Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας"

Transcript

1 Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

2 Περιεχόμενα 1 Message Authentication Code (MAC) 2 Ψευδοτυχαίες συναρτήσεις ως κώδικες γνησιότητας 3 NMAC-HMAC 4 Ιδιωτικότητα και γνησιότητα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 2 / 37

3 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

4 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Φτάνει για ασφαλή επικοινωνία; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

5 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Φτάνει για ασφαλή επικοινωνία; Γνησιότητα/ακεραιότητα μηνύματος (message integrity/authentication) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

6 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Φτάνει για ασφαλή επικοινωνία; Γνησιότητα/ακεραιότητα μηνύματος (message integrity/authentication) Παράδειγμα: Η εταιρεία Β παίρνει παραγγελία από την εταιρεία Α να φτιάξει 1000 οθόνες Ερωτήματα: Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

7 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Φτάνει για ασφαλή επικοινωνία; Γνησιότητα/ακεραιότητα μηνύματος (message integrity/authentication) Παράδειγμα: Η εταιρεία Β παίρνει παραγγελία από την εταιρεία Α να φτιάξει 1000 οθόνες Ερωτήματα: 1 Το έστειλε πράγματι η Α; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

8 Κρυπτογράφηση κρύβει μήνυμα από αντίπαλο Φτάνει για ασφαλή επικοινωνία; Γνησιότητα/ακεραιότητα μηνύματος (message integrity/authentication) Παράδειγμα: Η εταιρεία Β παίρνει παραγγελία από την εταιρεία Α να φτιάξει 1000 οθόνες Ερωτήματα: 1 Το έστειλε πράγματι η Α; 2 Είναι το 1000 σωστό; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 37

9 Message Authentication Code (MAC) Δύο παίκτες θέλουν να επικοινωνήσουν ανταλλάσσοντας ακέραια μηνύματα Ανταλλάσουν κοινό μυστικό κλειδί k Όταν ένας παίκτης θέλει να στείλει ένα μήνυμα m, υπολογίζει μια ετικέτα t (tag) με βάση το μήνυμα και το κοινό τους κλειδί, με έναν αλγόριθμο παραγωγής ετικέτας Mac Στέλνει το μήνυμα μαζί με την ετικέτα (m, t) Ο άλλος παίκτης λαμβάνει το (m, t) και επιβεβαιώνει τη γνησιότητα του μηνύματος (αν το t είναι έγκυρο για το m με βάση το κοινό κλειδί που έχει, με έναν αλγόριθμο επαλήθευσης Vrfy) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 37

10 Message Authentication Code (MAC) Ορισμός Ένας κώδικας γνησιότητας μηνύματος (Message Authenthication Code, MAC) είναι μια πλειάδα PPT αλγορίθμων (Gen, Mac, Vrfy), τέτοιων ώστε: 1 Ο αλγόριθμος παραγωγής κλειδιού Gen παίρνει είσοδο την παράμετρο ασφαλείας 1 n και επιστρέφει ένα κλειδί k, με k n 2 Ο αλγόριθμος παραγωγής ετικέτας Mac παίρνει σαν είσοδο ένα κλειδί k και ένα μήνυμα m {0, 1} και επιστρέφει μια ετικέτα t (t Mac k (m)) 3 Ο αλγόριθμος επαλήθευσης Vrfy παίρνει σαν είσοδο ένα k, ένα m και μια ετικέτα t και επιστρέφει 1, αν η ετικέτα είναι έγκυρη, αλλιώς 0 (ντετερμινιστικός αλγόριθμος) Για κάθε n, κάθε k που παράγεται από τον Gen και κάθε m {0, 1}, ισχύει Vrfy k (m, Mac k (m)) = 1 Αν το MAC ορίζεται μόνο για μηνύματα μήκους l(n), τότε λέγεται σταθερού μήκους Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 5 / 37

11 Ασφάλεια κώδικα γνησιότητας μηνύματος Διαισθητικά: κανένας αντίπαλος δεν μπορεί να φτιάξει μια έγκυρη ετικέτα για ένα νέο μήνυμα που δεν έχει γνησιότητα ακόμα Ο αντίπαλος βλέπει τα (m, t) που ανταλλάσσονται και μπορεί να τα αλλάζει Πείραμα γνησιότητας μηνύματος Mac-forge A,Π (n) 1 Ένα τυχαίο κλειδί παράγεται από τον Gen(1 n ) 2 Ο αντίπαλος A παίρνει σαν είσοδο το 1 n και πρόσβαση σε ένα μαντείο Mac k () Δίνει σαν έξοδο ένα (m, t) και Q το σύνολο των ερωτήσεων που κάνει στο μαντείο 3 Η έξοδος του πειράματος είναι 1, ανν (1) Vrfy k (m, t) = 1 και (2) m / Q Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 37

12 Ασφάλεια κώδικα γνησιότητας μηνύματος Ορισμός Ένας κώδικας γνησιότητας μηνύματος Π = (Gen, Mac, Vrfy) είναι υπαρξιακά μη-παραχαράξιμος σε μια προσαρμοζόμενη επίθεση επιλεγμένου μηνύματος (existentially unforgeable under an adaptive chosen-message attack) ή ασφαλής αν για κάθε PPT αντίπαλο A υπάρχει μια αμελητέα συνάρτηση negl τέτοια ώστε: Pr[Mac-forge A,Π (n) = 1] negl(n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 7 / 37

13 Επίθεση επανάληψης Ένας αντίπαλος μπορεί να στείλει ένα μήνυμα και την ετικέτα ενός προηγούμενου έγκυρου μηνύματος Παράδειγμα: Η Alice στέλνει μήνυμα στην τράπεζά της να δώσουν 1000 στον Bob Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 37

14 Επίθεση επανάληψης Ένας αντίπαλος μπορεί να στείλει ένα μήνυμα και την ετικέτα ενός προηγούμενου έγκυρου μηνύματος Παράδειγμα: Η Alice στέλνει μήνυμα στην τράπεζά της να δώσουν 1000 στον Bob Ο Bob δεν μπορεί να το κάνει 10000, αλλά μπορεί να το στείλει 10 φορές στην τράπεζα! Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 37

15 Επίθεση επανάληψης Ένας αντίπαλος μπορεί να στείλει ένα μήνυμα και την ετικέτα ενός προηγούμενου έγκυρου μηνύματος Παράδειγμα: Η Alice στέλνει μήνυμα στην τράπεζά της να δώσουν 1000 στον Bob Ο Bob δεν μπορεί να το κάνει 10000, αλλά μπορεί να το στείλει 10 φορές στην τράπεζα! MAC δεν έχουν την ικανότητα να αποφύγουν τέτοιες επιθέσεις, γιατί δε δίνουν σημασιολογία Είναι θέμα εφαρμογής, τι σημαίνει η επανάληψη μηνύματος Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 37

16 Επίθεση επανάληψης Ένας αντίπαλος μπορεί να στείλει ένα μήνυμα και την ετικέτα ενός προηγούμενου έγκυρου μηνύματος Παράδειγμα: Η Alice στέλνει μήνυμα στην τράπεζά της να δώσουν 1000 στον Bob Ο Bob δεν μπορεί να το κάνει 10000, αλλά μπορεί να το στείλει 10 φορές στην τράπεζα! MAC δεν έχουν την ικανότητα να αποφύγουν τέτοιες επιθέσεις, γιατί δε δίνουν σημασιολογία Είναι θέμα εφαρμογής, τι σημαίνει η επανάληψη μηνύματος Άμυνα: 1 Ένας μοναδικός αριθμός μαζί με το μήνυμα 2 Timestamp, η ώρα προστίθεται στο μήνυμα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 37

17 Επίθεση επανάληψης - Μοναδικός αριθμός Σε κάθε μήνυμα m αντιστοιχεί ένας μοναδικός αριθμός i, η γνησιότητα υπολογίζεται στο i m Ο αποστολέας πάντα αναθέτει ένα μοναδικό αριθμό σε κάθε μήνυμα, ο παραλήπτης φυλάει αυτούς τους αριθμούς Επιτυχημένη επίθεση στο m: δημιουργία έγκυρης ετικέτας σε ένα νέο μήνυμα i m, όπου i είναι φρέσκο Μειονέκτημα: φύλαξη όλων των αριθμών από τον παραλήπτη Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 37

18 Επίθεση επανάληψης - Timestamp Η τρέχουσα ώρα (στο κοντινότερο millisecond) προστίθεται στο μήνυμα, ο παραλήπτης αποδέχεται αν είναι εντός ενός περιθωρίου Μειονέκτημα: τα συμβαλλόμενα μέρη πρέπει να έχουν συγχρονισμένα ρολόγια και μπορεί να προλάβει να ξαναστείλει κάτι (πόσο στενό είναι το χρονικό περιθώριο) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 10 / 37

19 Ψευδοτυχαίες συναρτήσεις ως Κώδικες Γνησιότητας Οι ψευδοτυχαίες συναρτήσεις είναι κατάλληλες για κώδικες γνησιότητητας Αν t παράγεται από την εφαρμογή μιας ψευδοτυχαίας συνάρτησης σε ένα μήνυμα m, τότε η παραχάραξη απαιτεί να μαντέψει ο αντίπαλος την τιμή μιας ψευδοτυχαίας συνάρτησης σε ένα νέο μήνυμα Πιθανότητα να μαντέψει σωστά: 2 n, όταν μήκος εξόδου συνάρτησης είναι n Κατασκευή Έστω F μια ψευδοτυχαία συνάρτηση Ορίζουμε έναν καθορισμένου μήκους κώδικα γνησιότητας για μηνύματα μήκους n ως: Gen: με είσοδο 1 n, επίλεξε k {0, 1} n Mac: με είσοδο k, m {0, 1} n, δώσε στην έξοδο t := F k (m) (αν m = k μη δίνεις αποτέλεσμα) Vrfy: με είσοδο k, m, t, δώσε αποτέλεσμα 1, αν t = F k (m) (αν m = k, δώσε 0) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 11 / 37

20 Ασφάλεια κατασκευής Θεώρημα Αν η F είναι μια ψευδοτυχαία συνάρτηση, τότε η παραπάνω κατασκευή είναι ένας καθορισμένου μήκους κώδικας γνησιότητας για μηνύματα μήκους n που είναι υπαρξιακά μη-παραχαράξιμος σε μια προσαρμοζόμενη επίθεση επιλεγμένου μηνύματος Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 12 / 37

21 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

22 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Ο αντίπαλος μπορεί να αλλάξει το αρχικό μήνυμα ώστε το XOR να μείνει ίδιο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

23 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Ο αντίπαλος μπορεί να αλλάξει το αρχικό μήνυμα ώστε το XOR να μείνει ίδιο 2 Πάρε κάθε block ξεχωριστά, t := MAC k (m 1),, MAC k (m d) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

24 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Ο αντίπαλος μπορεί να αλλάξει το αρχικό μήνυμα ώστε το XOR να μείνει ίδιο 2 Πάρε κάθε block ξεχωριστά, t := MAC k (m 1),, MAC k (m d) Αν αλλάξεις σειρά στα blocks; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

25 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Ο αντίπαλος μπορεί να αλλάξει το αρχικό μήνυμα ώστε το XOR να μείνει ίδιο 2 Πάρε κάθε block ξεχωριστά, t := MAC k (m 1),, MAC k (m d) Αν αλλάξεις σειρά στα blocks; 3 Πάρε block ξεχωριστά μαζί με έναν αριθμό t := MAC k (1 m 1),, MAC k (d m d) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

26 Επέκταση σε μηνύματα μεταβλητού μήκους Έστω Π = (Gen, Mac, Vrfy ) ένας κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n Σπάμε το μήνυμα m σε blocks m 1,, m d και βρίσκουμε τη γνησιότητα κάθε block με κάποιο τρόπο Ιδέες: 1 Πάρε το XOR όλων των block και εφάρμοσε την MAC, t := MAC k ( i(m i )) Ο αντίπαλος μπορεί να αλλάξει το αρχικό μήνυμα ώστε το XOR να μείνει ίδιο 2 Πάρε κάθε block ξεχωριστά, t := MAC k (m 1),, MAC k (m d) Αν αλλάξεις σειρά στα blocks; 3 Πάρε block ξεχωριστά μαζί με έναν αριθμό t := MAC k (1 m 1),, MAC k (d m d) Μπορεί να πετάξει block από τέλος ή να συνδυάσει προηγούμενα μηνύματα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 37

27 Επέκταση σε μηνύματα μεταβλητού μήκους Επιπλέον πληροφορία, ένα τυχαίο αναγνωριστικό μηνύματος σε κάθε block και το μήκος μηνύματος Κατασκευή Έστω Π = (Gen, Mac, Vrfy ) ένας MAC καθορισμένου μήκους για μηνύματα μήκους n Ορίζουμε ένα MAC ως εξής: Gen: ίδιο με το Gen Mac: με είσοδο k {0, 1} n, m {0, 1} μήκους l < 2 n/4, ανάλυσέ το σε d blocks, m 1,, m d, καθένα μήκους n/4 (συμπλήρωσε με μηδενικά αν χρειάζεται) Διάλεξε αναγνωριστικό r {0, 1} n/4 Υπολόγισε t i := Mac k (r l i m i), 1 i d, και δώσε έξοδο t := r, t 1,, t d Vrfy: με είσοδο k {0, 1} n, m {0, 1} μήκους l < 2 n/4 και t := r, t 1,, t d, ανάλυσε το m σε d blocks, καθένα μήκους n/4 (συμπλήρωσε με μηδενικά αν χρειάζεται) Έξοδος 1 ανν (1) d = d και (2) Vrfy k (r l i m i) = t i, 1 i d Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 37

28 Ασφάλεια κατασκευής Θεώρημα Αν Π είναι ασφαλής κώδικας γνησιότητας καθορισμένου μήκους για μηνύματα μήκους n, τότε η παραπάνω κατασκευή είναι υπαρξιακά μη-παραχαράξιμη σε μια προσαρμοζόμενη επίθεση επιλεγμένου μηνύματος για μηνύματα μεταβλητού μήκους Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 37

29 Κατασκευή Merkle-Damgård x 1 x 2 x b x b+1 = L z 0 = IV z 1 h s z 2 h s z B h s H s h s (x) Σχήμα : Merkle-Damgård Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 37

30 Nested MAC (NMAC) Κατασκευή MAC από συναρτήσεις σύνοψης που αντιστέκονται σε συγκρούσεις Ασφάλεια στηρίζεται στην αντίσταση στις συγκρούσεις αλλά και στην ψευδοτυχαιότητα των συναρτήσεων σύνοψης Κατασκευή NMAC Έστω ( Gen, h) μια συνάρτηση συμπίεσης καθορισμένου μήκους που αντιστέκεται σε συγκρούσεις και (Gen, H) το αποτέλεσμα του Merkle-Damg ård μετασχηματισμού στο ( Gen, h) Ο NMAC ορίζει ένα MAC ως εξής: Gen: με είσοδο n, τρέξε Gen(1 n ) και πάρε κλειδί s, επίλεξε κλειδιά k 1, k 2 {0, 1} n και δώσε το κλειδί (s, k 1, k 2 ) Mac: με είσοδο (s, k 1, k 2 ), ένα m {0, 1}, μήκους L, δώσε t := h s k 1 (H s k 2 (m)) Vrfy: με είσοδο k {0, 1} n, m {0, 1} και t, δώσε 1 ανν t = Mac s,k1,k 2 (m) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 37

31 k 1 h s t m 1 m 2 L = m k 2 h s h s h s Σχήμα : NMAC Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 37

32 Ασφάλεια NMAC Η ασφάλεια βασίζεται στην υπόθεση ότι η h s με κλειδί k αποτελεί έναν ασφαλή MAC Δοσμένης μιας συνάρτησης σύνοψης καθορισμένου μήκους ( Gen, h) ορίζουμε το καθορισμένου μήκους MAC Π = (Gen, Mac, Vrfy) ως εξής: τρέξε το Gen(1 n ) για να πάρεις ένα s και k {0, 1} n Κλειδί: (s, k) Θέσε Mac s,k (m) = h s k (m) και Vrfy ορίζεται κατά τα προφανή Τότε το ( Gen, h) παράγει ένα ασφαλές MAC αν το Π που παράγεται με αυτό τον τρόπο είναι ένας ασφαλές MAC καθορισμένου μήκους Θεώρημα Έστω ( Gen, H) το αποτέλεσμα του Merkle-Damgård μετασχηματισμού στο ( Gen, h) Αν ( Gen, h) αντιστέκεται σε συγκρούσεις και παράγει ένα ασφαλές MAC, τότε το NMAC είναι υπαρξιακά μη-παραχαράξιμο σε μια προσαρμοζόμενη επίθεση επιλεγμένου μηνύματος (για μεταβλητού μήκους μηνύματα) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 37

33 Ασφάλεια NMAC Πρώτα περνάμε το μήνυμα από μια συνάρτηση σύνοψης και από το αποτέλεσμα φτιάχνουμε την ετικέτα γνησιότητας Ιδέα απόδειξης ασφάλειας: έστω πως ένας αντίπαλος A προσβάλλει το σύστημα, με m το νέο μήνυμα για το οποίο φτιάχνεται μία έγκυρη ετικέτα και Q το σύνολο των ερωτήσεων στο μαντείο (m / Q) Δύο περιπτώσεις: 1 Yπάρχει m τω H s k 2 (m) = H s k 2 (m ) Τότε όμως η H δεν αντιστέκεται σε συγκρούσεις Αντίφαση 2 Για κάθε m Q, H s k 2 (m) H s k 2 (m ) Ορίζουμε Q = {H s k 2 (m) m Q} Το m είναι τέτοιο ώστε H s k 2 (m ) / Q Άρα ο αντίπαλος παραχαράσσει μια έγκυρη ετικέτα στο νέο μήνυμα H s k 2 (m ) στο Π Αντίφαση Ο αντίπαλος δε βλέπει το H s k 2 (x), αλλά το h s k 1 (H s k 2 (x)), άρα το k 2 μπορούσε να είναι και σταθερό όπως στο Merkle-Damgård Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 20 / 37

34 Hashed MAC (HMAC) Μειονέκτημα NMAC: IV της H αλλάζει (σταθερό συνήθως) HMAC δίνει κλειδιά με διαφορετικό τρόπο και χρησιμοποιεί μόνο ένα κλειδί Το IV είναι καθορισμένο (εκτός ελέγχου των παικτών) Κατασκευή HMAC Έστω ( Gen, h) μια συνάρτηση συμπίεσης καθορισμένου μήκους που αντιστέκεται σε συγκρούσεις και (Gen, H) το αποτέλεσμα του Merkle-Damg ård μετασχηματισμού Έστω IV, ipad, opad σταθερές μήκους n Ο ΗMAC ορίζει ένα MAC ως εξής: Gen: με είσοδο n, τρέξε Gen(1 n ) και πάρε κλειδί s, επίλεξε k {0, 1} n και δώσε κλειδί (s, k) Mac: με είσοδο (s, k), ένα m {0, 1} μήκους L δώσε t := H s IV ((k opad) Hs IV (k ipad) m)) Vrfy: με είσοδο k {0, 1} n, m {0, 1} και μια ετικέτα t, δώσε 1 ανν t = Mac s,k (m) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 21 / 37

35 k opad IV h s h s t k ipad m 1 L = m IV h s h s h s Σχήμα : HMAC Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 37

36 Ασφάλεια Το HMAC είναι παραλλαγή του NMAC Αναγωγή σε ασφάλεια του NMAC (με κάποιες υποθέσεις) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 23 / 37

37 HMAC στην πράξη Το HMAC είναι πρότυπο και χρησιμοποιείται στην πράξη (SSL, SSH) Είναι αποδοτικό Eύκολα υλοποιήσιμο Έχει απόδειξη ότι είναι ασφαλές (βασισμένο σε υποθέσεις που πιστεύουμε ότι ισχύουν για συναρτήσεις σύνοψης) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 24 / 37

38 Ιδιωτικότητα και γνησιότητα Μπορούμε να συνδυάσουμε ένα σύστημα κρυπτογράφησης με ένα γνησιότητας μηνύματος; Oποιοσδήποτε συνδυασμός δεν είναι σωστός Έστω k 1 το κλειδί κρυπτογράφησης, k 2 γνησιότητας (ΠΑΝΤΑ ανεξάρτητα) 1 Κρυπτογράφηση-και-γνησιότητα 2 Γνησιότητα-μετά-κρυπτογράφηση 3 Κρυπτογράφηση-μετά-γνησιότητα c Enc k1 (m) και t Mac k2 (m) t Mac k2 (m) και c Enc k1 (m t) c Enc k1 (m) και t Mac k2 (c) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 25 / 37

39 Ανάλυση ασφαλείας Οποιοδήποτε CCA-secure σχήμα κρυπτογράφησης και οποιοδήποτε ασφαλές MAC (με μοναδικές ετικέτες) Θέλουμε για όλα τα σχήματα κρυπτογράφησης και όλα τα MACs να είναι ασφαλής ο συνδυασμός Μπορεί να υπάρχει ένα σχήμα από καθένα από αυτά ώστε να είναι ασφαλές Θέλουμε το όλα ή τίποτα, ώστε να ελαχιστοποιήσουμε λάθη στην υλοποίηση (αντικατάσταση με νεότερες εκδόσεις ή αλλαγή των standards) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 26 / 37

40 Κρυπτογράφηση ή κρυπτογράφηση και ακεραιότητα Στις περισσότερες online εργασίες, ιδίως τραπεζικές συναλλαγές χρειάζονται και τα δύο Κρυπτογράφηση αρχείων στο δίσκο: κρυπτογράφηση μόνο είναι αρκετή; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 37

41 Κρυπτογράφηση ή κρυπτογράφηση και ακεραιότητα Στις περισσότερες online εργασίες, ιδίως τραπεζικές συναλλαγές χρειάζονται και τα δύο Κρυπτογράφηση αρχείων στο δίσκο: κρυπτογράφηση μόνο είναι αρκετή; Αν κάποιος αλλάξει στοιχεία, τότε πχ μια εταιρεία θα βγάλει λάθος εκθέσεις Συμβουλή: συνδυάζετε πάντα γνησιότητα μηνύματος με ιδιωτικότητα/κρυπτογράφηση (εξαίρεση: λίγους πόρους) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 37

42 Ανάλυση ασφάλειας Ορισμός ασφαλούς συνδυασμού Έστω Π E = (Gen E, Enc, Dec) σχήμα κρυπτογράφησης, Π M = (Gen M, Mac, Vrfy) σχήμα γνησιότητας μηνύματος Ένα σχήμα μετάδοσης μηνύματος Π = (Gen, EncMac, Dec ) που παράγεται από τα Π E, Π M είναι μια πλειάδα αλγορίθμων που κάνουν τα εξής: Ο Gen τρέχει Gen E (1 n ), Gen M (1 n ) και παίρνει κλειδιά k 1, k 2, αντίστοιχα Ο EncMac με είσοδο τα k 1, k 2 και m δίνει ένα c τρέχοντας κάποιο συνδυασμό των Enc k1, Mac k2 Ο Dec παίρνει είσοδο τα k 1, k 2 και ένα c και εφαρμόζει κάποιο συνδυασμό των Dec k1, Vrfy k2 και δίνει έξοδο είτε το m είτε για σφάλμα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 37

43 Ανάλυση ασφάλειας Για την ορθότητα του σχήματος απαιτούμε για κάθε n, κάθε κλειδιά k 1, k 2 που παράγονται από την Gen και κάθε m {0, 1} να έχουμε Dec k 1,k 2 (EncMac k 1,k 2 (m)) = m Το Π ικανοποιεί συντακτικά το σχήμα κρυπτογράφησης ιδιωτικού κλειδιού, γιατί έχουμε κρυπτογράφηση όπου επιπλέον ζητάμε γνησιότητα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 37

44 Ανάλυση ασφάλειας Για τον ορισμό της ασφάλειας του Π θα ορίσουμε ξεχωριστές έννοιες ιδιωτικότητας και γνησιότητας Η έννοια της ιδιωτικότητας που θεωρούμε είναι ότι το Π η CCA-secure (αναβάθμιση από CPA-secure) Για την γνησιότητα θεωρούμε ότι είναι υπαρξιακά μη-παραχαράξιμο σε μια προσαρμοζόμενη επίθεση επιλεγμένου μηνύματος Το Π δεν ικανοποιεί το συντακτικό ορισμό ενός σχήματος γνησιότητας μηνύματος, άρα θα πρέπει να κάνουμε αλλαγές Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 30 / 37

45 Ανάλυση ασφάλειας Για σχήμα Π, αντίπαλο A και παράμετρο ασφαλείας n ορίζουμε: Πείραμα ασφαλούς μετάδοσης μηνύματος Auth A,Π (n) 1 Ένα κλειδί k = (k 1, k 2 ) παράγεται από τον Gen (1 n ) 2 Ο αντίπαλος A παίρνει σαν είσοδο το 1 n και πρόσβαση σε ένα μαντείο EncMac k Δίνει έξοδο ένα c Q: το σύνολο των ερωτήσεων που κάνει στο μαντείο 3 Έστω m := Dec k (c) Η έξοδος είναι 1, ανν (1) m και (2) m / Q Ορισμός Ένα σχήμα μετάδοσης μηνύματος Π πετυχαίνει authenticated communication αν για όλους τους PPT αντιπάλους A υπάρχει μια αμελητέα συνάρτηση negl τέτοια ώστε: Pr[Auth A,Π (n) = 1] negl(n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 31 / 37

46 Ανάλυση ασφάλειας Σημείωση: ευκολότερο για αντίπαλο (δε χρειάζεται να γνωρίζει το m ), άρα πιο ασφαλές Ορισμός Ένα σχήμα μετάδοσης μηνύματος (Gen, EncMac, Dec ) είναι ασφαλές αν είναι CCA-secure σχήμα κρυπτογράφησης και πετυχαίνει authenticated communication Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 32 / 37

47 Ανάλυση ασφάλειας Κρυπτογράφηση-και-Γνησιότητα Για μήνυμα m, στέλνονται τα c, t, όπου: c Enc k1 (m) και t Mac k2 (m) Δεν είναι ασφαλές, γιατί παραβιάζει την ιδιωτικότητα Παράδειγμα: μπορεί το (Gen, Mac, Vrfy) να είναι ασφαλές, όπως και το Mac k = (m, Mac k(m)), που δίνει όλο το m! Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 33 / 37

48 Ανάλυση ασφάλειας Γνησιότητα-μετά-Κρυπτογράφηση Δεν είναι απαραίτητα ασφαλές Ορίζουμε το παρακάτω σχήμα: t Mac k2 (m) και c Enc k1 (m t) Έστω Transform(m), τώ το 0 αντιστοιχεί σε 00 και το 1 σε 10 ή 01 Το αντίστροφο αναλύει το κρυπτογραφημένο μήνυμα σε δυάδες, έτσι το 00 είναι το 0, ενώ το 11 δεν είναι ορισμένο Ορίζουμε Enc k (m) = Enc k (Transform(m)), όπου Enc αντιστοιχεί σε counter mode encryption χρησιμοποιώντας μια ψευδοτυχαία συνάρτηση (Enc δημιουργεί ένα ψευδοτυχαίο ρεύμα για κάθε μήνυμα, και μετά παίρνει το XOR με το μήνυμα Το Enc είναι CPA-secure) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 34 / 37

49 Ανάλυση ασφάλειας Γνησιότητα-μετά-Κρυπτογράφηση Μη ασφαλές, αν o αντίπαλος μπορεί να μάθει αν ένα κρυπτοκείμενο είναι έγκυρο ή μη Στέλνει κρυπτοκείμενα και παρατηρεί την αντίδραση των τίμιων παικτών Αν δίνεται ένα challenge ciphertext c = Enc k 1 (Transform(m Mac k2 (m)), ο αντίπαλος αντιστρέφει τα δύο πρώτα bit του δεύτερου block (το πρώτο είναι ο μετρητής) και επαληθεύει αν είναι έγκυρο 1 Αν είναι 1, τότε έγκυρο, γιατί τα δύο πρώτα bits του Transform(m) θα είναι 01 ή 10, οπότε με αντιστροφή γίνεται 10 ή 01 αντίστοιχα Η ετικέτα θα είναι έγκυρη, γιατί η γνησιότητα ελέγχεται στο m 2 Αν είναι 0, τότε το 00 γίνεται 11 που δεν είναι έγκυρο Συνεχίζοντας ένα-ένα στα υπόλοιπα bits, αποκαλύπτουμε όλο το m Στο SSL είναι ασφαλές Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 35 / 37

50 Ανάλυση ασφάλειας Κρυπτογράφηση-μετά-Γνησιότητα Μεταδίδεται το c, t, όπου c Enc k1 (m) και t Mac k2 (c) Θεώρημα Έστω Π E ένα ασφαλές σχήμα κρυπτογράφησης και Π M ένα ασφαλές σχήμα γνησιότητας μηνύματος με μοναδικές ετικέτες Τότε ο συνδυασμός Π = (Gen, EncMac, Dec ) που παράγεται εφαρμόζοντας πρώτα κρυπτογράφηση και μετά γνησιότητα μηνύματος στα Π E, Π M είναι ένα ασφαλές σχήμα μετάδοσης μηνύματος πχ CCM (CTR+CBC-MAC) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 36 / 37

51 Διαφορετικά κλειδιά για διαφορετικές εφαρμογές Ίδιο κλειδί μπορεί να οδηγήσει σε μη ασφαλή συνδυασμό Παράδειγμα: έστω F μια ισχυρή ψευδοτυχαία μετάθεση Τότε και η F 1 είναι ισχυρή ψευδοτυχαία μετάθεση Για Enc k (m) = F k (m r), όπου m {0, 1} n/2, r {0, 1} n/2 και Mac k (c) = F 1 k (c), στη προσέγγιση Κρυπτογράφηση-μετά-Γνησιότητα, θα είχαμε: Enc k (m), Mac k (Enc k (m)) => F k (m r), F 1 k (F k (m r)) => F k (m r), m r άρα θα αποκαλυπτόταν το m! Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 37 / 37

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Κρυπτογραφικά Πρωτόκολλα

Κρυπτογραφικά Πρωτόκολλα Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Τοπολογίες Διατάξεων Κρυπτογράφησης- Εισαγωγή στην Ασφάλεια Δικτύων και Ασφάλεια Ηλεκτρονικού Ταχυδρομείου Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας 1 ΠΕΡΙΕΧΟΜΕΝΑ Hλεκτρονική υπογραφή, τι είναι, τρόπος λειτουργίας Χειρογραφη Ηλεκτρονική

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία Κεφάλαιο 1. Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα δύσκολο να λυθούν, με σκοπό την εξασφάλιση της ασφάλειας (εμπιστευτικότητα, ακεραιότητα, αυθεντικότητα)

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ Ψηφιακές υπογραφές ΝΙΚΟΣ ΣΑΡΙΔΑΚΗΣ ΣΤΑΣΗΣ ΑΝΤΩΝΗΣ Γενική Γραμματεία Δημόσιας Διοίκησης και Ηλεκτρονικής Διακυβέρνησης ΥΠΕΣΔΔΑ 1 ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΠΟΛΙΤΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ

Διαβάστε περισσότερα

Οδηγίες Εγκατάστασης και Χρήσης Ψηφιακών Πιστοποιητικών

Οδηγίες Εγκατάστασης και Χρήσης Ψηφιακών Πιστοποιητικών Οδηγίες Εγκατάστασης και Χρήσης Ψηφιακών Πιστοποιητικών 1. Εγκατάσταση Ψηφιακού Πιστοποιητικού Η εγκατάσταση του ψηφιακού πιστοποιητικού (που αφορά συγκεκριμένο λογαριασμό e-mail σας) πραγματοποιείται

Διαβάστε περισσότερα

Ασφάλεια Στο Ηλεκτρονικό Εμπόριο. Λάζος Αλέξανδρος Α.Μ. 3530

Ασφάλεια Στο Ηλεκτρονικό Εμπόριο. Λάζος Αλέξανδρος Α.Μ. 3530 Ασφάλεια Στο Ηλεκτρονικό Εμπόριο Λάζος Αλέξανδρος Α.Μ. 3530 Ηλεκτρονικό Εμπόριο Χρησιμοποιείται για να περιγράψει την χρήση τηλεπικοινωνιακών μέσων (κυρίως δικτύων) για κάθε είδους εμπορικές συναλλαγές

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα.

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 04/05/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Aντώνης Σπυρόπουλος v2_061015 Οροι που

Διαβάστε περισσότερα

«Ψηφιακές υπογραφές»

«Ψηφιακές υπογραφές» ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ «Ψηφιακές υπογραφές» Πτυχιακή εργασία της φοιτήτριας Χρυσοπούλου Ελένης (Α.Μ. 02/07) Επιβλέπων Καθηγητής: Στεφανίδης

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5.. Εισαγωγή Η συμμετρική κρυπτογραφία είναι κατά πολύ αρχαιότερη από την ασύμμετρη κρυπτογραφία. Η συμμετρική κρυπτογραφία χρονολογείται από την Αρχαία Αίγυπτο, ενώ η ασύμμετρη

Διαβάστε περισσότερα

ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP

ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο 2010-2011 Φροντιστήριο Ασκήσεις στο TCP Άσκηση 1 η : Καθυστερήσεις Θεωρείστε μία σύνδεση μεταξύ δύο κόμβων Χ και Υ. Το εύρος ζώνης του συνδέσμου είναι 10Gbits/sec

Διαβάστε περισσότερα

Γενική Επισκόπηση της Κρυπτογραφίας

Γενική Επισκόπηση της Κρυπτογραφίας Κεφάλαιο 1 Γενική Επισκόπηση της Κρυπτογραφίας Πίνακας Περιεχομένων 1.1 Εισαγωγή..............................................1 1.2 Ασφάλεια πληροφοριών και κρυπτογραφία................... 3 1.3 Υπόβαθρο

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΑΣΦΑΛΕΙΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΑΝΤΗΣ ΛΕΩΝΙΔΑΣ ΣΠΟΥΔΑΣΤΕΣ: ΜΑΝΤΖΙΟΣ ΙΩΑΝΝΗΣ ΜΠΑΝΤΙΑΣ ΣΠΥΡΙΔΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΑΣΦΑΛΕΙΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΑΝΤΗΣ ΛΕΩΝΙΔΑΣ ΣΠΟΥΔΑΣΤΕΣ: ΜΑΝΤΖΙΟΣ ΙΩΑΝΝΗΣ ΜΠΑΝΤΙΑΣ ΣΠΥΡΙΔΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΑΣΦΑΛΕΙΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΑΝΤΗΣ ΛΕΩΝΙΔΑΣ ΣΠΟΥΔΑΣΤΕΣ: ΜΑΝΤΖΙΟΣ ΙΩΑΝΝΗΣ ΜΠΑΝΤΙΑΣ ΣΠΥΡΙΔΩΝ Περιεχόμενα 1. Σύντομη Αναφορά στο Διαδίκτυο 1 2. Εισαγωγή στην Ασφάλεια 3

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

Lexicon Software Pachutzu

Lexicon Software Pachutzu Pachutzu Περιεχόμενα Ε Γ Κ Α Τ Α Σ Τ Α Σ Η... 2 Κύρια Οθόνη εφαρμογής... 3 Τρόπος Αποστολής... 7 Fax... 8 Δίνοντας την δυνατότητα διαγραφής από την λίστα... 9 Απορριφθέντα... 10 Ε Γ Κ Α Τ Α Σ Τ Α Σ Η Τοποθετήστε

Διαβάστε περισσότερα

Ασφάλεια ικτύων. Ασφάλεια δικτύων

Ασφάλεια ικτύων. Ασφάλεια δικτύων Ασφάλεια ικτύων Ασφάλεια δικτύων Στα χαµηλά επίπεδα: να φτάσουν τα πακέτα στον παραλήπτη χωρίς σφάλµατα Σε ανώτερο επίπεδο: να προστατευθεί η διακινούµενη πληροφορία έτσι ώστε: Να µην µπορεί να διαβαστεί

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 8: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κρυπτογράφηση: Το Α και το Ω της δικτυακής ασφάλειας Παρελθόν και µέλλον Το παρελθόν: Ο αλγόριθµος του Καίσαρα

Κρυπτογράφηση: Το Α και το Ω της δικτυακής ασφάλειας Παρελθόν και µέλλον Το παρελθόν: Ο αλγόριθµος του Καίσαρα Κρυπτογράφηση: Το Α και το Ω της δικτυακής ασφάλειας Σε νοµικό και κοινωνικό επίπεδο, τίθεται ζήτηµα προστασίας του απορρήτου σε όλες τις εκδοχές δικτυακής συναλλαγής (email, εµπορικές συναλλαγές, τραπεζικό

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 13 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΔΙΚΤΥΩΝ ΚΑΙ ΣΥΝΑΛΛΑΓΩΝ

ΑΣΦΑΛΕΙΑ ΔΙΚΤΥΩΝ ΚΑΙ ΣΥΝΑΛΛΑΓΩΝ ΑΣΦΑΛΕΙΑ ΔΙΚΤΥΩΝ ΚΑΙ ΣΥΝΑΛΛΑΓΩΝ Ο προβληματισμός και οι ανησυχίες που προκαλεί η ασφάλεια στο Ηλεκτρονικό Εμπόριο μπορούν να καταταχθούν σε δύο κατηγορίες : 1. σε 2. σε σε προβληματισμούς σχετικούς με

Διαβάστε περισσότερα

Μελέτη Μεθόδων Ασφάλειας Ιατρικών Δεδομένων

Μελέτη Μεθόδων Ασφάλειας Ιατρικών Δεδομένων Μελέτη Μεθόδων Ασφάλειας Ιατρικών Δεδομένων Του Παγωμένου Απόστολου ΑΜ: 85 Διπλωματική Εργασία Επιβλέπων Καθηγητής Αγγελίδης Παντελής Κοζάνη 2013 1 Μελέτη Μεθόδων Ασφάλειας Ιατρικών Δεδομένων 2 ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ

9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ 9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ 9.1. Εισαγωγή Στο Kεφάλαιο 1, δώσαµε έναν ορισµό του πρωτοκόλλου. Είδαµε επίσης σε διάφορα σηµεία του βιβλίου ότι προκειµένου να ολοκληρωθούν ορισµένες διαδικασίες, όπως η ανταλλαγή

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

ΜΕΡΟΣ ΠΡΩΤΟ: Θεωρητική Προσέγγιση...15

ΜΕΡΟΣ ΠΡΩΤΟ: Θεωρητική Προσέγγιση...15 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος του συγγραφέα...11 Πρόλογος του καθηγητή Γεωργίου Δουκίδη...13 ΜΕΡΟΣ ΠΡΩΤΟ: Θεωρητική Προσέγγιση...15 ΚΕΦΑΛΑΙΟ 1. Η ΕΠΙΧΕΙΡΗΣΗ...17 Ορισμός της έννοιας της επιχείρησης και οι μορφές

Διαβάστε περισσότερα

Οδηγός Εγκατάστασης και Χρήσης του Arebas Easy

Οδηγός Εγκατάστασης και Χρήσης του Arebas Easy Σ ε λ ί δ α 1 Οδηγός Εγκατάστασης και Χρήσης του Arebas Easy Περιεχόμενα 1. Download Arebas Easy... 2 2. Εγκατάσταση Arebas Easy... 3 3. Εγγραφή στον Arebas Server... 7 4. Παραμετροποίηση Arebas Easy...

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ. 8.1. Εισαγωγή. 8.2. Απαιτήσεις ορισµοί

8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ. 8.1. Εισαγωγή. 8.2. Απαιτήσεις ορισµοί 8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 8.1. Εισαγωγή Όπως είδαµε στο προηγούµενο κεφάλαιο, η ανταλλαγή κλειδιών πολλές φορές συνοδεύεται από αυθεντικοποίηση. Η αυθεντικοποίηση µπορεί να περιλαµβάνει ψηφιακές υπογραφές όπου

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Ποια είναι τα βασικά στοιχεία, τα οποία χαρακτηρίζουν το ISDN; Η ψηφιακή μετάδοση. Όλα τα σήματα μεταδίδονται σε ψηφιακή μορφή απ' άκρη σ' άκρη του δικτύου,

Διαβάστε περισσότερα

8.3 Ασφάλεια ικτύων. Ερωτήσεις

8.3 Ασφάλεια ικτύων. Ερωτήσεις 8.3 Ασφάλεια ικτύων Ερωτήσεις 1. Με τι ασχολείται η ασφάλεια των συστηµάτων; 2. Τι είναι αυτό που προστατεύεται στην ασφάλεια των συστηµάτων και για ποιο λόγο γίνεται αυτό; 3. Ποια η διαφορά ανάµεσα στους

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 5 Ψηφιοποίηση φωνής, μετάδοση δεδομένων και ασφάλεια στο GSM

Κινητές επικοινωνίες. Κεφάλαιο 5 Ψηφιοποίηση φωνής, μετάδοση δεδομένων και ασφάλεια στο GSM Κινητές επικοινωνίες Κεφάλαιο 5 Ψηφιοποίηση φωνής, μετάδοση δεδομένων και ασφάλεια στο GSM Από την πηγή πληροφορίας στα ραδιοκύματα Κωδικοποίηση φωνής Αποκωδικοποίηση φωνής Κωδικοποίηση καναλιού Αποκωδικοποίηση

Διαβάστε περισσότερα

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Γεώργιος Κοτζάμπασης Εκπαιδευτήρια «Ο Απόστολος Παύλος» georgekotzampasis@gmail.com Επιβλέπων καθηγητής: Λάζαρος Τζήμκας Καθηγητής

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

MarineTraffic Έρευνα & Εφαρμογές. Δημήτρης Λέκκας, Πανεπιστήμιο Αιγαίου

MarineTraffic Έρευνα & Εφαρμογές. Δημήτρης Λέκκας, Πανεπιστήμιο Αιγαίου MarineTraffic Έρευνα & Εφαρμογές Δημήτρης Λέκκας, Πανεπιστήμιο Αιγαίου 2 Συλλογή δεδομένων κυρίως με τη βοήθεια της Διαδικτυακής Κοινότητας 3 Automatic Identification System (AIS): Όλα τα πλοία ολικής

Διαβάστε περισσότερα

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων 2η Δραστηριότητα Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων Περίληψη Οι υπολογιστές απομνημονεύουν τα σχέδια, τις φωτογραφίες και άλλα σχήματα, χρησιμοποιώντας μόνον αριθμούς. Με την επόμενη

Διαβάστε περισσότερα

ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr. Εγχειρίδιο Χρήσης Μελών ΔΕΠ

ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr. Εγχειρίδιο Χρήσης Μελών ΔΕΠ ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr Εγχειρίδιο Χρήσης Μελών ΔΕΠ Αναζήτηση Δημόσιου Περιεχομένου Η διεύθυνση ιστού της νεάς πλατφόρμας διαχείρισης βιντεοδιαλέξεων Δήλος είναι: http://delos.uoa.gr

Διαβάστε περισσότερα

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3.. Θεωρία της πληροφορίας Το 948 και το 949 ο Shannon παρουσίασε δύο εργασίες ορόσημα στις επικοινωνίες και στην ασφάλεια της πληροφορίας. Στο σημείο αυτό θα

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΥΠΟΓΡΑΦΗ. Ηλεκτρονική επικοινωνία. Κρυπτογραφία και ψηφιακές υπογραφές ΚΡΥΠΤΟΓΡΑΦΙΑ & ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

ΥΠΟΓΡΑΦΗ. Ηλεκτρονική επικοινωνία. Κρυπτογραφία και ψηφιακές υπογραφές ΚΡΥΠΤΟΓΡΑΦΙΑ & ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ & Γιώργος Ν.Γιαννόπουλος Λέκτορας στο Πανεπιστήμιο Αθηνών gyannop@law.uoa.gr 1 ΥΠΟΓΡΑΦΗ ΑΚ 160 και ΚΠολΔ 443 α Το έγγραφο πρέπει να έχει ιδιόχειρη

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΑΣΦΑΛΕΙΑΣ ΚΙΝΗΤΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΥΠΗΡΕΣΙΕΣ ΑΣΦΑΛΕΙΑΣ ΚΙΝΗΤΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΥΠΗΡΕΣΙΕΣ ΑΣΦΑΛΕΙΑΣ ΚΙΝΗΤΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Επίκουρος Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας Ασφάλεια Δημοσίων Δικτύων Κινητών Επικοινωνιών (PLMN) Εμπιστευτικότητα (confidentiality)

Διαβάστε περισσότερα

DNS. Όλες οι άλλες υπηρεσίες του Διαδικτύου, (WWW και Email) χρησιμοποιούν το DNS

DNS. Όλες οι άλλες υπηρεσίες του Διαδικτύου, (WWW και Email) χρησιμοποιούν το DNS DNS Domain Name System (Σύστημα Ονομάτων Τομέων ή Χώρων ή Περιοχών) είναι ένα ιεραρχικό σύστημα ονοματοδοσίας του Διαδικτύου. Aντιστοιχίζει ονόματα με διευθύνσεις IP και αντίστροφα. Όλες οι άλλες υπηρεσίες

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP

Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π ΑΤ Ρ Ω Ν

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π ΑΤ Ρ Ω Ν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π ΑΤ Ρ Ω Ν ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΔΙΚΤΥΑ ΔΗΜΟΣΙΑΣ ΧΡΗΣΗΣ ΚΑΙ ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ ΑΣΦΑΛΕΙΑ ΔΙΚΤΥΩΝ

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» - Κρυπτογραφία είναι - Κρυπτανάλυση είναι - Με τον όρο κλειδί. - Κρυπτολογία = Κρυπτογραφία + Κρυπτανάλυση - Οι επιστήµες αυτές είχαν

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 1 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΚΤΥΑ

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σε δίκτυο υπολογιστών εμπιστευτική πληροφορία μπορεί να υπάρχει αποθηκευμένη σε μέσα αποθήκευσης (σκληροί δίσκοι, μνήμες κ.λ.π.), ή να κυκλοφορεί μέσου του δικτύου με τη μορφή πακέτων. Η ύπαρξη πληροφοριών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 21: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 2009 2010 Γραπτή Εργασία #3 Παράδοση: 28 Μαρτίου 2010 Άσκηση 1 (15 µονάδες) Ένας επεξεργαστής υποστηρίζει τόσο

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΩΝ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΠΛΗΡΩΜΩΝ Η πρακτική εφαρμογή του Ηλεκτρονικού Εμπορίου στο σύγχρονο επιχειρηματικό και καταναλωτικό περιβάλλον δημιούργησε την ανάγκη για ανάπτυξη νέων μορφών πληρωμών, περισσότερο

Διαβάστε περισσότερα

8.3 Ασφάλεια Δικτύου 8.3.1 Ασφάλεια Πληροφοριών 8.3.2 Επεξήγηση Ορολογίας 8.3.3 Μέθοδοι Παραβίασης

8.3 Ασφάλεια Δικτύου 8.3.1 Ασφάλεια Πληροφοριών 8.3.2 Επεξήγηση Ορολογίας 8.3.3 Μέθοδοι Παραβίασης Κεφάλαιο 8 8.3 Ασφάλεια Δικτύου 8.3.1 Ασφάλεια Πληροφοριών 8.3.2 Επεξήγηση Ορολογίας 8.3.3 Μέθοδοι Παραβίασης Σελ. 314-320 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Ασφάλεια Δικτύων. Τι (δεν) είναι Ασφάλεια Δικτύων. Γιάννης Ηλιάδης Υπεύθυνος Ασφάλειας Δικτύου ΤΕΙΡΕΣΙΑΣ Α.Ε. 24/11/07

Ασφάλεια Δικτύων. Τι (δεν) είναι Ασφάλεια Δικτύων. Γιάννης Ηλιάδης Υπεύθυνος Ασφάλειας Δικτύου ΤΕΙΡΕΣΙΑΣ Α.Ε. 24/11/07 Ασφάλεια Δικτύων Τι (δεν) είναι Ασφάλεια Δικτύων Γιάννης Ηλιάδης Υπεύθυνος Ασφάλειας Δικτύου ΤΕΙΡΕΣΙΑΣ Α.Ε. 24/11/07 Περίμετρος Δικτύου Αποτελεί κρίσιμο ζήτημα η περιφρούρηση της περιμέτρου δικτύου Έλεγχος

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

ΠΡΩΤΟΚΟΛΟ HTTP ΕΝΤΟΛΩΝ ΔΙΑΣΥΝΔΕΣΗΣ ΕΚΔΟΣΗ 1.2

ΠΡΩΤΟΚΟΛΟ HTTP ΕΝΤΟΛΩΝ ΔΙΑΣΥΝΔΕΣΗΣ ΕΚΔΟΣΗ 1.2 ΠΡΩΤΟΚΟΛΟ HTTP ΕΝΤΟΛΩΝ ΔΙΑΣΥΝΔΕΣΗΣ ΕΚΔΟΣΗ 1.2 1 ΠΕΡΙΕΧΟΜΕΝΑ Πρωτόκολο http εντολών έκδοση 1.0 Σελ:2...περιεχόμενα Σελ:3...τι θα βρείτε σε αυτό το βιβλίο Σελ:3...γενικά τεχνικά χαρακτηριστικά Σελ:4-5...πως

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Υλοποίηση σε αναδιατασσόμενη λογική των πινάκων ουρανίου τόξου (rainbow tables)

Διαβάστε περισσότερα

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα; ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει

Διαβάστε περισσότερα

Προσωπικά δεδομένα στο Διαδίκτυο: Τα δικαιώματα & οι υποχρεώσεις μας

Προσωπικά δεδομένα στο Διαδίκτυο: Τα δικαιώματα & οι υποχρεώσεις μας Προσωπικά δεδομένα στο Διαδίκτυο: Τα δικαιώματα & οι υποχρεώσεις μας Δρ. Κωνσταντίνος Λιμνιώτης Πληροφορικός Ελεγκτής klimniotis at dpa.gr Τι είναι προσωπικά δεδομένα; Προσωπικά δεδομένα είναι κάθε πληροφορία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ

ΑΠΟΦΑΣΗ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ L 74/30 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 16.3.2013 ΑΠΟΦΑΣΕΙΣ ΑΠΟΦΑΣΗ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ της 11ης Ιανουαρίου 2013 για τη θέσπιση του πλαισίου της υποδομής δημόσιου κλειδιού για το

Διαβάστε περισσότερα

Υλοποίηση σχημάτων ασφαλείας σε ασύρματα δίκτυα

Υλοποίηση σχημάτων ασφαλείας σε ασύρματα δίκτυα Υλοποίηση σχημάτων ασφαλείας σε ασύρματα δίκτυα Φώτος Γεωργιάδης (fotos@uop.gr) Θανάσης Μακρής (thanos@uop.gr) 30/9/2005 Τρίπολη Γ κοινοτικό πλαίσιο στήριξης Επιχειρησιακό πρόγραμμα Κοινωνία της Πληροφορίας

Διαβάστε περισσότερα

Ψηφιακές Υπογραφές (Digital Signatures)

Ψηφιακές Υπογραφές (Digital Signatures) Ψηφιακές Υπογραφές (Digital Signatures) 1 Ψηφιακές υπογραφές (Digital signatures) ψηφιακός ( digital ): αποτελείται από ακολουθίες ψηφίων Συμπέρασμα: οτιδήποτε ψηφιακό μπορεί να αντιγραφεί π.χ., αντιγράφοντας

Διαβάστε περισσότερα