η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa"

Transcript

1 Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η 1,0-(f ck -50)/00 pre 50 < f ck 90 Pa λ 0,80 pre f ck 50 Pa λ 0,80-(f ck -50)/400 pre 50 < f ck 90 Pa - oceľ: napr. 500 f yk [Pa]; fyk f f [Pa]; ε γ S ES pričom: γ S 1,15; Es Pa Pa; a) Návrh výstuže pomocou tabuliek tab. 1 Návrh výstuže o obĺžnikového prierezu (oska, obĺžnik) s optimalizáciou prierezu: a.1.1) Zvoliť stupeň vystuženia ρ (optimálne ρ 0,007 0,015). f a.1.) Výpočet mechanického stupňa vystuženia ω: ωρ, η f μ - z honoty ω interpoláciou stanoviť opoveajúcu honotu μ z tab. 1. Alebo si priamo zvoliť relatívny ohybový moment μ (optimálne μ 0,04 ~ 0,08 (až o 0,1) pre osky, μ 0,15 ~ 0,18 pre trámy). a.1.3) Stanoviť optimálnu účinnú výšku opt : opt b f, (1.4.17) μ η pričom: b 1.0m - oska. b b w - trám. a.1.4) Prepokla priemeru výstuže (oporúčané): φ Pre osky: φ10mm hlavná výstuž, Pre trámy: φ0mm hlavná výstuž, φ st 6-10mm strmeň. a.1.5) Stanovenie krytia výstuže c : Doska: - treba zohľaniť iba krytie hlavnej výstuže c c + c. (1.4.18) min ev Trám: - treba zohľaniť krytie hlavnej výstuže a strmeňov! c c + c, (1.4.19),st min,st ev c c c + c hlavná pozĺžna výstuž,,l min ev c +φ (c + c ) +φ strmene.,st st min,st ev st (1.4.0) a.1.6) Vzialenosť ťažiska výstuže ku ťahanému okraju 1 : 1 c +φ /. (1.4.1)

2 a.1.7) Výpočet optimálnej výšky prierezu h opt : hopt opt + 1. (1.4.) a.1.8) Návrh výšky prierezu h (zaokrúhliť smerom hore s presnosťou na 10mm): h h opt, h h f (h ) označenie pre osku, h h t označenie pre trám. (1.4.3) a.1.9) Výpočet účinnej výšky prierezu : h 1. (1.4.4) a.1.10) Výpočet relatívneho ohybového momentu μ: μ b. (1.4.14) f a.1.11) Z honoty μ interpoláciou z tab. 1 stanoviť honoty:, ε, ω alebo ζ a.1.1) Kontrola honoty ( pomer mezi výškou tlačeného betónu x a účinnou výškou δ):, alebo 0,8,, (1.3.4a) (1.3.11a) max,max 700. (1.3.7) 560, λ 0.8. (1.3.10) max 0,45 pre betón triey C 50/60; max 0,35 pre betón triey > C 50/60. a.1.13) V prípae reistribúcie ohybového momentu alebo plastického výpočtu vnútorných síl (plastická analýza), je potrebné overiť a splniť pomienky: - v prípae reistribúcie ohybového momentu: δ k1 + k x / pre f ck 50 Pa, (1.3.1a) δ k3 + k4 x / pre f ck >50 Pa, (1.3.1b) δ k 5 pre použitú oceľ s ťažnosťou triey a C, (1.3.1c) δ k 6 pre použitú oceľ s ťažnosťou triey A, (1.3.1) ke k 1 0,44; k 1,5 (0,6+ 0,0014/ εcu); k 3 0,54; k4 1,5 (0,6 + 0,0014 / εcu); k 5 0,7; k 6 0,8, δ je pomer mezi reistribuovaným momentom a momentom z pružnostného stavu, x je výška tlačeného prierezu po reistribúcii. - v prípae plastického výpočtu vnútorných síl: 0.5 pre betón triey C 50/60, (1.3.13a) 0.15 pre betón triey > C 50/60. (1.3.13b)

3 a.1.14) Stanovenie ťahového napätia vo výstuži v závislosti na honote ε (interpolovaná z tab. 1): f, ak ε ε, (1.4.5a,b) ε Es, ak ε <ε. (1.4.6a,b) a.1.15) Nutná (potrebná) plocha výstuže A,req : η f A,req λ b, alebo (1.4.7a) η f A,req ω b, alebo (1.4.7b),req (1 γ ) ζ. (1.4.8) A a.1.16) Návrh výstuže priemer výstuže φ, počet výstužných prútov n a k tomu opoveajúca priečna plocha výstuže A (A A,req ). Priemer výstuže φ, počet výstužných prútov n musia splniť konštrukčné zásay (minimálny a maximálny počet, vzialenosť ). a.1.17) Kontrola plochy výstuže A (minimálna a maximálna): Amin A As,max, ke (1.4.9) fctm Amin 0,6 bt 0,0013 bt, a As,max 0,04 Ac 0,04 b h. (1.1.6)(1.3.19) f yk Za návrhom kresliť obrázok priečneho rezu s rozmermi (výška, šírka) a návrhom výstuže (počet a priemer výstuže a jej poloha klaný alebo záporný moment)! b) Návrh výstuže bez pomoci tabuliek priamy výpočet b.1.1) Zvoliť si relatívny ohybový moment μ (optimálne μ 0,04 ~ 0,08 (až o 0,1) pre osky, μ 0,15 ~ 0,18 pre trámy) alebo si zvoliť pomer mezi výškou tlačeného betónu a účinnou výškou (optimálne 0,05 ~ 0,10 pre osky, 0,0 ~ 0,5 pre trámy). b.1.) Stanoviť optimálnu účinnú výšku opt : opt b f, alebo μ η opt pričom: b 1.0m - oska. b b w - trám. b.1.3) Prepokla priemeru výstuže (oporúčané): φ Pre osky: φ10mm hlavná výstuž, Pre trámy: φ0mm hlavná výstuž, φ st 6-10mm strmeň. b.1.4) Stanovenie krytia výstuže c : Doska: - treba zohľaniť iba krytie hlavnej výstuže min ev. (1.4.17)(1.4.30) λ (1 γ ) b η f c c + c. (1.4.18) Trám: - treba zohľaniť krytie hlavnej výstuže a strmeňov!

4 c c + c, (1.4.19),st min,st ev c c c + c hlavná pozĺžna výstuž,,l min ev c +φ (c + c ) +φ strmene.,st st min,st ev st (1.4.0) b.1.5) Vzialenosť ťažiska výstuže ku ťahanému okraju 1 : 1 c +φ /. (1.4.1) b.1.6) Výpočet optimálnej výšky prierezu h opt : hopt opt + 1. (1.4.) b.1.7) Návrh výšky prierezu h (zaokrúhliť smerom hore s presnosťou na 10mm): h h opt, h h f (h ) označenie pre osku, h h t označenie pre trám. (1.4.3) b.1.8) Výpočet účinnej výšky prierezu : h 1. (1.4.4) b.1.9) Výpočet relatívneho ohybového momentu μ: μ b. (1.4.14) f b.1.10) Stanovenie pomeru mezi výškou tlačeného betónu a účinnou výškou : 1 4 μ γ 1 1, (1.4.31) γ λ Alebo priamo vypočítať výšku tlačenej časti prierezu x: 1 4 γ x b f. (1.4.3) γ λ η b.1.11) Kontrola honoty :, alebo 0,8,, (1.3.4a) (1.3.11a) max,max 700. (1.3.7) 560, λ 0.8. (1.3.10) max 0,45 pre betón triey C 50/60; max 0,35 pre betón triey > C 50/60. b.1.1) Nutná (potrebná) plocha výstuže A,req : η f η f A,req λ b λ x b, alebo (1.4.7) f f

5 λ b η f 4 γ A,req 1 1 f b f. (1.4.33) γ λ η b.1.13) Návrh výstuže priemer výstuže φ, počet výstužných prútov n a ktomu opoveajúca priečna plocha výstuže A (A A,req ). Priemer výstuže φ, počet výstužných prútov n musia splniť konštrukčné zásay (minimálny a maximálny počet, vzialenosť ). b.1.14) Kontrola plochy výstuže A (minimálna a maximálna): Amin A As,max, ke (1.4.9) fctm Amin 0,6 bt 0,0013 bt, a As,max 0,04 Ac 0,04 b h. (1.1.6)(1.3.19) f yk Za návrhom kresliť obrázok priečneho rezu s rozmermi (výška, šírka) a návrhom výstuže (počet a priemer výstuže a jej poloha klaný alebo záporný moment)! Posúenie prierezu a) Posúenie prierezu pomocou tabuliek tab. 1 a.1.1) Overenie krytia výstuže c môže sa zmeniť vzhľaom na navrhnutý skutočný priemer výstuže φ: Doska: - treba zohľaniť iba krytie hlavnej výstuže c c + c. (1.4.18) min ev Trám: - treba zohľaniť krytie hlavnej výstuže a strmeňov! c c + c, (1.4.19),st min,st ev c c c + c hlavná pozĺžna výstuž,,l min ev c +φ (c + c ) +φ strmene.,st st min,st ev st (1.4.0) a.1.) Overenie vzialenosti ťažiska výstuže ku ťahanému okraju 1 : 1 c +φ /. (1.4.1) V prípae trámov (občas aj v prípae osiek, ak je navrhnutý veľký počet výstužných vložiek) je potrebné overiť svetlú vzialenosť mezi prútmi a: φ a 1.5, 0mm, (1.4.34) Aj nie je pomienka (1.4.34) splnená, je potrebné rozložiť výstuž o viacerých raov (, max 3 ray). Potom počítame vzialenosť 1 ako ťažisko celej výstuže: A + A 1 A + A,1 1,1, 1,,1,, ke (1.4.35) A A,1 + A,. (1.4.36)

6 s l a Obr Osová vzialenosť prútov a svetlosť mezi prútmi 1, 1,1 b A, A,1 1 Obr Rozloženie výstuže o voch vrstiev a.1.3) Overenie účinnej výšky prierezu : h 1. (1.4.4) a.1.4) Výpočet a overenie geometrického stupňa vystuženia ρ: A A ρ, a ρmin ρ ρ b b. (1.3.a,b) a.1.5) Výpočet skutočného mechanického stupňa vystuženia ω: f A f ωρ, - pre osku, (1.3.3) η f b η f f A f ωρ η f b η f w, - pre trám. (1.3.3) a.1.6) Z honoty ω interpoláciou z tab. 1 stanoviť honoty:, ε, μ alebo ζ. a.1.7) Kontrola honoty ( pomer mezi výškou tlačeného betónu x a účinnou výškou δ):, alebo 0,8,, (1.3.4a) (1.3.11a) max,max 700. (1.3.7) 560, λ 0.8. (1.3.10) max 0,45 pre betón triey C 50/60; max 0,35 pre betón triey > C 50/60. a.1.8) V prípae reistribúcie ohybového momentu alebo plastického výpočtu vnútorných síl (plastická analýza), je potrebné overiť a splniť pomienky: - v prípae reistribúcie ohybového momentu: δ k1 + k x / pre f ck 50 Pa, (1.3.1a) δ k3 + k4 x / pre f ck >50 Pa, (1.3.1b) δ k 5 pre použitú oceľ s ťažnosťou triey a C, (1.3.1c) δ k 6 pre použitú oceľ s ťažnosťou triey A, (1.3.1)

7 ke k 1 0,44; k 1,5 (0,6+ 0,0014/ εcu); k 3 0,54; k4 1,5 (0,6 + 0,0014 / εcu); k 5 0,7; k 6 0,8, δ je pomer mezi reistribuovaným momentom a momentom z pružnostného stavu, x je výška tlačeného prierezu po reistribúcii. - v prípae plastického výpočtu vnútorných síl: 0.5 pre betón triey C 50/60, (1.3.13a) 0.15 pre betón triey >C 50/60. (1.3.13b) a.1.9) Stanovenie ťahového napätia vo výstuži v závislosti na honote ε (interpolovaná z tab. 1): f, ak ε ε, (1.4.5a,b) ε Es, ak ε <ε. (1.4.6a,b) a.1.10) Výpočet momentu únosnosti prierezu: μ b η f, alebo (1.4.1a) ω b η f ζ ω b ζ η f, alebo (1.4.1b) A ζ A ζ f. (1.4.13) a.1.11) Overenie pomienky spoľahlivosti:, (1.4.15) Ak je pomienka (1.4.15) splnená, prierez vyhovuje a návrh a posúenie prierezu je ukončené. Ak pomienka nie je splnená, je potrebné urobiť nový návrh a posúenie! b) Posúenie prierezu bez pomoci tabuliek priamy výpočet b..1) Overenie krytia výstuže c môže sa zmeniť vzhľaom na navrhnutý skutočný priemer výstuže φ: Doska: - treba zohľaniť iba krytie hlavnej výstuže c c + c. (1.4.18) min ev Trám: - treba zohľaniť krytie hlavnej výstuže a strmeňov! c c + c, (1.4.19),st min,st ev c c c + c hlavná pozĺžna výstuž,,l min ev c +φ (c + c ) +φ strmene.,st st min,st ev st (1.4.0) b..) Overenie vzialenosti ťažiska výstuže ku ťahanému okraju 1 : 1 c +φ /. (1.4.1) V prípae trámov (občas aj v prípae osiek, ak je navrhnutý veľký počet výstužných vložiek) je potrebné overiť svetlú vzialenosť mezi prútmi a:

8 φ a 1.5, 0mm, (1.4.34) Aj nie je pomienka (1.4.34) splnená, je potrebné rozložiť výstuž o viacerých raov (, max 3 ray). Potom počítame vzialenosť 1 ako ťažisko celej výstuže: A + A 1 A + A,1 1,1, 1,,1,, ke (1.4.35) A A,1 + A,. (1.4.36) b..3) Overenie účinnej výšky prierezu : h 1. (1.4.4) b..4) Kontrola plochy výstuže A (minimálna a maximálna): Amin A As,max, ke (1.4.9) fctm Amin 0,6 bt 0,0013 bt, a As,max 0,04 Ac 0,04 b h. (1.1.6)(1.3.19) f yk Ak bolo overenie urobené v návrhu výstuže, v posúení nie je potrebné! b..5) Výpočet výšky tlačenej časti prierezu x: A f x. (1.4.37) λ b η f b..6) Stanovenie pomeru mezi výškou tlačeného betónu a účinnou výškou : x. (1.3.4b) Výpočet relatívneho ohybového momentu μ: μω ζ β ( ) (1 γ ), b..7) Kontrola honoty ( pomer mezi výškou tlačeného betónu x a účinnou výškou δ):, alebo 0,8,, (1.3.4a) (1.3.11a) max,max 700. (1.3.7) 560, λ 0.8. (1.3.10) max 0,45 pre betón triey C 50/60; max 0,35 pre betón triey > C 50/60. b..8) V prípae reistribúcie ohybového momentu alebo plastického výpočtu vnútorných síl (plastická analýza), je potrebné overiť a splniť pomienky: - v prípae reistribúcie ohybového momentu:

9 δ k1 + k x / pre f ck 50 Pa, (1.3.1a) δ k3 + k4 x / pre f ck >50 Pa, (1.3.1b) δ k 5 pre použitú oceľ s ťažnosťou triey a C, (1.3.1c) δ k 6 pre použitú oceľ s ťažnosťou triey A, (1.3.1) ke k 1 0,44; k 1,5 (0,6+ 0,0014/ εcu); k 3 0,54; k4 1,5 (0,6 + 0,0014 / εcu); k 5 0,7; k 6 0,8, δ je pomer mezi reistribuovaným momentom a momentom z pružnostného stavu, x je výška tlačeného prierezu po reistribúcii. - v prípae plastického výpočtu vnútorných síl: 0.5 pre betón triey C 50/60, (1.3.13a) 0.15 pre betón triey >C 50/60. (1.3.13b)..9) Stanovenie ťahového napätia vo výstuži v závislosti na honote ε (interpolovaná z tab. 1): f, ak ε ε, (1.4.5a,b) ε Es, ak ε <ε. (1.4.6a,b) ke: ε εcu 1 x. (1.4.38) b..10) Výpočet momentu únosnosti prierezu: ( ) λ b 1 γ η f, alebo (1.4.1a) μ b η f, alebo (1.4.1b) ( ) A ζ f A 1 γ f. (1.4.13) b..11) Overenie pomienky spoľahlivosti:, (1.4.15) Ak je pomienka (1.4.15) splnená, prierez vyhovuje a návrh a posúenie prierezu je ukončené. Ak pomienka nie je splnená, je potrebné urobiť nový návrh a posúenie!

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

YQ U PROFIL, U PROFIL

YQ U PROFIL, U PROFIL YQ U PROFIL, U PROFIL YQ U Profil s integrovanou tepelnou izoláciou Minimalizácia tepelných mostov Jednoduché stratené debnenie monolitických konštrukcií Jednoduchá a rýchla montáž Výrobok Pórobetón značky

Διαβάστε περισσότερα

Navrh a posudenie mosta: 222-00 D1 Hubova-Ivachnova

Navrh a posudenie mosta: 222-00 D1 Hubova-Ivachnova avrh a posudenie mosta: -00 D1 Hubova-Ivachnova 1. Materiálové charakteristiky: BETO: C 30/37 B35 B 400 - objemova tiaz zelezobetonu ρ b := 5 k m - dovolene namahanie betonu v σ bc := 8. MPa HLAVE ZATAZEIE

Διαβάστε περισσότερα

Baumit StarTrack. Myšlienky s budúcnosťou.

Baumit StarTrack. Myšlienky s budúcnosťou. Baumit StarTrack Myšlienky s budúcnosťou. Lepiaca kotva je špeciálny systém kotvenia tepelnoizolačných systémov Baumit. Lepiace kotvy sú súčasťou tepelnoizolačných systémov Baumit open (ETA-09/0256), Baumit

Διαβάστε περισσότερα

4 Regulačné diagramy na reguláciu meraním

4 Regulačné diagramy na reguláciu meraním Štatistické riaenie procesov egulačné iagramy 4-1 4 egulačné iagramy na reguláciu meraním Cieľ kapitoly Po preštuovaní tejto kapitoly buete veieť: čo je to regulačný iagram na reguláciu meraním, ako sa

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply)

Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply) Palis s.r.o. Kokořov 24, 330 11 Třemošná, Česká republika e- mail: palis@palis.cz Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply) Vypracoval: Ing. Roman Soyka

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,

Διαβάστε περισσότερα

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ Δημοκρίτειο Πανεπιστήμιο Θράκης_ Τμήμα Πολιτικών Μηχανικών_ Τομέας Δομικών Έργων Κατασκευές Ωπλισμένου Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ ΣΤΟΙΧΕΙΑ ΣΕ ΚΑΘΑΡΟ ΕΦΕΛΚΥΣΜΟ Εφελκυσμός από εξωτερική φόρτιση: 0.60

Διαβάστε περισσότερα

Z O S I L Ň O V A Č FEARLESS SÉRIA D

Z O S I L Ň O V A Č FEARLESS SÉRIA D FEARLESS SÉRIA D FEARLESS SÉRIA D Fearless 5000 D Fearless 2200 D Fearless 4000 D Fearless 1000 D FEARLESS SÉRIA D Vlastnosti: do 2 ohmov Class-D, vysoko výkonný digitálny kanálový subwoofer, 5 kanálový

Διαβάστε περισσότερα

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením. Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI

TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI ŠKRIDPLECHU A TRAPÉZOVÝCH PLECHOV Ojednávateľ : Ľuoslav DERER Vypracoval : prof. Ing. Ján Hudák, CSc. Ing. Tatiana Hudáková Košice, 004 1 STATICKÝ VÝPOČET ÚNOSNOSTI

Διαβάστε περισσότερα

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

(απεικονίζεται µόνο η µία κεφαλή)

(απεικονίζεται µόνο η µία κεφαλή) ιπλό δισκοπρίονο DG 79/4,5 m + Ε 111 ίσκος Φ 380 mm Μήκος κοπής 4500 mm Ρύθµιση κοπής (περιστροφή βάσης) 45-90 -45 και ενδιάµεσες µοίρες Μπλοκάρισµα στις 15, 22,5, 30 και 45 Υδροπνευµατική πτώση δίσκων

Διαβάστε περισσότερα

Návod k programu POROTHERM 2010

Návod k programu POROTHERM 2010 Návod k programu POROTHER 200 Overenie odolnosti murovaného prvku (stena, pilier) z murovacích prvkov POROTHER podľa STN EN 996-- Rez - N d d hd Stena Pilier t t b b=m m 2 w w h /2 h /2 h w m 2 N d N md

Διαβάστε περισσότερα

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené

Διαβάστε περισσότερα

Menovky na dvere, čísla, prívesky, kľúčenky

Menovky na dvere, čísla, prívesky, kľúčenky Menovky na dvere, čísla, prívesky, kľúčenky Farby výrobkov: Von Dnu apex Banská Bystrica - List 9,84 - Žbirkovci 7,92 8,20 116 x 140 Benka 6,96 96 x 82-5,80 94 x 38 Sisi 7,80 6,50 Zurich - Filipová 92

Διαβάστε περισσότερα

ING. MARIÁN PETRÁŠ AUTORIZOVANÝ STAVEBNÝ INŽINIER PRE NOSNÉ KONŠTRUKCIE A STATIKU STAVIEB

ING. MARIÁN PETRÁŠ AUTORIZOVANÝ STAVEBNÝ INŽINIER PRE NOSNÉ KONŠTRUKCIE A STATIKU STAVIEB ING. MARIÁN PETRÁŠ AUTORIZOVANÝ STAVEBNÝ INŽINIER PRE NOSNÉ KONŠTRUKCIE A STATIKU STAVIEB HVIEZDOSLAVOVA 0, 97 0 TRNAVA, tel. 0905 / 4 56, 0/5574 STATICKÝ VÝPOČET NOSNEJ KONŠTRUKCIE STRECHY A STROPU NÁZOV

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Βασικές Παράµετροι Μελέτης Χάραξης Γραµµών Μέσων Σταθερής Τροχιάς για Ταχύτητες Μικρότερες από 100 km/h

Βασικές Παράµετροι Μελέτης Χάραξης Γραµµών Μέσων Σταθερής Τροχιάς για Ταχύτητες Μικρότερες από 100 km/h Βασικές Παράµετροι Μελέτης Χάραξης Γραµµών Μέσων Σταθερής Τροχιάς για Ταχύτητες Μικρότερες από 100 km/h Πηγή : HANBUCH INGENIEURGEODAESIE. EISENBAHNBAU. WICHMANN VERLAG HEIDELBERG 001 Επιµέλεια: Β. ΨΑΡΙΑΝΟΣ,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β = ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΕΙΣΑΓΩΓΗ ΕΚΚΙΝΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Έχοντας βεβαιωθεί ότι η εγκατάσταση του προγράµµατος

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Παραµετρική διερεύνηση απαιτήσεων εγκάρσιων οπλισµών σε υποστυλώµατα σύµφωνα µε τον Κυπριακό Σεισµικό Κώδικα και τον Ευρωκώδικα 8.

Παραµετρική διερεύνηση απαιτήσεων εγκάρσιων οπλισµών σε υποστυλώµατα σύµφωνα µε τον Κυπριακό Σεισµικό Κώδικα και τον Ευρωκώδικα 8. Παραµετρική διερεύνηση απαιτήσεων εγκάρσιων οπλισµών σε υποστυλώµατα σύµφωνα µε τον Κυπριακό Σεισµικό Κώδικα και τον Ευρωκώδικα 8. Μ. Α. ηµοσθένους ρ Πολιτικός Μηχανικός, Εντεταλµένος Ερευνητής του Ι.Τ.Σ.Α.Κ.,

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Všeobecná charakteristika stropného systému Ipeľských tehelní (IT) Príklady vytvorenia otvorov v strope a vytvorenie konzol pre balkóny

Všeobecná charakteristika stropného systému Ipeľských tehelní (IT) Príklady vytvorenia otvorov v strope a vytvorenie konzol pre balkóny Všeobecná charakteristika stropného systému Ipeľských tehelní (IT) Polomontovaný keramický stropný systém IT je súčasťou kompletného tehlového systému BRITTERM. Príklady vytvorenia otvorov v strope a vytvorenie

Διαβάστε περισσότερα

Návrh 3-fázového transformátora

Návrh 3-fázového transformátora Zadanie : Návrh 3-fázového transformátora Návrh pripravil Doc. Ing. Bernard BEDNÁRIK, PhD. Navrhnite trojfázový transformátor s olejovým chladením s nasledovnými parametrami: zdanlivý výkon 50 kva zapojenie

Διαβάστε περισσότερα

ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός

ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός Κεφαλαιο 1 Παθολογια και τεκμηριωση Στατική συμπεριφορά Στατική συμπεριφορά Στατική συμπεριφορά Στατική

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

1. Určenie tiažového zrýchlenia reverzným kyvadlom

1. Určenie tiažového zrýchlenia reverzným kyvadlom 1. Určenie tiažového zrýchlenia reverzným kyvalom Autor pôvoného textu: ozef Lasz Úloha: V mieste fyzikálneho laboratória experimentálne určiť veľkosť tiažového zrýchlenia Teoretický úvo Kažé teleso upevnené

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας

Διαβάστε περισσότερα

DIGITÁLNÍ MULTIMETR KT831. CZ - Návod k použití

DIGITÁLNÍ MULTIMETR KT831. CZ - Návod k použití DIGITÁLNÍ MULTIMETR KT831 CZ - Návod k použití 1. INFORMACE O BEZPEČNOSTI 1 1.1. ÚVOD 2 1.2. BĚHEM POUŽÍVÁNÍ 2 1.3. SYMBOLY 2 1.4. ÚDRŽBA 3 2. POPIS PŘEDNÍHO PANELU 3 3. SPECIFIKACE 3 3.1. VŠEOBECNÉ SPECIFIKACE

Διαβάστε περισσότερα

SKRUTKOVÉ SPOJE SILOVÉ POMERY PRI MONTÁŽI

SKRUTKOVÉ SPOJE SILOVÉ POMERY PRI MONTÁŽI 25 SKRUTKOVÉ SPOJE Podstatou skrutkového spoja je zovretie spojovaných súčiastok medzi hlavou skrutky a maticou. Potrebná sila sa vytvorí uťahovaním skrutky, respektíve matice, príslušným uťahovacím momentom.

Διαβάστε περισσότερα

APLIKAČNÁ PRÍRUČKA. ... naše výrobky chránia všade! prepäťové ochrany

APLIKAČNÁ PRÍRUČKA. ... naše výrobky chránia všade! prepäťové ochrany prepäťové ochrany APLIKAČNÁ PRÍRUČKA ODPORÚČANIA PRE POUŽITIE PREPÄŤOVÝCH OCHRÁN KIWA NOVÉ PREPÄŤOVÉ OCHRANY SÉRIE POm I 25kA, PO II G Spoločnosť KIWA vyvíja a vyrába prepäťové ochrany (SPD = Surge Protective

Διαβάστε περισσότερα

PRÍSTROJE PRE ROZVÁDZAČE

PRÍSTROJE PRE ROZVÁDZAČE PRÍSTROJE PRE ROZVÁDZAČE MERAČE SPOTREBY ENERGIE MONITORY ENERGIE ANALYZÁTORY KVALITY ENERGIE PRÚDOVÉ TRANSFORMÁTORY BOČNÍKY ANALÓGOVÉ PANELOVÉ MERAČE DIGITÁLNE PANELOVÉ MERAČE MICRONIX spol. s r.o. -

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΣΥΓΚΟΛΛΗΣΕΙΣ 1 M σ = W b w σ επιτρεπ όµενη σ max = σ κάµψη + σ εφελκυστική σ επιτρεπόµενη ΣΥΓΚΟΛΛΗΣΕΙΣ 2 ΣΥΓΚΟΛΛΗΣΕΙΣ 3 Συγκόλληση σηµείων τ F A n m F n d s = τ επιτρεπ όµενη

Διαβάστε περισσότερα

MaxxFlow Meranie vysokých prietokov sypkých materiálov

MaxxFlow Meranie vysokých prietokov sypkých materiálov MaxxFlow Meranie vysokých prietokov sypkých materiálov Použitie: MaxxFlow je špeciálne vyvinutý pre meranie množstva sypkých materiálov s veľkým prietokom. Na základe jeho kompletne otvoreného prierezu

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Β Κατασκευές Οπλισµένου Σκυροδέµατος Ι ιδάσκοντες: Μητούλης Στ., Παναγόπουλος Γ., Σους Ι. Σέρρες 8-6-01 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΚΑΛΥΨΗΣ ΠΛΑΚΩΝ Επικάλυψη c min για συνθήκες

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

ZOZNAM PRÍLOH OPTIMAL 539

ZOZNAM PRÍLOH OPTIMAL 539 ZOZAM PRÍLOH OPTIMAL 539 Textová časť Súhrnná technická správa Arch. stavebné riešenie Aproximatívny rozpočet Protipožiarna bezpečnosť stavby Energetické posúdenie Technická správa - Statika Statický stavby

Διαβάστε περισσότερα

ΒΙΟΚΑΤΑΛΥΣΗ ΣΕ ΕΤΕΡΟΓΕΝΗ

ΒΙΟΚΑΤΑΛΥΣΗ ΣΕ ΕΤΕΡΟΓΕΝΗ ΒΙΟΚΑΤΑΛΥΣΗ ΣΕ ΕΤΕΡΟΓΕΝΗ ΒΙΟΚΑΤΑΛΥΣΗ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ ΕΤΕΡΟΓΕΝΕΙΣ ΒΙΟΚΑΤΑΛΥΤΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ Ετερογενείς αντιδράσεις: βαθμίδωση θερμοκρασίας ή συγκέντρωσης Ετερογενείς βιοκαταλυτικές αντιδράσεις:

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Odťahy spalín - všeobecne

Odťahy spalín - všeobecne Poznámky - všeobecne Príslušenstvo na spaliny je súčasťou osvedčenia CE. Z tohto dôvodu môže byť použité len originálne príslušenstvo na spaliny. Povrchová teplota na potrubí spalín sa nachádza pod 85

Διαβάστε περισσότερα

Υπόγεια Έργα Αντιστηρίξεις. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών 1

Υπόγεια Έργα Αντιστηρίξεις. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών 1 Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών 1 Ε ρ γ α Π ρ ο σ ω ρ ι ν ή ς Α ν τ ι σ τ ή ρ ι ξ η ς γ ι α τ η ν Κ α τ α σ κ ε υ ή Υ π ο γ ε ί ω ν σ ε Α σ τ ι κ ό Π ε ρ ι β ά λ λ ο ν Α Λύση: ιάφραγµα

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού).

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). 1 ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). Πλάτος δοκού t beam =0.30m Πλάτος υποστυλωμάτων 0.50m

Διαβάστε περισσότερα

ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 2000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 2 ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ

ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 2000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 2 ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟ ΕΜΑ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΣΕ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΚΩΣ 000 ΚΑΙ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ ΜΑΡΙΑ ΜΟΥΝΤΡΑΚΗ ΜΗΧΑΝΟΛΟΓΟΣ Τ.Ε. ΗΡΑΚΛΕΙΟ ΜΑΪΟΣ 005 ΕΛΕΥΘΕΡΙΑ ΣΤΑΜΑΤΑΚΗ ΠΟΛΙΤΙΚΟΣ

Διαβάστε περισσότερα

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A Sttik určité konštrukie Znie č. : JEDNODUCHÝ ŤH TLK rík : Učte prieeh normáovýh sí, normáovýh npätí posunutí priereov. rieeh uveenýh veičín náornite grfik. Shém poľ. čís kóu 0,8 0,8, 0,5,,6, 0,8, 0,6,8

Διαβάστε περισσότερα

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Ανάλυση Πινάκων και Εφαρμογές Σελίδα 1 από 6 Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Έστω A είναι μ ν πίνακας. Τότε 1. ranka= ranka

Διαβάστε περισσότερα

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M Απαντήσεις 51 5. Εφαρµογές των παραλληλογράµµων α Εφαρµογές στα τρίγωνα α.1 Στο τρίγωνο AB Γ είναι Ε // (1) Επίσης Ζ, ΕΗ, άρα Ζ // ΕΗ () Από τις (1), () έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. α. Στο

Διαβάστε περισσότερα

13PROC

13PROC : & : &, 13/06/2013.: 213-2143327,317 FAX : 213-2143256 E-mail: gr.promitheion@ekab.gr URL: www.ekab.gr. / :!" & "!#$.%.: 11527 - &$ 13PROC001546644 2013-07-19 I I. 1/2012/2! "#$%& 167 "&$'#$ %!$#$ KAI

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

ΘΕΜΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ)

ΘΕΜΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ) Κριτήριο αξιολόγησης στις πιθανότητες Ομάδα: Α Όνομα.Επώνυμο....ημ/νία Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ). Δύο συμπληρωματικά ενδεχόμενα δεν είναι ασυμβίβαστα.. Αν Α και

Διαβάστε περισσότερα

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!

' ( )* * +,,, ) - . &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &&!3, #&- &2!#&, #4 $!&$3% 2!% #!.1 & &! //! &-!! ..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .

Διαβάστε περισσότερα