Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση"

Transcript

1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ Απωλειών Διατήρηση Εξαρτήσεων Αποφυγή Επανάληψης Πληροφορίας Βάσεις εδοµένων Ευαγγελία Πιτουρά 2 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 1

2 Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασμός καλών σχεσιακών σχημάτων Μη τυπικές- γενικές κατευθύνσεις Θεωρία κανονικών μορφών που βασίζεται στις συναρτησιακές εξαρτήσεις Βάσεις εδοµένων Ευαγγελία Πιτουρά 3 Σχεδιασµός Σχεσιακών Σχηµάτων Γενικές Κατευθύνσεις 1. Σημασιολογία 2. Ελάττωση πλεονασμού 3. Ελάττωση τιμών null 4. Μη πλασματικές πλειάδες Βάσεις εδοµένων Ευαγγελία Πιτουρά 4 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 2

3 Γενικές Κατευθύνσεις 1. Σημασιολογία Εύκοληηεξήγησητηςσημασίαςτου Αποφυγή συνδυασμού γνωρισμάτων από πολλές οντότητες και συσχετίσεις στην ίδια σχέση Ταινία Τίτλος Έτος Διάρκεια Είδος Παίζει Ηθοποιός Όνομα Τίτλος Έτος Όνομα Διεύθυνση Έτος-Γέννησης Βάσεις εδοµένων Ευαγγελία Πιτουρά 5 Γενικές Κατευθύνσεις 2. Πλεονασμός (επανάληψη πληροφορίας) Ταινία εδώ βοηθούν οι συναρτησιακές εξαρτήσεις Τίτλος Έτος Διάρκεια Είδος Όνομα-Ηθοποιού Εισαγωγή Για την εισαγωγή μιας νέας ταινίας πρέπει να εισάγουμε τουλάχιστον έναν ηθοποιό(τιμή null;) Για την εισαγωγή ενός ηθοποιού στην ταινία πρέπει να επαναλάβουμε τα γνωρίσματα(διάρκεια, είδος) της ταινίας Βάσεις εδοµένων Ευαγγελία Πιτουρά 6 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 3

4 Γενικές Κατευθύνσεις Ταινία Τίτλος Έτος Διάρκεια Είδος Όνομα-Ηθοποιού Διαγραφή Τι γίνεται αν διαγράψουμε και τον τελευταίο ηθοποιό Διαγραφή μιας ταινίας; Βάσεις εδοµένων Ευαγγελία Πιτουρά 7 Γενικές Κατευθύνσεις Ταινία Τίτλος Έτος Διάρκεια Είδος Όνομα-Ηθοποιού Τροποποίηση Τι γίνεται αν θελήσουμε να τροποποιήσουμε τη διάρκεια μιας ταινίας; Σύνοψη Προβλημάτων Λόγω Πλεονασμού Πλεονασμός στην αποθήκευση Προβληματική ενημέρωση Προβληματική εισαγωγή Προβληματική διαγραφή Βάσεις εδοµένων Ευαγγελία Πιτουρά 8 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 4

5 Γενικές Κατευθύνσεις 3. Αποφυγή τιμών null Ηθοποιός Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Ηθοποιός Ζευγάρι-Ηθοποιών Όνομα Διεύθυνση Έτος-Γέννησης Όνομα Σύζυγος-Ηθοποιού Βάσεις εδοµένων Ευαγγελία Πιτουρά 9 Γενικές Κατευθύνσεις 4. Αποφυγή δημιουργίας πλασματικών πλειάδων (αδυναμία αναπαράστασης συγκεκριμένης πληροφορίας) Ταινία Τίτλος Έτος Διάρκεια Είδος Παίζει Τίτλος Όνομα-Ηθοποιού Χάνουμε πληροφορία δεν μπορούμε να βρούμε ποιος ηθοποιός σε ποια ταινία Ταινία Τίτλος Έτος Διάρκεια Είδος Όνομα-Ηθοποιού Βάσεις εδοµένων Ευαγγελία Πιτουρά 10 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 5

6 Αλγόριθµος Σχεδιασµού - Εισαγωγή Οτρόποςπουσχεδιάζαμε ένασχήμαβδμέχριτώρα: από το εννοιολογικό στο σχεσιακό μοντέλο Θα δούμε ένα γενικό θεωρητικό (formal) τρόπο κατασκευής του σχήματος Γενικά: Ξεκινάμε από το καθολικό σχήμα(που περιέχει όλα τα γνωρίσματα) Διαδοχικές διασπάσεις έτσι ώστε τα σχήματα που προκύπτουν να ικανοποιούν κάποιες ιδιότητες(να είναι σε κάποιες κανονικές μορφές) -- top-down τεχνική Βάσεις εδοµένων Ευαγγελία Πιτουρά 11 Αλγόριθµος Σχεδιασµού - Εισαγωγή Μπορούμε να το εφαρμόσουμε και για να «διασπάσουμε» μια «προβληματική» σχέση που προέκυψε από την μετατροπή του εννοιολογικού σχεδιασμού Μειονέκτημα των διασπάσεων: μπορεί να απαιτεί συνενώσεις (join) για να απαντηθούν ερωτήματα η να ελεγχθούν εξαρτήσεις-> αποδοτικότητα του συστήματος Βάσεις εδοµένων Ευαγγελία Πιτουρά 12 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 6

7 Αλγόριθµος Σχεδιασµού Ένας γενικός (θεωρητικός) τρόπος κατασκευής του σχήματος Αποσύνθεση (decomposition) Αλγόριθμος σχεδιασμού 1. Αρχικά ένα καθολικό (universal) σχήμα σχέσης που περιέχει όλα τα γνωρίσματα 2. Προσδιορισμός των συναρτησιακών εξαρτήσεων 3. Διάσπαση σε ένα σύνολο από σχήματα σχέσεων που ικανοποιούν κάποιες ιδιότητες Βάσεις εδοµένων Ευαγγελία Πιτουρά 13 Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση καθολικού σχήματος Επιθυμητές ιδιότητες 1. διατήρηση εξαρτήσεων 2. όχι απώλειες στη συνένωση 3. όχι επανάληψη πληροφορίας λόγω ΣΕ Κανονικές μορφές Βάσεις εδοµένων Ευαγγελία Πιτουρά 14 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 7

8 Αποσύνθεση Παράδειγμα Καθολικό Σχήμα: R = {Τίτλος, Έτος, Διάρκεια, Είδος, Όνομα-Ηθοποιού, Διεύθυνση, Έτος-Γέννησης} Σύνολο ΣΕ που ισχύουν στο πρόβλημα: Τίτλος Έτος Είδος Τίτλος Έτος Διάρκεια Όνομα Ηθοποιού Διεύθυνση Πιθανή διάσπαση: R 1 = {Τίτλος, Έτος, Διάρκεια, Είδος} R 2 = {Τίτλος, Έτος, Όνομα-Ηθοποιού, Διεύθυνση, Έτος-Γέννησης} Όνομα-Ηθοποιού Έτος Γέννησης Ποια είναι μια καλή διάσπαση; Πως μπορούμε να πάρουμε την αρχική σχέση; Μπορούμε να διασπάσουμε την R 2 με τον ίδιο τρόπο. Βάσεις εδοµένων Ευαγγελία Πιτουρά 15 Αλγόριθµος Σχεδιασµού Αρχικά ένα καθολικό σχήμα R = {A 1, A 2,, A n } αποσύνθεση (decomposition) σε δύο σχήματα τέτοια ώστε: Τυπικός ορισμός R 1 = {B 1, B 2,, B m }και R 2 = {C 1, C 2,, C k } 1. {A 1, A 2,, A n } = {B 1, B 2,, B m } {C 1, C 2,, C k } (διατήρηση γνωρισμάτων) [γνωρίσματα] 2. Οι πλειάδες της r 1 (R 1 ) είναι η προβολή των πλειάδων της r(r) στα {B 1, B 2,, B m } [πλειάδες] 3. Οι πλειάδες της r 2 (R 2 ) είναι η προβολή των πλειάδων της r(r) στα {C 1, C 2,, C k } [πλειάδες] Βάσεις εδοµένων Ευαγγελία Πιτουρά 16 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 8

9 Αλγόριθµος Σχεδιασµού (παράδειγµα) Έστω το (καθολικό) σχήμα R(A, B, C) αποσύνθεση σε R 1 (A, B) και R 2 (B, C) Tα αντίστοιχα στιγμιότυπα (σχέσεις) (συμβολισμός r(r) ή r) r(r) Α B C r 1 (R 1 ) A B r 2 (R 2 ) B C Μπορούμε να πάρουμε το αρχικό στιγμιότυπο; Φυσική συνένωση r 1 * r 2 ; Βάσεις εδοµένων Ευαγγελία Πιτουρά 17 Αποσύνθεση Έστω ένα σχεσιακό σχήμα R. Ένα σύνολο από σχεσιακά σχήματα{r 1,R 2,..,R n }είναιμιααποσύνθεσητουrαν R=R 1 R 2 R n γνωρίσματα Δηλαδή, i = 1,..,n R i R στιγμιότυπα Έστω r(r) και r i = π R (r), i = 1,..,n i r r 1 * r 2 * * r n Βάσεις εδοµένων Ευαγγελία Πιτουρά 18 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 9

10 Επιθυµητές Ιδιότητες Αποσύνθεσης Επιθυμητές Ιδιότητες για την Αποσύνθεση 1. Συνενώσεις Άνευ Απωλειών Έστω C το σύνολο περιορισμών. Μια αποσύνθεση του R σε {R 1, R 2,.., R n }είναι μια αποσύνθεση άνευ απωλειών στη συνένωση (lossless join decomposition) αν για όλες τις σχέσεις r(r) που είναι νόμιμες στο C ισχύει r=π R1 (r) * π R2 (r) * π Rn (r) Ονομάζεται και μη προσθετική συνένωση(non-additive join) Βάσεις εδοµένων Ευαγγελία Πιτουρά 19 Αποσύνθεση Παράδειγμα r 1 A B r Α B C r B C r 1 * r 2 A B C Δενμπορούμεναπάρουμετηναρχικήσχέσηrαπόταr 1 καιr 2 R 1 R 2 = Β A C 1 3 B C r 1 r 2 R 1 R 2 = C Βάσεις εδοµένων Ευαγγελία Πιτουρά 20 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 10

11 Συνενώσεις Άνευ Απωλειών Θεώρημα Έστω R ένα σχεσιακό σχήμα και F ένα σύνολο από συναρτησιακές εξαρτήσεις στο R. Έστω R 1 και R 2 μια αποσύνθεση του R. Αν μια τουλάχιστον από τις ΣΕ R 1 R 2 R 1 ήr 1 R 2 R 2 ανήκειστοf + τότε η διάσπαση είναι χωρίς απώλειες στη συνένωση. Δηλαδή τα κοινά γνωρίσματα των δύο σχημάτων είναι κλειδί για τουλάχιστον ένα από τα δύο σχήματα Βάσεις εδοµένων Ευαγγελία Πιτουρά 21 Συνενώσεις Άνευ Απωλειών Παράδειγμα: R = {Τίτλος, Έτος, Διάρκεια, Είδος, Όνομα-Ηθοποιού, Διεύθυνση, Έτος-Γέννησης} Τίτλος Έτος Διάρκεια Τίτλος Έτος Είδος Όνομα Ηθοποιού Διεύθυνση Όνομα-Ηθοποιού Έτος Γέννησης R 1 = {Τίτλος, Έτος, Διάρκεια, Είδος} R 2 = {Τίτλος, Έτος, Όνομα-Ηθοποιού, Διεύθυνση, Έτος-Γέννησης} R 1 R 2 = {Τίτλος, Έτος} Βάσεις εδοµένων Ευαγγελία Πιτουρά 22 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 11

12 Επιθυµητές Ιδιότητες Αποσύνθεσης Επιθυμητές Ιδιότητες για την Αποσύνθεση Στόχος: 2. Διατήρηση Εξαρτήσεων Για να ελέγξουμε ότι διατηρούνται οι Σ.Ε. όταν γίνονται τροποποιήσεις σε μίααπότιςσχέσειςr i (R i ), να αρκεί να ελέγξουμε μόνο τη συγκεκριμένη σχέση (δηλαδή, να μη χρειάζεται να υπολογίσουμε τις αρχικές σχέσεις - αποφυγή των συνενώσεων) Βάσεις εδοµένων Ευαγγελία Πιτουρά 23 Διατήρηση Εξαρτήσεων Έστω F ένα σύνολο από ΣΕ στο σχήμα R και {R 1, R 2,.., R n } μια αποσύνθεση του R. F i περιορισμός του F στο R i είναι το σύνολο όλων των συναρτησιακών εξαρτήσεωντουf + πουπεριέχουνμόνογνωρίσματατουr i. Προσοχή: F + όχι F Βάσεις εδοµένων Ευαγγελία Πιτουρά 24 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 12

13 Διατήρηση Εξαρτήσεων Παραδείγματα: Υπολογισμός του περιορισμού του F σε ένα σχήμα Παράδειγμα 1: Έστω R(A, B, C, D), F = {A B, B C}. Περιορισμός του F στοs(a,c)(δηλαδήποιεςσετουf + ισχύουνστοs) Παράδειγμα 2: Έστω R(A, B, C, D, E), F = {A D, B Ε, D B}. ΠεριορισμόςτουFστοS(A,B,C) Βάσεις εδοµένων Ευαγγελία Πιτουρά 25 Διατήρηση Εξαρτήσεων Έστω F ένα σύνολο από ΣΕ στο σχήμα R και {R 1, R 2,.., R n } μια αποσύνθεση του R. ΈστωF = F 1 F 2... F n Η αποσύνθεση είναι μια αποσύνθεση που διατηρεί τις εξαρτήσεις(dependencypreserving)ανf + =F + Βάσεις εδοµένων Ευαγγελία Πιτουρά 26 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 13

14 Διατήρηση Εξαρτήσεων Παράδειγμα Έστω R(A, B, C, D), F = {A C, B C, ΒD A} και η αποσύνθεση του R σε R 1 (A,C) καιr 2 (Α, Β,D). (α) Διατηρεί τις εξαρτήσεις; (β) Είναι χωρίς απώλειες(lossless join); Βάσεις εδοµένων Ευαγγελία Πιτουρά 27 Διατήρηση Εξαρτήσεων Ένα ακόμα παράδειγμα ΈστωR(A,B,C,D,E), F={A D, B Ε,DE C,B C}. (a) Η αποσύνθεση του R σε S(A, Β, C) και T(A, B, D, E) διατηρεί τις εξαρτήσεις; (β) Είναι χωρίς απώλειες(lossless join); Βάσεις εδοµένων Ευαγγελία Πιτουρά 28 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 14

15 Σχεδιασµός Σχεσιακών Σχηµάτων (επανάληψη) Επιθυμητές Ιδιότητες Αποσύνθεσης 1. Συνενώσεις Άνευ Απωλειών Η φυσική συνένωση των σχέσεων που προκύπτουν μας δίνει ακριβώς την αρχική σχέση (χωρίς επιπρόσθετες πλειάδες): r=π R1 (r) * π R2 (r) * π Rn (r) R1 R2 R1 ή R1 R2 R2 ανήκει στο F +, δηλαδή τα κοινά γνωρίσματα των δύο σχημάτων είναι κλειδί για τουλάχιστον ένα από τα δύο 2. Διατήρηση Εξαρτήσεων Στόχος: Έλεγχος διατήρησης εξαρτήσεων όταν γίνονται τροποποιήσεις χωρίς να υπολογίζουμε τις αρχικές σχέσεις (αποφυγή των συνενώσεων) F = F1 F2... Fn,πρέπειF + =F + 3. Αποφυγή Επανάληψης Πληροφορίας, πως; Κανονικές Μορφές Βάσεις εδοµένων Ευαγγελία Πιτουρά 29 Βάσεις εδοµένων : Αποσύνθεση Σχέσεων 15

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2013 - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Αρχιτεκτονική

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ Η συνθήκη WHERE βάζει περιορισμούς στις εγγραφές που επιστρέφονται. Ο όρος ORDER BY ταξινομεί τις εγγραφές που επιστρέφονται. Παράδειγμα: SELECT * FROM table_name ORDER

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων Σχεδιασμός μιας εφαρμογής Β : Βήματα Εισαγωγή. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα,

Διαβάστε περισσότερα

Το Σχεσιακό μοντέλο και η γλώσσα SQL

Το Σχεσιακό μοντέλο και η γλώσσα SQL Το Σχεσιακό μοντέλο και η γλώσσα SQL Μανόλης Γεργατσούλης (manolis@ionio.gr) Αναπληρωτής Καθηγητής Ομάδα Βάσεων Δεδομένων και Πληροφοριακών Συστημάτων, Τμήμα Αρχειονομίας Βιβλιοθηκονομίας, Ιόνιο Πανεπιστήμιο

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Βασικές Έννοιες Τι είναι µια βάση δεδοµένων; Βάση Δεδοµένων: συλλογή από σχετιζόµενα δεδοµένα Ειδικού σκοπού λογισµικό

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 6: Κανονικοποίηση. Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων

Βάσεις Δεδομένων. Ενότητα 6: Κανονικοποίηση. Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Βάσεις Δεδομένων Ενότητα 6: Κανονικοποίηση Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Παραδοτέα 1. Το αρχείο.mdb της βάσης δεδομένων σας σε ACCESS 2. Ένα CD που θα αναγράφει το ονοματεπώνυμο του σπουδαστή και το ΑΕΜ και θα περιέχει το αρχείο.mdb της βάσης δεδομένων καθώς και το εγχειρίδιο

Διαβάστε περισσότερα

Πολιτισμική Πληροφορική: Οργάνωση και διαχείριση Πληροφοριών

Πολιτισμική Πληροφορική: Οργάνωση και διαχείριση Πληροφοριών Πολιτισμική Πληροφορική: Οργάνωση και διαχείριση Πληροφοριών Χρήστος Παπαθεοδώρου (papatheodor@ionio.gr) Αναπληρωτής Καθηγητής Ομάδα Βάσεων Δεδομένων και Πληροφοριακών Συστημάτων, Τμήμα Αρχειονομίας Βιβλιοθηκονομίας,

Διαβάστε περισσότερα

Εισαγωγή στη σχεδίαση κινούμενων γραφικών

Εισαγωγή στη σχεδίαση κινούμενων γραφικών ΕΣΔ200 Δημιουργία Περιεχομένου ΙI Εισαγωγή στη σχεδίαση κινούμενων γραφικών Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Τμήμα Επικοινωνίας & Σπουδών Διαδικτύου Εισαγωγή Εφαρμογές Κύρια Χαρακτηριστικά Flash

Διαβάστε περισσότερα

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων ΕΣΔ516 Τεχνολογίες Διαδικτύου Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων Περιεχόμενα - Βιβλιογραφία Ενότητας Περιεχόμενα Ορισμοί Συστατικά στοιχεία εννοιολογικής σχεδίασης Συστατικά

Διαβάστε περισσότερα

Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΔΒΔ (ΕΡΓΑΣΤΗΡΙΟ 4) Τελευταία ενημέρωση: 11/2011. Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ

Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΔΒΔ (ΕΡΓΑΣΤΗΡΙΟ 4) Τελευταία ενημέρωση: 11/2011. Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ ΣΤΟΧΟΣ Στόχο του παρόντος εργαστηρίου αποτελεί η κατανόηση και η εφαρμογή της μεθοδολογίας του μετασχηματισμού ενός διαγράμματος ER στο αντίστοιχο σχεσιακό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΠΡΩΤΟ ΜΕΡΟΣ: 13 ΚΕΦΑΛΑΙΟ

ΠΡΩΤΟ ΜΕΡΟΣ: 13 ΚΕΦΑΛΑΙΟ Περιεχόμενα ΠΡΩΤΟ ΜΕΡΟΣ: Γνώσεις Υποδομής... 13 ΚΕΦΑΛΑΙΟ 1 Επιχείρηση και Πληροφοριακό Σύστημα Διοίκησης... 15 1.1 Επιχείρηση... 16 1.1.1 Τι είναι Οργανισμός και τι είναι επιχείρηση (μια πρώτη ιδέα) 1.1.2

Διαβάστε περισσότερα

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών TMHMA ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ.Ε.Ι. ΠΕΙΡΑΙΩΣ ΘΕΜΑ ΕΡΓΑΣΙΑΣ Βάσεις εδομένων Μέρμηγκας Αλέξανδρος Α.Μ. 30000 Βάση εδομένων Βάση δεδομένων είναι μια οργανωμένη συλλογή αλληλοσυσχετιζόμενων

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο-Σχεσιακή Άλγεβρα, Σχεσιακός Λογισμός. 06/06/2009 Μ.Χατζόπουλος 1

Το Σχεσιακό Μοντέλο-Σχεσιακή Άλγεβρα, Σχεσιακός Λογισμός. 06/06/2009 Μ.Χατζόπουλος 1 Το Σχεσιακό Μοντέλο-Σχεσιακή Άλγεβρα, Σχεσιακός Λογισμός 06/06/2009 Μ.Χατζόπουλος 1 Αρχιτεκτονική Τριών Σχημάτων ΕΞΩΤΕΡΙΚΟ ΕΠΙΠΕΔΟ Τελικοί Χρήστες Εξωτερική Όψη 1 Εξωτερική Όψη n ΕΝΝΟΙΟΛΟΓΙΚΟ ΕΠΙΠΕΔΟ ΕΝΝΟΙΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI

Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Σχεσιακή Άλγεβρα Τελεστές Συνένωσης

Διαβάστε περισσότερα

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν:

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν: ΠΛΑΙΣΙΑ Ορίστηκαν από τον Minsky σαν "δοµές δεδοµένων για την αναπαράσταση στερεότυπων καταστάσεων". Ονοµάζονται και σχήµατα (schemata). Κατά µία έννοια αποτελούν εξέλιξη των σηµαντικών δικτύων (ή δικτύων

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

(Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2

(Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2 Η Γλώσσα SQL (Μέρος 3:Γλώσσα Ορισµού, Γλώσσα Τροποποίησης, Ενσωµατωµένη SQL) Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Η γλώσσα SQL H SQL έχει διάφορα τµήµατα: Γλώσσα Ορισµού εδοµένων (ΓΟ ) Γλώσσα

Διαβάστε περισσότερα

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ Σύβακας Σταύρος ΠΕ19,MSc. IT Εισαγωγή Τα ερωτήματα (queries) είναι μία από τις πιο σημαντικές δυνατότητες που προφέρει ένα Σ%Β% αφού επιτρέπουν: Ανάκτηση και ανάλυση των δεδομένων στην επιθυμητή μορφή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΙΚΟ ΑΟΙΚΤΟ ΠΑΕΠΙΣΤΗΙΟ ΘΕ ΠΛΗ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (ΓΕ2) ΕΔΕΙΚΤΙΚΗ ΕΠΙΛΥΣΗ 203-204 ΘΕΑ [45 μονάδες] Ερώτημα Α (Πρώτη εκδοχή) Ακολουθεί το προτεινόμενο σχήμα ΔΟΣ (για λόγους διευκόλυνσης της αναπαράστασης

Διαβάστε περισσότερα

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός)

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός) ΗΥ460 Τελική Εξέηαζη 29 Ιανουαπίου 2013 Σελίδα 1 από 8 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Επαναληπτική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

Γνωρίστε το χώρο εργασίας του PowerPoint

Γνωρίστε το χώρο εργασίας του PowerPoint Γνωρίστε το χώρο εργασίας του PowerPoint Για να εκκινήσουμε το Office PowerPoint 2007 ακολουθούμε τα εξής βήματα: Έναρξη à Όλα τα προγράμματα PowerPoint 2007. à Microsoft Office à Microsoft Office Όταν

Διαβάστε περισσότερα

Σύστημα υποβολής αιτήσεων υποψήφιων συνεργατών ΕΚΤ

Σύστημα υποβολής αιτήσεων υποψήφιων συνεργατών ΕΚΤ Σύστημα υποβολής αιτήσεων υποψήφιων συνεργατών ΕΚΤ 1 Λειτουργικές απαιτήσεις Το σύστημα υποβολής αιτήσεων υποψήφιων συνεργατών στοχεύει στο να επιτρέπει την πλήρως ηλεκτρονική υποβολή αιτήσεων από υποψήφιους

Διαβάστε περισσότερα

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ Πρόκληση ο σχεδιασμός κι η ανάπτυξη εξ αποστάσεως εκπαιδευτικού υλικού. Ζητούμενο

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου

Διαβάστε περισσότερα

SQL. Πριν μια σύντομη επανάληψη της σχεσιακής άλγεβρας. H SQL έχει διάφορα τμήματα: Γλώσσα Ορισμού εδομένων (ΓΟ ) Γλώσσα Χειρισμού εδομένων (ΓΧ )

SQL. Πριν μια σύντομη επανάληψη της σχεσιακής άλγεβρας. H SQL έχει διάφορα τμήματα: Γλώσσα Ορισμού εδομένων (ΓΟ ) Γλώσσα Χειρισμού εδομένων (ΓΧ ) Εισαγωγή Πως θα υλοποιήσουμε (προγραμματίσουμε) την εφαρμογή μας χρησιμοποιώντας ένα σχεσιακό Σ Β : SQL Γλώσσα Ορισμού (του σχήματος) Γλώσσα Χειρισμού εδομένων Γλώσσα Τροποποίησης (εισαγωγή, διαγραφή πλειάδων)

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο. Εργαστηριακή Άσκηση 4 7/02/2012

ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο. Εργαστηριακή Άσκηση 4 7/02/2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΣΠΟΥΔΩΝ ΔΙΑΔΙΚΤΥΟΥ ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο Εργαστηριακή Άσκηση 4 7/02/2012

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Περιεχόμενο του μαθήματος

Περιεχόμενο του μαθήματος ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Απαιτήσεις Λογισμικού Περιπτώσεις χρήσης Δρ Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου Εαρινό Εξάμηνο 2012-2013 1 Περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Σκοπός - Περιεχόµενο µαθήµατος Η µελέτη του θεωρητικού υποβάθρου και των εργαλείων που απαιτούνται για τα συστήµατα βάσεων δεδοµένων

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Σκοπός - Περιεχόµενο µαθήµατος Η µελέτη του θεωρητικού υποβάθρου και των εργαλείων που απαιτούνται για τα συστήµατα βάσεων δεδοµένων ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Ι 1 ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Ι Σκοπός - Περιεχόµενο µαθήµατος Η µελέτη του θεωρητικού υποβάθρου και των εργαλείων που απαιτούνται για τα συστήµατα βάσεων δεδοµένων Εισαγωγή- ιστορία-παραδείγµατα,

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Αποθήκευση εδομένων Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ Β : Εισαγωγή Το «εσωτερικό» ενός Σ Β ομή ενός Σ Β Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Τυπικά, κάθε σχέση σε ένα

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΙΣΙΔΗΣ ΙΩΑΝΝΗΣ (ΑΕΜ 561) ΝΟΕΜΒΡΙΟΣ 2010 ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ -

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - Σχήµα 2.1: Τυπική µεταφορική ταινία Σχήµα 2.2α: Κοίλη µεταφορική ταινία Σχήµα 2.2β: Κυρτή µεταφορική ταινία Σχήµα 2.2γ: Οριζόντια

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Αγαπητοί συνεργάτες, sales@ots.gr http://www.ots.gr O P E N T E C H N O L O G Y S E R V I C E S

Αγαπητοί συνεργάτες, sales@ots.gr http://www.ots.gr O P E N T E C H N O L O G Y S E R V I C E S Αγαπητοί συνεργάτες, Σ Υ Σ Τ Η Μ Α Τ Α & Υ Π Η Ρ Ε Σ Ι Ε Σ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Σας ενημερώνουμε, ότι υπάρχει ήδη διαθέσιμη η νέα έκδοση 2.98.018 της εφαρμογής Μισθοδοσίας & Διαχείρισης Προσωπικού η

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΔΙΑΔΙΚΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΛΟΓΙΣΜΙΚΟΥ Διδάσκων: Γ. Χαραλαμπίδης,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Διαχείριση Δεδομένων

Διαχείριση Δεδομένων Διαχείριση Δεδομένων Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου 1 Εαρινό Εξάμηνο 2012-13 Περιεχόμενο σημερινής διάλεξης Βάσεις Δεδομένων Ορισμοί Παραδείγματα

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ11 2014-15 Α ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - 7 ΙΟΥΝΙΟΥ 2015 ΜΕΡΟΣ Α : ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ [ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 45 ] Σημείωση: Το σύνολο βαθμών του Μέρους Α (ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Κεφάλαιο 3 Σχεσιακό Μοντέλο

Κεφάλαιο 3 Σχεσιακό Μοντέλο Κεφάλαιο 3 Σχεσιακό Μοντέλο Στο κεφάλαιο αυτό παρουσιάζεται το σχεσιακό µοντέλο βάσεων δεδοµένων, και αναλύονται τα δοµικά του χαρακτηριστικά, οι βασικές του ιδιότητες, και ο τρόπος µε τον οποίο µπορεί

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΜΟΡΦΟΠΟΙΗΣΗΣ ΕΡΓΑΣΙΩΝ

ΟΔΗΓΙΕΣ ΜΟΡΦΟΠΟΙΗΣΗΣ ΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΜΟΡΦΟΠΟΙΗΣΗΣ ΕΡΓΑΣΙΩΝ ΘΕΩΡΙΑ & ΠΡΑΞΗ στην εκπαιδευση Το έγγραφο αυτό παρέχει πληροφορίες και οδηγίες μορφοποίησης που θα σας βοηθήσουν να προετοιμάσετε καλύτερα την εργασία σας.... Αποστολή Εργασιών

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΝΩΣΗΣ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΕΚΠΟΝΗΣΗ ΕΡΓΑΣΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΝΩΣΗΣ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΕΚΠΟΝΗΣΗ ΕΡΓΑΣΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΝΩΣΗΣ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ 2010-2011 2011-2012 ΕΚΠΟΝΗΣΗ ΕΡΓΑΣΙΑΣ Στα πλαίσια της εργασίας θα δημιουργήσετε μια οντολογία που να αναπαριστά

Διαβάστε περισσότερα

Εισαγωγή στη Σχεσιακή Άλγεβρα

Εισαγωγή στη Σχεσιακή Άλγεβρα Εισαγωγή στη Σχεσιακή Άλγεβρα Η Σχεσιακή Άλγεβρα παρέχει τους τελεστές (operators): Μοναδιαίοι Σχεσιακοί Τελεστές (Unary Relational Ops) Επιλογή (Select, (sigma)) Προβολή (Project, (pi)) Μετονομασία (Rename,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες

Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες Ταυτότητα Σεναρίου Τίτλος : Το πρόβλημα με τις 8 Βασίλισσες Γνωστικό Αντικείμενο: Εφαρμογές Λογισμικού Διδακτική Ενότητα: Σχεδιάζω Εφαρμόζω. Τμηματική υλοποίηση

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Μεταδεδομένα στο Ψηφιακό περιβάλλον

Μεταδεδομένα στο Ψηφιακό περιβάλλον Μεταδεδομένα στο Ψηφιακό περιβάλλον Μονάδα Αριστείας Ανοικτού Λογισμικού - Χαροκόπειο Πανεπιστήμιο Ψηφιακό Τεκμήριο Οτιδήποτε υπάρχει σε ηλεκτρονική μορφή και μπορεί να προσπελαστεί μέσω υπολογιστή Μεταδεδομένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεσιακό Μοντέλο ΙΙΙ Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos CMU)

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Αναζήτηση στον Σηµασιολογικό Ιστό

Αναπαράσταση Γνώσης και Αναζήτηση στον Σηµασιολογικό Ιστό Αναπαράσταση Γνώσης και Αναζήτηση στον Σηµασιολογικό Ιστό Αλέξανδρος Βαλαράκος (alexv@iit.demokritos.gr) (alexv@aegean.gr) Υποψήφιος ιδάκτορας Τµήµα Μηχανικών Υπολογιστικών και Πληροφοριακών Συστηµάτων.

Διαβάστε περισσότερα

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα»

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» Ερώτημα 1 ο : Ποιες από αυτές τις «αρχές» είναι όντως αρχές και ποιες δεν είναι; Ερώτημα 2 ο : Ποιο έχει μεγαλύτερη ισχύ; η «αρχή» ή ο «νόμος»; Ερώτημα 3 ο : Ποιο

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Διδακτικές Προσεγγίσεις και Εργαλεία για τη Διδασκαλία της Πληροφορικής

Διδακτικές Προσεγγίσεις και Εργαλεία για τη Διδασκαλία της Πληροφορικής Περιεχόμενα Πρόλογος... 11 Κεφ.1 Θεωρητικό Πλαίσιο της Διδακτικής: Βασικές Έννοιες, Σχεδιασμός και Οργάνωση Διδασκαλίας, Εκπαιδευτική Αξιολόγηση Μ. Γρηγοριάδου, Ε. Γουλή και Α. Γόγουλου... 15 1.1 Βασικές

Διαβάστε περισσότερα

ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples Ξένου Ρουμπίνη

ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples Ξένου Ρουμπίνη ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο SQL Examples Ξένου Ρουμπίνη 1 SQL-DDL Data Definition/Description Language (DDL): προσδιορίζουν τη δομή ή το σχήμα των δεδομένων.

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Ηποσοτικήέρευνα. (Θεμελιώδεις έννοιες)

Ηποσοτικήέρευνα. (Θεμελιώδεις έννοιες) Ηποσοτικήέρευνα (Θεμελιώδεις έννοιες) 1 Πειραματική έρευνα Ποσοτική έρευνα Πειραματική Ημι-πειραματική Αντιστροφής Περιγραφική Σύγκρισης Συσχέτισης Διαδοχικων Μ. 2 Μη Ισοδ..Ομ. Αντιστροφής Πειραματική

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

Information Technology for Business

Information Technology for Business Information Technology for Business! Lecturer: N. Kyritsis, MBA, Ph.D. Candidate!! e-mail: kyritsis@ist.edu.gr Διαχείριση Επιχειρηματικών Δεδομένων - Databases Ορισμός Βάσης Δεδομένων Συλλογή συναφών αρχείων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΛΥΚΕΙΟΥ - 02/05/2014 ΘΕΜΑ Α Α1. Έστω ο παρακάτω αλγόριθμος ταξινόμησης: Για κ από.. μέχρι 19 Για λ από 19 μέχρι κ με_βήμα -1

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ Η Αναλυτική Επεξεργασία Δεδομένων (On Line Analytical Processing) στην Υποστήριξη Αποφάσεων των Υπευθύνων Περιβαλλοντικής Εκπαίδευσης των Διευθύνσεων Εκπαίδευσης Γιώργος Ραβασόπουλος 1, Ιωάννα Παπαιωάννου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Εργασία στην Oracle ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΡΑΤΗΣΕΩΝ ΘΕΣΕΩΝ ΜΙΑΣ ΑΕΡΟΠΟΡΙΚΗΣ ΕΤΑΙΡΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα