοι τύποι δεδομένων 8.6

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα