ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ"

Transcript

1 Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: Μαθηματικός Περιηγητής: blogs.sch.gr/iokaragi 1

2 ΠΕΡΙΕΧΟΜΕΝΑ ΑΛΓΕΒΡΑ Α ΗΜΕΡΗΣΙΟΥ...3 ΓΕΩΜΕΤΡΙΑΣ Α ΗΜΕΡΗΣΙΟΥ...4 ΑΛΓΕΒΡΑΣ Β ΗΜΕΡΗΣΙΟΥ...6 ΓΕΩΜΕΤΡΙΑΣ Β ΗΜΕΡΗΣΙΟΥ...8 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ...9 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ...10 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ...11

3 ΔΙΔΑΚΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α Λ Γ Ε Β Ρ Α Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 01) ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω. ΠΑΡΑΤΗΡΗΣΕΙΣ Εσαγωγικό Ε. Σύνολα Ο.1. Οι Πράξεις και οι Ιδιότητές τους. Οι Πραγματικοί Αριθμοί.. Διάταξη Πραγματικών Αριθμών Εκτός της απόδειξης της ιδιότητας 4.3.Απόλυτη Τιμή Πραγματικού Αριθμού 6.4. Ρίζες Πραγματικών Αριθμών 3 Εκτός των αποδείξεων των ιδιοτήτων 3 και 4. ΣΥΝΟΛΟ 19 3 Ο Εξισώσεις 3.1. Εξισώσεις 1 ου Βαθμού x ν α 3.. Η Εξίσωση 3.3. Εξισώσεις ου Βαθμού 7 ΣΥΝΟΛΟ 14 4 Ο Ανισώσεις Ο Πρόοδοι 4.1. Ανισώσεις 1 ου Βαθμού Ανισώσεις ου Βαθμού ΣΥΝΟΛΟ 9.1. Ακολουθίες.. Αριθμητική πρόοδος 4 Εκτός της υποπαραγράφου «άθροισμα ν διαδοχικών όρων Α.Π.).3. Γεωμετρική πρόοδος 4 Εκτός της υποπαραγράφου «άθροισμα ν διαδοχικών όρων Γ.Π.) ΣΥΝΟΝΟ 10 6 Ο 6.1. Η Έννοια της Συνάρτησης 7 Βασικές Έννοιες των Συναρτήσεων 6... Γραφική Παράσταση Συνάρτησης Εκτός της υποπαραγράφου «Απόσταση σημείων» 6.3. Η Συνάρτηση f(x)= αx+β 4 Εκτός της κλίσης ευθείας ως λόγος μεταβολής. ΣΥΝΟΛΟ 11 7 Ο 7.1. Μελέτη της Συνάρτησης: f(x)= αx Μελέτη Βασικών Συναρτήσεων 7.3. Μελέτη της Συνάρτησης f(x)= αx +βx+γ ΣΥΝΟΛΟ 10 ΓΕΝΙΚΟ ΣΥΝΟΛΟ 7 3

4 ΔΙΔΑΚΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Γ Ε Ω Μ Ε Τ Ρ Ι Α Από το βιβλίο «Ευκλείδεια Γεωμετρία Α Λυκείου» των Αργυρόπουλου Η., Βλάμου Π. κ.α (Έκδοση 01) ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω. ΠΑΡΑΤΗΡΗΣΕΙΣ 1.1. Το αντικείμενο της Ευκλείδειας 1 1 ο Εισαγωγή στην Ευκλείδεια Γεωμετρία Γεωμετρίας. 1.. Ιστορική αναδρομή στη γένεση και ανάπτυξη της Γεωμετρίας. 3 Ο Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ο Κριτήριο ισότητας τριγώνων 3.3. ο Κριτήριο ισότητας τριγώνων ο Κριτήριο ισότητας τριγώνων 3.. Ύπαρξη και μοναδικότητα καθέτου Κριτήρια ισότητας ορθογώνιων Εκτός της απόδειξης των τριγώνων. θεωρημάτων Ι και ΙΙ Κύκλος - Μεσοκάθετος Διχοτόμος Σχέση εξωτερικής και απέναντι γωνίας Ανισοτικές σχέσεις πλευρών και γωνιών θεωρήματος 3.1. Tριγωνική ανισότητα Κάθετες και πλάγιες θεωρήματος ΙΙ Σχετικές θέσεις ευθείας και κύκλου 3.1. Εφαπτόμενα τμήματα Σχετικές θέσεις δύο κύκλων Απλές γεωμετρικές κατασκευές Βασικές κατασκευές τριγώνων ΣΥΝΟΛΟ 14 1 θεωρήματος Ι Εισαγωγή 4 4 Ο 4.. Τέμνουσα δύο ευθειών - Ευκλείδειο αίτημα 4.4. Γωνίες με πλευρές παράλληλες Παράλληλες ευθείες 4.. Αξιοσημείωτοι κύκλοι τριγώνου. Πορίσματος ΙΙ της σελ. 81 και των προτάσεων Ι,ΙΙ,ΙΙΙ και ΙV θεωρήματος που αναφέρεται στον 4

5 4.6. Άθροισμα γωνιών τριγώνου 4.8. Άθροισμα γωνιών κυρτού ν-γώνου Ιστορικό σημείωμα 1- ΣΥΝΟΛΟ εγγεγραμμένο κύκλο τριγώνου. Πορίσματος. ο Παραλληλόγραμμα Τραπέζια 6 ο Εγγεγραμμένα σχήματα.1. Εισαγωγή.. Παραλληλόγραμμα.3. Ορθογώνιο.4. Ρόμβος.. Τετράγωνο.6 Εφαρμογές στα τρίγωνα Θ.ΙΙΙ.7. Βαρύκεντρο τριγώνου Θ.8. Το ορθόκεντρο τριγώνου Χωρίς το πόρισμα.9. Μια ιδιότητα του ορθογώνιου τριγώνου.10. Τραπέζιο.11. Ισοσκελές τραπέζιο 6.1. Εισαγωγικά Ορισμοί ΣΥΝΟΛΟ Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης 6.3. Γωνία χορδής και εφαπτομένης 6.4. Βασικοί γεωμετρικοί τόποι στον κύκλο Τόξο κύκλου που δέχεται γνωστή γωνία. 6.. Το εγγεγραμμένο τετράπλευρο Το εγγράψιμο τετράπλευρο ΣΥΝΟΛΟ 7 ΓΕΝΙΚΟ ΣΥΝΟΛΟ 0

6 ΔΙΔΑΚΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Β ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΕΣΠΕΡΙΝΟΥ Α Λ Γ Ε Β Ρ Α Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω ΠΑΡΑΤΗΡΗΣΕΙΣ 1 Ο Συστήματα 1.. Μη Γραμμικά Συστήματα 3 Ο Ιδιότητες Συναρτήσεων 3 Ο Τριγωνομετρία 4 Ο Πολυωνυµικές εξισώσεις Ο Εκθετική και Λογαριθμική συνάρτηση ΣΥΝΟΛΟ 3.1. Μονοτονία-Ακρότατα-Συμμετρίες Συνάρτησης...Κατακόρυφη-Οριζόντια-Μετατόπιση Καμπύλης. ΣΥΝΟΛΟ 3.1.Τριγωνομετρικοί Αριθμοί Γωνίας Βασικές Τριγωνομετρικές 4 Χωρίς την απόδειξη της ταυτότητας 4 Ταυτότητες 3.3. Αναγωγή στο 1o Τεταρτημόριο Οι τριγωνομετρικές συναρτήσεις 3.. Βασικές τριγωνομετρικές εξισώσεις 3.6. Τριγωνομετρικοί αριθμοί αθροίσματος γωνιών Τριγωνομετρικοί αριθμοί της γωνίας α. ΣΥΝΟΛΟ 0 Πολυώνυμα. Διαίρεση πολυωνύμων. Πολυωνυµικές εξισώσεις και ανισώσεις. Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές. ΣΥΝΟΛΟ 18 Εκθετική συνάρτηση. Λογάριθμοι. Λογαριθμική συνάρτηση. ΣΥΝΟΝΟ 18 ΓΕΝΙΚΟ ΣΥΝΟΛΟ 64 Χωρίς τις αποδείξεις των τύπων Χωρίς τις αποδείξεις των τύπων Χωρίς την υποπαράγραφο «Προσδιορισμός ρίζας με προσέγγιση». Χωρίς την απόδειξη του τύπου αλλαγής της βάσης Να διδαχθούν μόνο οι λογαριθμικές συναρτήσεις με βάση το 10 και το e. 6

7 ΔΙΔΑΚΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Β ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Γ Ε Ω Μ Ε Τ Ρ Ι Α Από το βιβλίο «Ευκλείδεια Γεωμετρία Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω. ΠΑΡΑΤΗΡΗΣΕΙΣ 7 ο Αναλογίες 7.1. Εισαγωγή 7.4. Ανάλογα ευθύγραμμα τµήµατα Αναλογίες 7.. Μήκος ευθύγραμμου τµήµατος 7.6. Διαίρεση τµηµάτων εσωτερικά και εξωτερικά ως προς δοσμένο λόγο Χωρίς την απόδειξη της Πρότασης και χωρίς την υποπαράγραφο Διερεύνηση Θεώρημα του Θαλή Χωρίς τις αποδείξεις των θεωρημάτων και του Πορίσματος και χωρίς τους ορισμούς «συζυγή αρμονικά» και «αρμονική τετράδα» Θεωρήματα των διχοτόμων Χωρίς τις αποδείξεις των τριγώνου θεωρημάτων και χωρίς τον υπολογισμό των ευθυγράμμων τμημάτων στα οποία η διχοτόμος εσωτερική ή εξωτερική διαιρεί την απέναντι πλευρά. Σημείωση: 8 Ο Ομοιότητα Στο Κεφάλαιο 7 δεν θα γίνουν αποδεικτικές ασκήσεις, σύνθετα θέματα καθώς και οι γενικές ασκήσεις του κεφαλαίου αυτού. ΣΥΝΟΛΟ 8.1. Όμοια ευθύγραμμα σχήματα 8.. Κριτήρια ομοιότητας ο Μετρικές σχέσεις 9 Να μην διδαχθούν οι αποδεικτικές ασκήσεις, τ σύνθετα θέματα και οι γε ασκήσεις από τα κεφάλα και Ο Εμβαδά ΣΥΝΟΛΟ 9.1. Ορθές προβολές 9.. Το Πυθαγόρειο θεώρημα 7

8 9.3. Γεωμετρικές κατασκευές 11 Ο Μέτρηση Κύκλου 1 ο Ευθείες και επίπεδα στο χώρο 9.4. Γενίκευση του Πυθαγόρειου θεωρήματος Πολυγωνικά χωρία ΣΥΝΟΛΟ Εμβαδόν ευθύγραμμου σχήματος - Ισοδύναμα ευθύγραµµα σχήματα Εμβαδόν βασικών ευθύγραμμων σχημάτων Άλλοι τύποι για το εμβαδόν τριγώνου 10.. Λόγος εμβαδών όμοιων τριγώνων πολυγώνων ΣΥΝΟΛΟ Ορισμός κανονικού πολυγώνου 11.. Ιδιότητες και στοιχεία κανονικών πολυγώνων Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους Προσέγγιση του μήκους του κύκλου µε κανονικά πολύγωνα 11.. Μήκος τόξου Προσέγγιση του εμβαδού κύκλου µε κανονικά πολύγωνα Εμβαδόν κυκλικού τοµέα και κυκλικού τµήµατος ΣΥΝΟΝΟ Εισαγωγή 1.. Η έννοια του επιπέδου και ο καθορισμός του 1.3. Σχετικές θέσεις ευθειών και επιπέδων 1.4. Ευθείες και επίπεδα παράλληλα- Θεώρημα του Θαλή 1.. Γωνία δύο ευθειών-ορθογώνιες 3 ευθείες 1.6. Απόσταση σημείου από επίπεδο- 4 Απόσταση δύοπαράλληλων επιπέδων ΣΥΝΟΛΟ 11 ΓΕΝΙΚΟ ΣΥΝΟΛΟ 0 3 Χωρίς την εφαρμογή. Χωρίς την απόδειξη των τύπων Ι και ΙΙΙ. 3 Χωρίς την απόδειξη του Θεωρήματος ΙΙ. Χωρίς τις αποδείξεις των θεωημάτων και του Πορίσματος Χωρίς τις εφαρμογές,

9 ΔΙΔΑΚΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Β ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Από το βιβλίο «Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β Τάξης Γενικού Λυκείου» των Αδαμόπουλου Λ., Βισκαδουράκη Β., Γαβαλά Δ., Πολύζου Γ. και Σβέρκου Α. ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω ΠΑΡΑΤΗΡΗΣΕΙΣ 1 Ο 1.1. Η Έννοια του Διανύσματος Διανύσματα 1.. Πρόσθεση και Αφαίρεση Διανυσμάτων 1.3. Πολλαπλασιασμός Αριθμού με Χωρίς τις Εφαρμογές 1 και. Διάνυσμα 1.4. Συντεταγμένες στο Επίπεδο 4 Χωρίς την απόδειξη της υποπαραγράφου «Συντεταγμένες Διανύσματος»,. χωρίς την Εφαρμογή στη σελ. 3 και χωρίς την απόδειξη της συνθήκης παραλληλίας διανυσμάτων. 1.. Εσωτερικό Γινόμενο Διανυσμάτων 6 Χωρίς την απόδειξη του τύπου της αναλυτικής έκφρασης Εσωτερικού Γινομένου και χωρίς την παράγραφο «Προβολή διανύσματος σε διάνυσμα» ΣΥΝΟΛΟ 16 Ο Η Ευθεία στο Επίπεδο 3 Ο Κωνικές Τομές.1. Εξίσωση Ευθείας 4... Γενική Μορφή Εξίσωσης Ευθείας 6 Χωρίς την εφαρμογή.3. Εμβαδόν Τριγώνου 4 Χωρίς τις αποδείξεις των τύπων της απόστασης σημείου από ευθεία, του εμβαδού τριγώνου και χωρίς την Εφαρμογή 1. ΣΥΝΟΛΟ Ο Κύκλος 10 Χωρίς τις παραμετρικές εξισώσεις του κύκλου. 3.. Η Παραβολή 4 Χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτομένης και την Εφαρμογή 1 στη σελ Η Έλλειψη Χωρίς την απόδειξη της εξίσωσης της έλλειψης, τις παραμετρικές εξισώσεις της έλλειψης, την εφαπτομένη της έλλειψης και χωρίς τις εφαρμογές Η Υπερβολή Χωρίς την απόδειξη της εξίσωσης της υπερβολής και την απόδειξη του τύπου των ασύμπτωτων και την εφαπτομενη της υπερβολής. 3.. Μόνο η υποπαράγραφος «σχετική θέση ευθείας και κωνικής». ΣΥΝΟΛΟ 0 ΓΕΝΙΚΟ ΣΥΝΟΛΟ 0 ΣΗΜΕΙΩΣΗ Α) Δεν θα διδαχθούν οι ασκήσεις Β ομάδας των παραγράφων 3., 3.3 και 3.4. Β) Από τις γενικές ασκήσεις του 3ου Κεφαλαίου δεν θα διδαχθούν ασκήσεις που αναφέρονται στις παραπάνω παραγράφους (Παραβολή, Έλλειψη και Υπερβολή). 9

10 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Από το βιβλίο Μαθηματικά και Στοιχεία Στατιστικής της Γ τάξης Γενικού Λυκείου των Λ. Αδαμόπουλου κ.ά ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω. ΠΑΡΑΤΗΡΗΣΕΙΣ 1.1. Συναρτήσεις. 1 Ο Διαφορικός Λογισμός 1.. Η έννοια της παραγώγου Παράγωγος συνάρτησης 1.4. Εφαρμογές των Παραγώγων, Χωρίς το κριτήριο της ΣΥΝΟΛΟ της παραγώγου. Ο Στατιστική.1. Βασικές έννοιες...παρουσίαση Δεδομένων, Στατιστικών Χωρίς την υποπαράγραφο "Κλάσεις άνισου πλάτους"..3. Μέτρα Θέσης και Διασποράς, Χωρίς τις υποπαραγράφους "Εκατοστημόρια", Επικρατούσα τιμή Και "Ενδοτεταρτημοριακό εύρος" ΣΥΝΟΛΟ 3 Ο Πιθανότητες 3.1. Δειγματικός Χώρος- Ενδεχόμενα. 3. Έννοια της Πιθανότητας. ΣΥΝΟΛΟ ΠΑΡΑΤΗΡΗΣΕΙΣ: 1. Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Υπουργείο Παιδείας, Έρευνας και Θρησκευμάτων.. Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται. 3. Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων. 4. Οι τύποι και 4 των σελίδων 93 και 94του βιβλίου «Μαθηματικά και Στοιχεία Στατιστικής» θα δίνονται στους μαθητές τόσο κατά τη διδασκαλία όσο και κατά την εξέταση θεμάτων, των οποίων η αντιμετώπιση απαιτεί τη χρήση τους 10

11 ΔΙΔΑΚΤΕΑ-ΕΞΕτΑΣΤΕΑ ΥΛΗ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΤΑΞΗ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β : Ανάλυση Από το βιβλίο «Μαθηματικά» Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής της Γ τάξης Γενικού Λυκείου των Ανδρεαδάκη Στ., κ.ά ΚΕΦΑΛΑΙΟ ΠΑΡΑΓΡΑΦΟΣ Δ.Ω. ΠΑΡΑΤΗΡΗΣΕΙΣ 1.1. Πραγματικοί αριθμοί. 1 1 Ο 1.. Συναρτήσεις. 3 Όριο -Συνέχεια συνάρτησης 1.3. Μονότονες συναρτήσεις- Αντίστροφη συνάρτηση Όριο συνάρτησης στο Ιδιότητες των ορίων 6 Χωρίς τις αποδείξεις της υποπαραγράφου "Τριγωνομετρικά όρια" 1.6. Μη πεπερασμένο όριο στο Όρια συνάρτησης στο άπειρο Συνέχεια συνάρτησης. 1 ΣΥΝΟΛΟ 37 Ο Διαφορικός Λογισμός.1. Η έννοια της παραγώγου, 7 Χωρίς την υποπαράγραφο..παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση "Κατακόρυφη εφαπτομένη" Χωρίς τις αποδείξεις των τύπων (ημχ) =συνχ στη σελίδα 4 και (συνχ) =- ημχ στη σελίδα..3. Κανόνες παραγώγισης Χωρίς την απόδειξη του θεωρήματος που αναφέρεται στην παράγωγο γινομένου συναρτήσεων.4. Ρυθμός μεταβολής. 4.. Θεώρημα Μέσης Τιμής Διαφ Λογισμού..6. Συνέπειες του Θεωρήματος Μέσης Τιμής Τοπικά ακρότατα συνάρτησης Χωρίς το θεώρημα της σελίδας 64 (κριτήριο της ης παραγώγου)..8. Κυρτότητα- Σημεία καμπής συνάρτησης. 4 Θα μελετηθούν μόνο οι συνα ρτήσεις που είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους..9. Ασύμπτωτες -Κανόνες De l Hospital..10. Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης. ΣΥΝΟΛΟ

12 3 Ο Ολοκληρωτικός Λογισμός 3.1. Αόριστο ολοκλήρωμα. Μόνο η υποπαράγραφος «Αρχική συνάρτηση» που θα συνοδεύεται από πίνακα παραγουσών συναρτήσεων ο οποίος θα περιλαμβάνεται στις διδακτικές οδηγίες 3.4. Ορισμένο ολοκλήρωμα 3.. Η συνάρτηση Υπόδειξη - οδηγία: x Διατυπώνεται χωρίς να F x f ( t) dt αποδειχτεί η πρόταση: «Αν f :, όπου Δ διάστημα, είναι μια συνεχής συνάρτηση, τότε για κάθε η συνάρτηση: x F x f ( t) dt είναι μια παράγουσα της f», και με τη βοήθεια αυτής αποδεικνύεται το Θεμελιώδες θεώρημα της Ανάλυσης. Η εισαγωγή της συνάρτησης γίνεται για να αποδειχθεί το Θεμελιώδες Θεώρημα του ολοκληρωτικού λογισμού και να αναδειχθεί η σύνδεση του Διαφορικού με τον Ολοκληρωτικό Λογισμό. Για το λόγο αυτό δεν θα διδαχθούν ασκήσεις που αναφέρονται στην παραγώγιση της συνάρτησης x ( ) F x f t dt και γενικότερα της συνάρτησης g( x) f ( t) dt. F x 3.7. Εμβαδόν επιπέδου χωρίου 4 Χωρίς την εφαρμογή 3 της σελίδας 348. ΣΥΝΟΛΟ 16+4=0Οι 4 διδακτικές ώρες που απομένουν (από τον συνολικό αριθμό των ωρών που προπροτείνεται ιατεθούν για το κεφκεφάλαιο αυτό), τείνεται να διαδιατεθούν για επίλυση επαναληπτικών ασκήσεων. Παρατηρήσεις: 1. Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Υπουργείου Παιδείας, Έρευνας και Θρησκευμάτων.. Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται. 3. Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων. 4. Εξαιρούνται από την εξεταστέα- διδακτέα ύλη οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10 1

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου.

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο : 210-34.42.238

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου 1 ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου 1. Θρησκευτικά ΒΙΒΛΙΟ: Ορθόδοξη πίστη και λατρεία. Διδακτικές ενότητες: 2,3,5,6,7,8,14,16,17,19,21,22,23,24,25,26,27,28,35,41.

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 09-10-2015 Αρ. Πρωτ. 159253/Δ2 ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΕΕΠΕ ΤΟΜΕΑΣ ΙΙ.2.Α ΤΟΜΕΑΣ ΕΚΠΑΙΔΕΥΣΗΣ «ΤΟ ΣΥΓΧΡΟΝΟ ΣΧΟΛΕΙΟ» Δημητρίου Γ. Κούρτη ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΒΑΣΙΚΟΙ ΣΥΝΤΕΛΕΣΤΕΣ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΙΛΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ . Εισαγωγή Κύριος στόχος του Προγράμματος Σπουδών των Μαθηματικών είναι να προετοιμάσει τους μαθητές με τον καλύτερο δυνατό τρόπο ώστε να αγαπήσουν τα Μαθηματικά και να κεντρίσει το ενδιαφέρον και την

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο Μαθηματικών Δυτικής Θεσσαλονίκης gthom@otenet.gr ΕΙΣΑΓΩΓΗ Έχουν γίνει αρκετές απόπειρες στο παρελθόν για τη διδασκαλία στοιχείων της μαθηματικής λογικής

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ

Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Τάσος Σωτηράκης, Καθηγητής Δ.Ε., 3 ο ΓΕΛ Ρόδου, tasotirakis@gmail.com

Διαβάστε περισσότερα

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Αναστασία Ταουκτσόγλου Μαθηματικός, Δρ Διαφορικής Γεωμετρίας Νέες Τεχνολογίες στην Εκπαίδευση Με τον όρο αυτό αναφερόμαστε στην εφαρμογή των Τεχνολογιών

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Μαθηματικά Μέση Γενική Εκπαίδευση

Μαθηματικά Μέση Γενική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Μέση ενική Εκπαίδευση Εργαλείο SKETCHPAD / CABRI Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΥΛΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2014-2015 ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΟΥΚΙΔΙΔΗ, ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ

ΥΛΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2014-2015 ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΟΥΚΙΔΙΔΗ, ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2014-2015 ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΟΥΚΙΔΙΔΗ, ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ Στην ύλη των εξετάσεων περιλαμβάνονται τα εξής: Τα επόμενα κεφάλαια

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΕΦΛΙΟ 2 o Τ ΣΙΚ ΓΕΩΜΕΤΡΙΚ ΣΧΗΜΤ Πρωταρχικές έννοιες Όπως τα αντιλαμβανόμαστε : Σημείο, Ευθεία, Επίπεδο. ξιώματα προτάσεις που τις αποδεχόμαστε χωρίς απόδειξη. αξίωμα: πό δυο διαφορετικά σημεία του επιπέδου

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Μαθηματικά Μέση Γενική Εκπαίδευση

Μαθηματικά Μέση Γενική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Μέση ενική Εκπαίδευση Εργαλείο Excel - Autograph Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση

Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Τα Προγράµµατα υναµικής Γεωµετρίας και η Χρήση τους στη ιδασκαλία της Άλγεβρας και της Ανάλυσης στη Μέση Εκπαίδευση Αριστοτέλης Μακρίδης Μαθηµατικός, Επιµορφωτής των Τ.Π.Ε Αποσπασµένος στην ενδοσχολική

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ Α - Β ΛΥΚΕΙΟΥ Α ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ Α - Β ΛΥΚΕΙΟΥ Α ΛΥΚΕΙΟΥ Α ΛΥΚΕΙΟΥ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΛΥΚΕΙΟΥ (6/4) Για την εξέταση στο µάθηµα της Νέας Ελληνικής Γλώσσας δίνονται στους µαθητές σε φωτοαντίγραφο ένα ή δύο κείµενα περιορισµένης έκτασης από τον έντυπο ή/και τον

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση

1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση ΦΥΣΙΚΗ Α ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΟΛΙΝΔΡΟΥ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 1.1 Ευθύγραμμη κίνηση 1.1.1 Ύλη και κίνηση 35 1.1.2 Ο προσδιορισμός της θέσης ενός σωματίου 36 1.1.3 Οι έννοιες της

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 5 Μαΐου 5 Απαντήσεις Θεμάτων Θέμα Α Α. Θεωρία, βλ. σχολικό βιβλίο σελ. 94

Διαβάστε περισσότερα