Υπενθύμιση (από τη Μηχανική) /Εισαγωγή:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπενθύμιση (από τη Μηχανική) /Εισαγωγή:"

Transcript

1 ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

2 Υπενθύμιση (από τη Μηχανική) /Εισαγωγή: Είχαμε πει ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία θέση σε μία άλλη είναι συνάρτηση μόνον της αρχικής και της τελικής θέσης του σώματος (και ανεξάρτητη της διαδρομής που ακολουθήσαμε). «Υπάρχει, δηλαδή, μία αριθμητική συνάρτηση της θέσης και μόνο του σώματος, η ΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ U(), τέτοια ώστε:» P W F d [ U ( ) U ( )] P Για ηλεκτρικά φορτία και αφού κάθε κατανομή φορτίου μπορεί να αναλυθεί σε απειροστά φορτία dq, μας ενδιαφέρει να εστιάσουμε αρχικά στο έργο κατά την κίνηση ενός σημειακού φορτίου q μέσαστο πεδίο ενός σταθερού σημειακού φορτίου q. Η ηλεκτρική δύναμη στο q θα είναι F=q E.

3 Έργο και δυναμική ενέργεια σε ηλεκτρικό πεδίο Το παραγόμενο έργο κατά την κίνηση ενός σημειακού φορτίου q κάτω από τη δράση του ηλεκτρικού πεδίου ενός σημειακού φορτίου q (αρχή συστήματος συντεταγμένων στο q): P 1 qq 1 qq W ˆ P 4 d πε 4πε d ΠΡΟΣΟΧΗ: «Επιβιώνει» μόνον η ακτινική συνιστώσα μετατόπισης. Για κίνηση του q σε σφαίρα σταθερής ακτίνας δεν παράγεται έργο από την ηλεκτρική δύναμη qq qq ( ) [ U ( ) U ( )] ιατηρητικό 4πε 4πε πεδίο ΠΡΟΣΟΧΗ: Συνάρτηση μόνον της αρχικής και τελικής απόστασης από το φορτίο q. Η διαφορά δυναμικής ενέργειας από ένα σημείο του χώρου σε ένα άλλο, είναι το έργο που παράγεται από το (ή αποθηκεύεται στο) πεδίοκατάτημετακίνησηενός σώματος από το ένα σημείο στο άλλο.

4 Έργο και δυναμική ενέργεια σε ηλεκτρικό πεδίο Η τιμή δυναμικής ενέργειας σε ένα σημείο του χώρου δεν έχει φυσική σημασία. Φυσική σημασία έχει η διαφορά δυναμικής ενέργειας ανάμεσα σε δύο σημεία. Συνεπώς για να μετράμε την δυναμική ενέργεια μπορούμε να επιλέγουμε αυθαίρετα ένα «βολικό» σημείο αναφοράς. Έτσι, για την προηγούμενη περίπτωση επιλέγουμε U()= για και έχουμε: U ( ) 1 qq 4πε Επέκταση: υναμική ενέργεια του q λόγω συστήματος φορτίων U ( ) q q N i 4 πε i 1 i αλγεβρικό άθροισμα q i q

5 Ορισμός του Ηλεκτροστατικού υναμικού: Όπως στο θέμα της ηλεκτροστατικής δύναμης (δύναμη Coulomb), αποδώσαμε μία ιδιότητα στο χώρο, την ένταση του ηλεκτρικού πεδίου Ε, ώστε να αποδεσμευθούμε μ από το δοκίμιο q, έτσι και εδώ ορίζουμε ρζ το ηλεκτροστατικό δυναμικό σε ένα σημείο του χώρου V(P) ώστε: P P W q E d q E d [ U ( ) U ( )] P P P P U () U ( ) E d V V q q [ ] [ ( ) ( )] W [ U( ) U( )] q[ V( ) V( )] = δυναμικό", μεταβολή δυναμικού" ή «πτώση η δυναμικού».

6 Τι εκφράζει το δυναμικό; Μονάδες: [V] = [U/q] = Newton m/cb = Joule Cb -1 = V (volt), δηλαδή ενέργεια ανά μονάδα φορτίου: Ένα Volt είναι το έργο ανά μονάδα φορτίου (W/q), όταν μετακινούμε φορτίο q κατά 1 m εντός πεδίου εντάσεως 1 Netwon/Cb. 1 Cb Volt=1 Newton m Άλλη μονάδα ενέργειας (για μικρές τιμές της): Ηλεκτρονιοβόλτ (ev). Η ενέργεια για τη μετακίνηση ενός ηλεκτρονίου σε διαφορά δυναμικού 1 Volt. 1eV=1.6x1-19 Joule Μετατροπή: μονάδες ηλεκτρικού πεδίου συναρτήσει του Volt [E] = Newton/Cb = Newton m /(Cb m) = Volt/m

7 Έχοντας την έννοια του δυναμικού: (a) υναμικό στο σημείο P στο πεδίο ενός σημειακού φορτίου q. V( ) 1 4πε q όπου θεωρήσαμε ότι για V()= (β) υναμικό συστήματος φορτίων ( ) 1 πε N 4 i1 i V q i q i Επαλληλία δυναμικών (αλγεβρικό άθροισμα, όπως και πριν με την υναμική Ενέργεια) όπου θεωρήσαμε και πάλι ότι για V()= ()

8 Παραγωγή του E από το V B V E d dv E d d=dxx+dy ˆ y+dz ˆ zˆ A dv [dx (E x)+dy ˆ (E y) ˆ +dz (E z)]= ˆ (E dx + E dy + E dz) x y z Για μετατόπιση κατά x, έχουμε dy, dz= E x V x V Για μετατόπιση κατά y, έχουμε dx, dz= E y yy Για μετατόπιση κατά z, έχουμε dx, dy= E z V z z V ˆ V ˆ V E x+ y+ zˆ V x y z Σχόλιο: για την κίνηση σε φορτίου σε ισοδυναμική επιφάνεια οι ηλεκτρικές δυνάμεις δεν παράγουν έργο (qv σταθερό). Άρα το Ε είναι πάντα κάθετο στις ισοδυναμικές επιφάνειες.

9 Παραγωγή του E από το V E Ισοδύναμο με το συσχετισμό της V ύναμης με την υναμική Ενέργεια που F U γνωρίζαμεαπότημηχανική: Τελεστής βαθμίδας {gad(ient)} για δράση πάνω σε αλγεβρική συνάρτηση f Σύστημα Συντεταγμένων Καρτεσιανό f f( x, y, z) f x+ ˆ f y+ ˆ f zˆ x y z Σφαιρικό f f(,, ) Κυλινδρικό f f(,, z) f 1 ˆ 1 ˆ f f ˆ sin 1 f ˆ f ˆ f zˆ z

10 Παραγωγή του E από το V Όταν έχουμε συντηρητικό πεδίο τότε το δυναμικό αποτελεί έναν εύκολο τρόπο να υπολογίσουμε και να περιγράψουμε το πεδίο δυνάμεων. Αντί να αντιστοιχίζουμε σε κάθε σημείο του χώρου τρεις τιμές Ε x, E y, E z (Οι οποίες προέκυψαν «δύσκολα» από διανυσματική επαλληλία των επιμέρους εντάσεων λόγω μίας κατανομής φορτίων). Αντιστοιχίζω σε κάθε σημείο του χώρου μία και μόνον τιμή δυναμικού V. (Που προκύπτει απλούστερα από την αλγεβρική επαλληλία των επιμέρους δυναμικών λόγω μίας κατανομής φορτίων). Και έχω μία σχέση για να υπολογίζω την ένταση του πεδίου από τη συνάρτηση δυναμικού E V

11 Υπολογίζοντας το υναμικό από την Ένταση (1) Αγώγιμη (επιφανειακά) φορτισμένη σφαίρα ακτίνας R, φορτίου Q Υπολογίσαμε ήδη το E() με Gauss. Θεωρώ ως στάθμη αναφοράς, V()= (i) Για R 1 Q 1 Q V () V ( ) E d V () d 4πε 4πε 1 Q V () ως δυναμικό από σημειακό φορτίο 4πε Q στο κέντρο της σφαίρας. (ii) Για < R, E() = 1 Q V() V( R) Ed V() V( R) R 4πε R σταθερό

12 Υπολογίζοντας το υναμικό από την Ένταση (1) Ομογενώς (στον όγκο) φορτισμένη σφαίρα ακτίνας R, φορτίου Q Υπολογίσαμε ήδη το E() με Gauss. Θεωρώ ως στάθμη αναφοράς, V()= Q σαν πεδίο από σημειακό φορτίο R E () Q στοκέντροτηςσφαίρας. 4 1 Q V() 4πε R E() Q 4 R [ V( ) V( )] Ed V() R Q V() V( R) d 4 πε R Q R V() ( ) V( R) με 4πε R V( R) 1 Q 4πε R

13 Υπολογίζοντας το υναμικό από την Ένταση () άπειρη, ευθύγραμμη κατανομή φορτίου με λ=σταθ. Ε() Υπολογίσαμε ήδη το E() με Gauss. () V() V( ) d V V() V( ) ln V() ln ΥΣΚΟΛΙΑ: ln εν μπορούμε θέσουμε στο άπειρο το σημείο αναφοράς αφού εάν V( ) =,τότε V() =. Συνεπώς, για να έχει φυσικό νόημα η κατανομή δυναμικού θεωρήσαμε το δυναμικό μηδέν σε ένα αυθαίρετο σημείο.

14 Υπολογίζοντας το υναμικό από την Ένταση () Ομογενώς φορτισμένα (+σ, -σ) πλακίδια απείρου εμβαδού, Έχουμε +σ στο y = d και -σ στο y = (στάθμη αναφοράς: V((y=)) = ) Υπολογίσαμε ήδη το E() με Gauss. Θεωρώ ως στάθμη αναφοράς, V()= y E χ σ E E yˆ yˆ ε Υπάρχει μόνον συνιστώσα κατά y και είναι σταθερή σε μέτρο P E d [ V ( ) V ( )] P P y σ σ Δ V V ( y ) V () dy y E y ε ε V V( d) V() Ed V Ed

15 Υπολογίζοντας την Ένταση από το υναμικό (1) Ομογενώς φορτισμένος (λ) δακτύλιος ακτίνα a z Εύρεση δυναμικού σε απόσταση z από το κέντρο του δακτυλίου. dq ds ad Q ad a z a ή βγ ήρ μ a φ y V(,, z) ds=adφ χ επειδή λ=σταθ. βγαίνει από το ολοκλήρωμα 1 ds 1 ad dv (,, z) 4 z a 4 z a 1 a a d 4 z a 4 z a 1 Q z 1 Q 4 z a 4 z δηλ. δυναμικό σημειακού φορτίου Q, για z>>a ΠΡΟΣΟΧΗ: Υπολογίσαμε μόνον την μορφή του δυναμικού στην γραμμή (,,z). Άρα μπορούμε να υπολογίσουμε την συνιστώσα έντασης του πεδίου μόνον κατά z. E z V V (,, z) 1 zq z 4 ( z a ) /

16 Υπολογίζοντας την Ένταση από το υναμικό () υναμικό κατά μήκος άξονα διπόλου (pe=q d) q 1 1 qd pe V ( x,) ( ) 4πε x d x d 4 πε ( x d ) 4πε x x Γνωρίζω V=V(x V(x,) άρα μπορώ να υπολογίσω την συνιστώσα της έντασης του πεδίου στην κατεύθυνση x: E x V V ( x ) 1 px e x 4 πε ( x d )

17 Υπολογίζοντας την Ένταση από το υναμικό () υναμικό διπόλου (pe=q d) για d<<. y Συνεπώς -q d φ p E Ε Ε 1 V 1 q q q ( ) 4πε 4πε 1 Ε 1 1 για d: dsin φ, 1 1 q dcosφ cos φ E 1 V 4 πε 4 πε φ d φ 1 +q E E φ x Γνωρίζω το V=V(,φ) άρα μπορώ να υπολογίσω την ένταση του πεδίου (τις συνιστώσες E, E φ ). Εύρεση της έντασης για d<<: V pe cosφ = 4πε 1 V pe sin φ = φ 4πε E p 1 ( p ˆ) ˆ p 4πε

18 Ενέργεια Διάταξης Φορτίων Πόση ενέργεια χρειάζεται για να βάλουμε τα φορτία στις θέσεις τους; Το έργο που καταβάλουμε για να φέρουμε ένα φορτίο από το άπειρο σε δεδομένη απόσταση από το άλλο φορτίο. Για την τοποθέτηση του πρώτου φορτίου δεν απαιτείται καταβολή έργου. 1) Πρώτο φορτίο, προκαλεί: 1 U V 1 1 4πε ) Το δεύτερο φορτίο είναι στο πεδίο του πρώτου: 1 qq 1 U U q V U 4πε q Στον τύπο 1 είναι η απόσταση των φορτίων 1 και οπότε 1 = 1. Το σωστότερο θα ήταν 1 ή 1 απλά το παραλείπουμε για συντομία. Συνεπώς για την ενέργεια η σειρά των δεικτών δεν έχει σημασία δηλ. U 1 =U 1 Εάν τα φορτία είναι ομόσημα τότε η δυναμική ενέργεια είναι θετική, συνεπώς το έργο του πεδίου είναι αρνητικό, δηλαδή εμείς καταβάλουμε ενέργεια η οποία «αποθηκεύεται» στο πεδίο. ) Για φορτία; Φέρνουμε και το τρίτο: q q q U q( V1V) 4πε Ολική ενέργεια διατάξεως: 1 1 U U U 1 qq qq qq U U U πε 1 1

19 Ενέργεια Διάταξης Φορτίων Γενίκευση: Δυναμική ενέργεια U που αποθηκεύεται σε κατανομή N σημειακών φορτίων ηλαδή η ενέργεια από την αλληλεπίδραση καθενός καινούργιου φορτίου με το πεδίο που υπάρχει στη θέση του εξαιτίας όλων των προηγούμενων. U U1 ( U1 U) ( U41 U4 U4) ( U51 U5 U5 U54)... ( UN1 UN... UN, N 1) 1 q στοιχειώδης U q qv όγκος ρ( ) V( ) dτ 4πε N i 1 N j i i i i j1 ij i dq 1 ος τρόπος υπολογισμού, ας πούμε «κατά την κατασκευή» ΠΡΟΣΟΧΗ: V i είναιτοδυναμικόστηθέσηπουθαέρθειτοφορτίοq i εξαιτίας όλων των προηγούμενων φορτίων που έχουν ήδη τοποθετηθεί στο στιγμιότυπο «κατασκευής» της διάταξης (και πριν να έρθουν τα επόμενα).

20 Ενέργεια Διάταξης Φορτίων Γενίκευση: Δυναμική ενέργεια U που αποθηκεύεται σε κατανομή N σημειακών φορτίων U U1 ( U1 U ) ( U41 U4 U4 ) ( U51 U5 U5 U54 )... ( UN1 UN... UN, N 1 ) Ο όρος αυτός είναι όμως ουσιαστικά το άθροισμα όλων των ενεργειών αλληλεπίδρασης μεταξύ όλων των ζευγαριών φορτίων. δηλαδή άθροισμα για όλα τα ζεύγη (i,j). 1 qi U Φυσικά για ij και μετρώντας μόνον μία φορά την ενέργεια 4πε ij αλληλεπίδρασης του κάθε ζεύγους (αφού U ij =U ji ) Εάν κάναμε όλους τους συνδυασμούς των φορτίων θα είχαμε αθροίσει δύο φορές την ενέργεια αλληλεπίδρασης του κάθε ζευγαριού. π.χ. μίαφοράτηνu 1 όταν κάναμε το συνδυασμό του 1 ου με όλα τα άλλα και μία ακόμη την ίδια ενέργεια U 1 όταν συνδυάζαμε το ο με όλα τα άλλα. 1 q 1 1 U q qv U qv ρ( ) V( ) dτ 4πε N N N N στοιχειώδης j όγκος i i i i i i 1 j 1, ij i1 i1 ji ος τρόπος υπολογισμού, ας πούμε «μετά την κατασκευή» ΠΡΟΣΟΧΗ: τώρα τοv i είναι το δυναμικό στη θέση που βρίσκεται το φορτίο q i εξαιτίας όλων των άλλων φορτίων (προηγούμενων και επόμενων, η διάταξη είναι ολοκληρωμένη). dq q j

21 Ενέργεια Διάταξης Φορτίων Τρεις «τρόποι» υπολογισμού: 1. Κατασκευάζοντας την διάταξη N U qv ρ( ) V( ) dτ i i i. Μετά το τέλος της κατασκευής της διάταξης N 1 1 U qv i i ρ ( ) V ( ) dτ i1 V i είναι το δυναμικό στη θέση που θα έρθει το φορτίο q i εξαιτίας όλων των προηγούμενων φορτίων που έχουν ήδη τοποθετηθεί στο στιγμιότυπο «κατασκευής» της διάταξης (και πριν να έρθουν τα επόμενα). Το ολοκλήρωμα είναι όταν ρ()=. τώρα το V i είναι το δυναμικό στη θέση που βρίσκεται το φορτίο q i εξαιτίας όλων των άλλων φορτίων (προηγούμενων και επόμενων, η διάταξη είναι ολοκληρωμένη). Το ολοκλήρωμα είναι όταν ρ()=.. Μετά το τέλος της κατασκευής της διάταξης, γνωρίζοντας την ένταση πεδίου Ε() 1 U ε E dτ Η ενέργεια που καταβάλαμε για να δημιουργήσουμε την κατανομή «αποθηκεύεται» με τη μορφή πεδίου στον χώρο. Το θέμα θα το συζητήσουμε όταν μιλήσουμε για την Χωρητικότητα. Αφορά όμως στον υπολογισμό της ενέργειας συστήματος και τον τρόπο τον παραθέτουμε εδώ. Προσοχή, το ολοκλήρωμα αφορά σε όλον τον χώρο (οπουδήποτε έχουμε πεδίο, είτε έχουμε φορτίο είτε όχι).

22 Υπολογισμός Ενέργειας 1. «κατά την κατασκευή», ομογενώς (ρ=σταθ.) φορτισμένης σφαίρας R, φορτίου Q Κατασκευάζουμε την σφαίρα φλοιό, φλοιό. Σε ένα τυχαίο στιγμιότυπο της κατασκευής έχουμε σφαίρα ακτίνας <R και φορτίου q. Γνωρίζουμε το δυναμικό V() στην επιφάνειας της, εκεί όπου πρόκειται να προστεθεί ο επόμενος φλοιός όγκου dτ=4π d με στοιχειώδες φορτίο dq=ρ 4π d. 4 q ρ dτ ρ 4πd ρ π και για γαοό ολόκληρη τη σφαίρα =R: 4 Q ρ πr Είχαμε βρει ότι το δυναμικό στην επιφάνεια ομογενώς V () φορτισμένης σφαίρας είναι: q 4πε Το ολοκλήρωμα αφορά όλο τον χώρο όπου ρ(), δηλαδή στο εσωτερικό της σφαίρας, αφού αλλιώς ρ= και το ολοκλήρωμα λή U μηδενίζεται. R R R 4 q ρ π U ρ () V () dτ ρ 4 4 4πε πd ρ 4πε πd U 5 4 π ρ R Q 15ε πε R

23 Υπολογισμός Ενέργειας. «μετά την κατασκευή», ομογενώς (ρ=σταθ.) φορτισμένης σφαίρας R, φορτίου Q Κατασκευάζουμε ολόκληρη την σφαίρα και μπορούμε να υπολογίσουμε το δυναμικό V() σε όλο το χώρο, αλλά μας ενδιαφέρει μόνον το δυναμικό εκεί όπου ρ(), δηλαδή στο εσωτερικό της σφαίρας, αφού αλλιώς το ολοκλήρωμα U μηδενίζεται. Είχαμε βρει παραπάνω ότι για R (εκεί όπου ρ): Q Q V () 4π d πr 8πε R Q ρ ρ ρ 4 8πε R πr R 4 Q R Q Q Q Q 4 8πε R 1 1 U () () ( )4 ρ V dτ π d πr 8 πε R πε R

24 Υπολογισμός Ενέργειας. «μετά την κατασκευή», ομογενώς (ρ=σταθ.) φορτισμένης σφαίρας R, φορτίου Q Κατασκευάζουμε ολόκληρη την σφαίρα και μπορούμε να υπολογίσουμε την ένταση Ε() σε όλο το χώρο. Το ολοκλήρωμα U αφορά τώρα ολόκληρο τον χώρο, (ουσιαστικά οπουδήποτε έχουμε Ε μη μηδενικό). Είχαμε βρει παραπάνω ότι: Q Q R E () R E() 4 R 4 R Q Q 4 4 4πεR R 4πε U ε E dτ ε π d ε πd U Q Q Q 4 πε R 8 πε R πε R

25 Κίνηση φορτισμένου σωματιδίου Ισχύουν όσα γνωρίζουμε από τη Μηχανική, συνυπολογίζοντας στις δυνάμεις και τις ηλεκτρικές. Έτσι υπολογίζουμε τα μεγέθη της κίνησης από: m d dt F για σταθερή μάζα m. Καθώς το ηλεκτρικό πεδίο είναι συντηρητικό (και εάν δεν υπάρχει άλλο μη συντηρητικό πεδίο δυνάμεων) ισχύει και η αρχή διατήρηση της ενέργειας: Ε ολική = Ε κινητική + Ε δυναμική = σταθερή Στη δυναμική ενέργεια συνυπολογίζεται και αυτή του ηλεκτρικού πεδίου U=q V ενώ συνήθως η βαρυτική ενέργεια είναι αμελητέα και παραλείπεται.

26 Κίνηση φορτισμένου σωματιδίου Ηλεκτρόνιο κινούμενο με ταχύτητα v εισέρχεται σε χώρο σταθερού πεδίου E που είναι κάθετο προς την ταχύτητα του. ee ee a yˆ x και y y ay t t m m 1 ee x x x t και y= y y t a yt t m t x y= ee m x Παραβολική τροχιά

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1 Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1 . Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Ηλεκτρική δυναμική ενέργεια

Ηλεκτρική δυναμική ενέργεια Ηλεκτρική δυναμική ενέργεια Όταν ένα δοκιμαστικό φορτίο βρεθεί μέσα σε ένα ηλεκτρικό πεδίο, δέχεται μια ηλεκτρική δύναμη: F e =q o E. Η ηλεκτρική δύναμη είναι συντηρητική. Έστω δοκιμαστικό φορτίο, q 0,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν μια

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS 1 1. ΗΛΕΚΤΡΙΚΗ ΡΟΗ O νόμος του Gauss και o νόμος του Coulomb είναι δύο εναλλακτικές διατυπώσεις της ίδιας βασικής σχέσης μεταξύ μιας κατανομής φορτίου και του

Διαβάστε περισσότερα

Ηλεκτρικό δυναμικό. Κεφάλαιο Η3

Ηλεκτρικό δυναμικό. Κεφάλαιο Η3 Ηλεκτρικό δυναμικό Κεφάλαιο Η3 Ηλεκτρικό δυναμικό Σε προηγούμενα κεφάλαια συνδέσαμε τη μελέτη του ηλεκτρομαγνητισμού με τις προγενέστερες γνώσεις μας σχετικά με τις δυνάμεις. Σε αυτό το κεφάλαιο, θα συνδέσουμε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ Ένας πυκνωτής έχει ως σκοπό να αποθηκεύει ηλεκτρική ενέργεια που μπορεί να ελευθερώνεται με ελεγχόμενο τρόπο σε βραχύ χρονικό διάστημα. Αποτελείται από 2 χωρικά

Διαβάστε περισσότερα

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. Ηλεκτρική δυναµική ενέργεια Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική. e o Έστω δοκιµαστικό φορτίο,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό Κεφάλαιο Η3 Ηλεκτρικό δυναµικό Ηλεκτρικό δυναµικό Σε προηγούµενα κεφάλαια συνδέσαµε τη µελέτη του ηλεκτροµαγνητισµού µε τις προγενέστερες γνώσεις µας σχετικά µε τις δυνάµεις. Σε αυτό το κεφάλαιο, θα συνδέσουµε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Hλεκτρικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SRWY, Physics fo scientists and enginees YOUNG H.D., Univesity

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρικό δυναμικό Ηλεκτρικό δυναμικό Σε προηγούμενα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Hλεκτρικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SRWAY, Physics fo scientists nd enginees YOUNG H.D., Univesity

Διαβάστε περισσότερα

1. Ένα σημειακό θετικό φορτίο Q

1. Ένα σημειακό θετικό φορτίο Q Τρείς ασκήσεις του ηλεκτροστατικού πεδίου με την συμπλήρωση ενός πίνακα μεγεθών 1. Ένα σημειακό θετικό φορτίο δημιουργεί γύρω του ηλεκτρικό πεδίο oulomb. Τέσσερα σημεία Α,,, Δ ανήκουν στην ίδια δυναμική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη).

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη). ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΙ Ι ΑΣΚΩΝ: ΚΑΘΗΓΗΤΗΣ Μ. ΒΕΛΓΑΚΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ / ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Στη σειρά των φροντιστηρίων αυτών καταβάλλεται µια προσπάθεια να κατανοηθούν και να εµπεδωθούν κάποιες

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24)

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24) ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24) ΧΩΡΗΤΙΚΟΤΗΤΑ Ένας πυκνωτής έχει ως σκοπό να αποθηκεύει ηλεκτρική ενέργεια που μπορεί να ελευθερώνεται με ελεγχόμενο τρόπο σε βραχύ χρονικό διάστημα. Ένας πυκνωτής

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 13 Ηλεκτρικό (Βαθμωτό) δυναμικό ΦΥΣ102 1 Διαφορά δυναμικού Η Ηλεκτροστατική Δύναμη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 28)

ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 28) ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 8) B που παράγεται από κινούμενο φορτίο Το Ηλ. Πεδίο στο P (δεν φαίνεται) είναι E = 1 4πε 0 q r rˆ Για το Μαγνητικό Πεδίο στο P προκύπτει πειραματικά ότι: µ 0 qv rˆ B = 4π

Διαβάστε περισσότερα

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α. 1. Ένα σφαιρικό κέλυφος που θεωρούμε ότι έχει αμελητέο πάχος έχει ακτίνα α και φέρει φορτίο Q, ομοιόμορφα κατανεμημένο στην επιφάνειά του. Βρείτε την ένταση του ηλεκτρικού πεδίου στο εξωτερικό και στο

Διαβάστε περισσότερα

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J. 4 η Ομάδα Ασκήσεων Δύο πυκνωτές C=5 μf και C=40 μf συνδέονται παράλληλα στους ακροδέκτες πηγών τάσης VS=50 V και VS=75 V αντίστοιχα και φορτίζονται Στην συνέχεια αποσυνδέονται και συνδέονται μεταξύ τους,

Διαβάστε περισσότερα

Βασική έννοια. Μηχανική ενέργεια.

Βασική έννοια. Μηχανική ενέργεια. Έργο - Ενέργεια Βασική έννοια. Μηχανική, Ηλεκτρομαγνητική, Χημική, Θερμική, Πυρηνική, κ.α. Δυνατότητα μετατροπής της μίας μορφής σε άλλη. Μηχανική ενέργεια. Λύση προβλημάτων μηχανικής. α) ος νόμος Νεύτωνα,

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ Η ηλεκτρική ϱοή διαµέσου µιας επιφάνειας A είναι

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 8: Ηλεκτρική Δυναμική Ενέργεια-Θεώρημα Έργου- Ενέργειας-Ηλεκτρικό Δυναμικό-Ισοδυναμικές Επιφάνειες

ΦΥΣΙΚΗ. Ενότητα 8: Ηλεκτρική Δυναμική Ενέργεια-Θεώρημα Έργου- Ενέργειας-Ηλεκτρικό Δυναμικό-Ισοδυναμικές Επιφάνειες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 8: Ηλεκτρική Δυναμική Ενέργεια-Θεώρημα Έργου- Ενέργειας-Ηλεκτρικό Δυναμικό-Ισοδυναμικές Επιφάνειες Τσόκας Γρηγόρης Καθηγητής

Διαβάστε περισσότερα

ΘΕΜΑ 1. Ονοματεπώνυμο. Τμήμα

ΘΕΜΑ 1. Ονοματεπώνυμο. Τμήμα Εισαγωγή στις Φυσικές Επιστήμες (9-7-007) Ηλεκτρομαγνητισμός Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1 Α. Μια μονωτική ράβδος μήκους l φέρει ομογενώς κατανεμημένο θετικό φορτίο Q και είναι διατεταγμένη κατά μήκος του

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού ΤΥΠΟΛΟΓΙΟ q e = 1.6 10 19 C Φορτίο Ηλεκτρονίου 1.1 F = k Q 1 Q 2 r 2 = 9 10 9 Q 1 Q 2 r 2 Νόμος Coulomb 1.2 E = F q E = k Q r 2 E = k Q r 2 e r E = 2kλ ρ E = 2kλ ρ e ρ ε 0 = 1/4πk = 8.85 10 12 S. I. Ε

Διαβάστε περισσότερα

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 23 Ηλεκτρικό Δυναµικό Διαφορά Δυναµικού-Δυναµική Ενέργεια Σχέση Ηλεκτρικού Πεδίου και Ηλεκτρικού Δυναµικού Ηλεκτρικό Δυναµικό Σηµειακών Φορτίων Δυναµικό Κατανοµής Φορτίων Ισοδυναµικές Επιφάνειες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ B που παράγεται από κινούμενο φορτίο Το Ηλ. Πεδίο στο P (δεν φαίνεται) είναι E 1 4 0 q r 2 rˆ Για το Μαγνητικό Πεδίο στο P προκύπτει πειραματικά ότι: 0 qv rˆ Έχουμε εισάγει την

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

Γενική Φυσική. Ενότητα 5: Έργο, ενέργεια. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

Γενική Φυσική. Ενότητα 5: Έργο, ενέργεια. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Έργο - Ενέργεια Βασική έννοια. Μηχανική, Ηλεκτρομαγνητική, Χημική, Θερμική, Πυρηνική, κ.α. Δυνατότητα μετατροπής της μίας μορφής

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

B 2Tk. Παράδειγμα 1.2.1

B 2Tk. Παράδειγμα 1.2.1 Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s

Διαβάστε περισσότερα

Q (όπου Q το φορτίο και V η τάση

Q (όπου Q το φορτίο και V η τάση -1- ΘΕΜ 1 1. Μια γυάλινη ράβδος τρίβεται µε µεταξωτό ύφασµα, ενώ ράβδος Β, που είναι από εβονίτη, τρίβεται µε µάλλινο ύφασµα. Άλλη ράβδος Γ είναι θετικά φορτισµένη. ν πλησιάσουµε τις ράβδους µεταξύ τους,

Διαβάστε περισσότερα

W Bά. Υπενθύμιση από την Α τάξη. Το έργο του βάρους κατά την ανύψωση του κουτιού από τη θέση A στη θέση Γ είναι ίσο με W=-mgh

W Bά. Υπενθύμιση από την Α τάξη. Το έργο του βάρους κατά την ανύψωση του κουτιού από τη θέση A στη θέση Γ είναι ίσο με W=-mgh Υπενθύμιση από την Α τάξη Το έργο του βάρους κατά την ανύψωση του κουτιού από τη θέση A στη θέση Γ είναι ίσο με W=-mgh Η h Γ W ά mgh mg( H h1) mgh1 W ά mgh1 mgh mgh h 1 A ποσότητα που σχετίζεται με την

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης περιγράφεται σωστά από το νόμο Coulomb

Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης περιγράφεται σωστά από το νόμο Coulomb Σημαντικό!!!!!!!! Με βάση το νόμο Coulomb υπολογίζουμε τη δύναμη ανάμεσα σε δύο φορτισμένα σωματίδια οποία είναι ακίνητα Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή.

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή. Ασκήσεις 3 ου Κεφαλαίου, Ηλεκτρικό Δυναμικό 23.21.Δύο σημειακά φορτία q 1 =+2,4 nc q 2 =-6,5 nc βρίσκονται σε απόσταση 0,1 m το ένα από το άλλο. Το σημείο Α βρίσκεται στο μέσον της απόστασής τους και το

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r . (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r Φ Ε da Ε A Το επιφανειακό ολοκλήρωµα υπολογίζεται πάνω στην επιφάνεια Α, ενώ Ε είναι η τιµή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Δυναμική ενέργεια, Δυναμικό και διαφορά Δυναμικού. qq Β) Ακολουθούν το νόμο του αντιστρόφου τετραγώνου Fg

Δυναμική ενέργεια, Δυναμικό και διαφορά Δυναμικού. qq Β) Ακολουθούν το νόμο του αντιστρόφου τετραγώνου Fg Δυναμική ενέργεια, Δυναμικό και διαφορά Δυναμικού. Ομοιότητες βαρυτικών και ηλεκτροστατικών δυνάμεων Α) Είναι δυνάμεις κεντρικές mm 1 2 qq 1 2 Β) Ακολουθούν το νόμο του αντιστρόφου τετραγώνου Fg G και

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ 1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΑΣΚΗΣΗ 1 Ακινητοποιούμε τρία σημειακά ηλεκτρικά φορτία, στις θέσεις που φαίνονται στο παρακάτω σχήμα, πάνω σε λείο οριζόντιο δάπεδο κατασκευασμένο από κάποιο μονωτικό

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ 15 Α. ΝΟΜΟΣ ΤΟΥ COULOMB ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ 1. Στο χλωριούχο νάτριο (NaCl) η ελάχιστη απόσταση μεταξύ του ιόντος Να + και του ιόντος του Cl - είναι 2,3.10-10 m. Πόση είναι η

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Δυνάμεις μεταξύ ηλεκτρικών φορτίων Φυσική ενικής Παιδείας Β Λυκείου Δυνάμεις μεταξύ εκτρικών φορτίων- 3. Δυνάμεις μεταξύ εκτρικών φορτίων Φυσική ενικής Παιδείας Β Λυκείου Δυνάμεις μεταξύ εκτρικών φορτίων-. Νόμος του Coulomb Ανάμεσα σε δύο

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση Έστω διάνυσμα a( t a ( t i a ( t j a ( t k Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει a( t Δt a ( t Δt i a ( t Δt j a ( t Δt k Εξετάζουμε την παράσταση z z a( t Δt - a( t Δa a ( t Δt - a ( t lim

Διαβάστε περισσότερα

m 1 m 2 2 (z 2 + R 2 ). 3/2

m 1 m 2 2 (z 2 + R 2 ). 3/2 1 : Θέμα o από εξέταση της 2/2/2: α) Ποια η γενική μορή δηλ ανεξαρτήτως συστήματος συντεταγμένων) του μαγνητικού πεδίου B που δημιουργεί μαγνητικό δίπολο ροπής m σε σημείο P τέτοιο ώστε το διάνυσμα από

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Νίκος Ν. Αρπατζάνης Εισαγωγή Το άτομο αποτελείται από ένα θετικά φορτισμένο πυρήνα, που περιβάλλεται από αρνητικά φορτισμένα ηλεκτρόνια Άτομο Li πυρήνας με 3 πρωτόνια (+) και 3 ηλεκτρόνια

Διαβάστε περισσότερα

d = 1m, και είναι αρχικά ακλόνητες, βρισκόμενες στο κενό. Να υπολογιστεί η ηλεκτρική δυναμική ενέργεια των δύο σφαιρών και να επιλέξετε το σωστό

d = 1m, και είναι αρχικά ακλόνητες, βρισκόμενες στο κενό. Να υπολογιστεί η ηλεκτρική δυναμική ενέργεια των δύο σφαιρών και να επιλέξετε το σωστό Κριτήριο Αξιολόγησης - 0 Ερωτήσεις Θεωρίας Κεφ. 3 ο ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ- ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Αν U 1 η ηλεκτρική δυναμική ενέργεια

Διαβάστε περισσότερα

Λυμένες ασκήσεις. Ηλεκτρική δυναμική ενέργεια

Λυμένες ασκήσεις. Ηλεκτρική δυναμική ενέργεια Λυμένες ασκήσεις Ηλεκτρική δυναμική ενέργεια 1. Στις κορυφές οριζόντιου ισόπλευρου τριγώνου Α,Β,Γ πλευράς α βρίσκονται τα φόρτια,όπου. α. Ποια η δυναμική ηλεκτρική ενέργεια του συστήματος; β. Ποιο το φυσικό

Διαβάστε περισσότερα

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΕΡΓΟ Το έργο, εκφράζει την ενέργεια που μεταφέρεται από ένα σώμα σ ένα άλλο ή που μετατρέπεται από μια μορφή σε μία άλλη. Για σταθερή δύναμη δίνεται από τη σχέση W F Δx Είναι μονόμετρο μέγεθος και η μονάδα

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ B θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ B θετικών σπουδών η εξεταστική περίοδος από 9/0/5 έως 9/04/5 γραπτή εξέταση στη ΦΥΣΙΚΗ θετικών σπουδών Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση..

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤO HΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΑΙ ΣΤΟΥΣ ΠΥΚΝΩΤΕΣ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο

ΔΙΑΓΩΝΙΣΜΑ ΣΤO HΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΑΙ ΣΤΟΥΣ ΠΥΚΝΩΤΕΣ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤO HΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΑΙ ΣΤΟΥΣ ΠΥΚΝΩΤΕΣ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 30-03-014 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες προτάσεις

Διαβάστε περισσότερα

Το ηλεκτρικό ρεύμα. και. πηγές του. Μια διαδρομή σε μονοπάτια. Φυσικής Χημείας. Επιμέλεια: Διονύσης Μάργαρης

Το ηλεκτρικό ρεύμα. και. πηγές του. Μια διαδρομή σε μονοπάτια. Φυσικής Χημείας. Επιμέλεια: Διονύσης Μάργαρης Το ηλεκτρικό ρεύμα και οι πηγές του. Μια διαδρομή σε μονοπάτια Φυσικής Χημείας. και Επιμέλεια: Διονύσης Μάργαρης Η εργασία αυτή αφιερώνεται στους νέους συναδέλφους Φυσικούς και Χημικούς, αφού περιλαμβάνει

Διαβάστε περισσότερα

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 22 Νόµος του Gauss Περιεχόµενα Κεφαλαίου 22 Ηλεκτρική Ροή Ο Νόµος του Gauss Εφαρµογές του Νόµου του Gauss Πειραµατικές επιβεβαιώσεις για τους Νόµους των Gauss και Coulomb 22-1 Ηλεκτρική Ροή Ηλεκτρική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. Η F m είναι δύναμη εξαρτώμενη από την ταχύτητα

ΠΑΡΑΤΗΡΗΣΕΙΣ. Η F m είναι δύναμη εξαρτώμενη από την ταχύτητα ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Μαγνητικές δυνάμεις ΠΑΡΑΤΗΡΗΣΕΙΣ εντός 1. έσμη φορτισμένων σωματιδίων αποκλίνουν στο πεδίο B ενός μαγνήτη δηλ. έχονται μια δύναμη F m κάθετη τόσο στο v όσο και στο B (είτε v B είτε όχι).

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb. Βασικές έννοιες Τα σώματα μπορούν να αλληλεπιδράσουν ηλεκτρικά. Ο Θαλής ο Μιλήσιος παρατήρησε πρώτος την έλξη μικρών αντικειμένων από ήλεκτρο, αφού πρώτα τριφτεί σε ξηρό ύφασμα. Το φαινόμενο αυτό ονομάστηκε

Διαβάστε περισσότερα

ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ

ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έργο και Ενέργεια ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έστω ένα σωμάτιο πάνω στο οποίο εξασκείται μια σταθερή δύναμη F. Έστω ότι η κίνηση είναι ευθύγραμμη κατά την διεύθυνση του διανύσματος F. Το έργο που

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι. Η μέθοδος των ειδώλων Περιγραφή της μεθόδου Σημειακό φορτίο και αγώγιμο επίπεδο Φορτίο μεταξύ δύο αγωγίμων ημιεπιπέδων Σημειακό φορτίο έξω από γειωμένη σφαίρα Σημειακό φορτίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Συστήµατα µονάδων Για το σχηµατισµό ενός συστήµατος µονάδων είναι απαραίτητη η εκλογή ορισµένων µεγεθών που ονοµάζονται θεµελιώδη. Στις επιστήµες χρησιµοποιείται αποκλειστικά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

Ηλεκτρική ροή. κάθετη στη ροή ή ταχύτητα των σωματιδίων

Ηλεκτρική ροή. κάθετη στη ροή ή ταχύτητα των σωματιδίων Ηλεκτρική ροή Θα εξετάσουμε πρώτα την ένοια της ροής (π.χ. σωματιδίων) από μια S ταχύτητα σωματιδίων υ πιφάνεια S κάθετη στη ροή ή ταχύτητα των σωματιδίων Η ένταση J της ακτινοβολίας σωματιδίων ΔΝ ανά

Διαβάστε περισσότερα