( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h"

Transcript

1 Μη αδρανειακά συστήματα αναφοράς ΦΥΣ Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή: y = q x, y,z z = h x, y,z q Πολύ συχνά χρησιµοποιούνται συντεταγµένες οι οποίες κινούνται ως προς τις στατικές καρτεσιανές συντεταγµένες q Αν οι εξισώσεις κίνησης του Newton έχουν και πάλι την µορφή Ø το νέο σύστηµα συντεταγµένων είναι «αδρανειακό» x = f y = q z = h Ø Γιατί έτσι, ο 1 ος νόµος του Newton σύµφωνα µε τον οποίο ένα σώµα σε ηρεµία θα παραµείνει σε ηρεµία όταν δεν εφαρµόζονται δυνάµεις πάνω του εξακολουθεί να ισχύει Ø Για παράδειγµα ένα σύστηµα συντεταγµένων µε µορφή: x = x υt είναι αδρανειακό γιατί: ""x = ""x q Σε διαφορετική περίπτωση το σύστηµα συντεταγµένων είναι «µη αδρανειακό»

2 Μη αδρανειακά συστήματα αναφοράς ΦΥΣ Διαλ.27 2 q Οι νόµοι της φυσικής είναι ανεξάρτητοι από το σύστηµα συντεταγµένων Ø Αλλάζει µόνο η µορφή των εξισώσεων κίνησης Ø Για παράδειγµα: επιταχυνόµενο σύστηµα συντεταγµένων: x = x + f t ² Αν η συνάρτηση f(t) γραµµική µε t έχουµε και πάλι αδρανειακό σύστηµα ² Μια πολύπλοκη µορφή της f(t) περιγράφει επιταχυνόµενο σύστηµα αναφοράς Ø Έστω σύστηµα συντεταγµένων που κινείται µε σταθερή επιτάχυνση: y = y at 2 y = y + a Ø Εισαγωγή φανταστικής δύναµης λόγω επιτάχυνσης του συστήµατος αναφοράς Ø Η φανταστική δύναµη υπάρχει επειδή γράψαµε την εξίσωση κίνησης σε µη αδρανειακό σύστηµα Ø Έστω στο παραπάνω παράδειγµα, ότι βρισκόµαστε στην επιφάνεια της γης Ø Όλα τα σώµατα υπόκεινται στην σταθερή επιτάχυνση της βαρύτητας: Ø Επιλέγω ένα σύστηµα αναφοράς που κινείται µε επιτάχυνση: ² Στο σύστηµα αυτό εποµένως: y = 0 a = g Ø Εποµένως, η βαρυτική δύναµη στην επιφάνεια της γης µπορεί να αφαιρεθεί κάνοντας αλλαγή του συστήµατος αναφοράς Αρχή της ισοδυναµίας y = g

3 ΦΥΣ Διαλ.27 3 Περιστρεφόμενο σύστημα συντεταγμένων q Σηµεία για ξεκαθάρισµα: Ø Η κίνηση συµµβαίνει σε κάποιο περιστρεφόµενο σώµα και παρατηρείται ² Είτε ως προς σύστηµα αναφοράς «καρφωµένο» στο περιστρεφόµενο σώµα ² Είτε ως προς εξωτερικό σύστηµα αναφοράς «αδρανειακό»/χωρικό Ø Το πρόβληµα της περιγραφής της κίνησης χωρίζεται σε 3 µέρη ² Πως µετασχηµατίζουµε τις συνιστώσες ενός διανύσµατος µεταξύ των δυο συστηµάτων αναφοράς? (για καθορισµένη περιστροφή) ü Η απάντηση εξαρτάται από τον σχετικό προσανατολισµό των αξόνων στα δυο συστήµατα αναφοράς και όχι από το διάνυσµα ² Πως µετασχηµατίζουµε τις συντεταγµένες ενός σηµείου το οποίο είναι ακίνητο στο ένα σύστηµα αναφοράς στις συντεταγµένες του άλλου συστήµατος όταν ένα από τα δυο συστήµατα περιστρέφεται ως προς το άλλο ² Πως µετασχηµατίζουµε τις χρονικές παραγώγους διανυσµάτων από το ένα σύστηµα συντεταγµένων στο άλλο. ü Ο ρυθµός µεταβολής στο περιστρεφόµενο σύστηµα προέρχεται από: (α) ρυθµό µεταβολής των συνιστωσών του διανύσµατος όπως γίνεται αντιληπτός στο ένα σύστηµα και µετασχηµατίζεται στο άλλο σύστηµα (β) µεταβολή του µετασχηµατισµού µεταξύ των δυο συστηµάτων

4 ΦΥΣ Διαλ.27 4 Περιστρεφόμενο σύστημα συντεταγμένων q Σηµεία για προσοχή: Ø Το µέτρο ενός διανύσµατος παραµένει σταθερό ανεξάρτητα του συστήµατος που επιλέγουµε για να το περιγράψουµε r 2 2 = r k = Ø Το εσωτερικό γινόµενο δυο διανυσµάτων είναι αµετάβλητο από αλλαγή του συστήµατος συντεταγµένων: a b = a k b k = a k b k Ø Για να δούµε τον ακριβή µετασχηµατισµό συντεταγµένων ü Επιλέξτε δυο συστήµατα µε ίδια αρχή που διαφέρουν κατά µια περιστροφή ü Θεωρήστε το εσωτερικό γινόµενο και το Αναλυτικά: r e το οποίο γράφεται: r 1 = r 1 e1 e 1 + r 2 e2 e 1 + r 3 e3 e 1 r 2 = r 1 e1 e 2 + r 2 e2 e 2 + r 3 e3 e 2 r 3 = r 1 e1 e 3 + r 2 e2 e 3 + r 3 e3 e 3 k k k k r k 2 e e r k ek e = r k ek e (προβολή του άξονα στον άξονα ) k r 1 r 2 = r 3,k e 1 e 1 e2 e 1 e3 e 1 e 1 e 2 e2 e 2 e3 e 2 e 1 e 3 e2 e 3 e3 e 3 Ø O παραπάνω µετασχηµατισµός αποτελεί και τον ορισµό ενός διανύσµατος ü Αποφεύγεται η θεώρηση µέτρου και διεύθυνσης που απαιτούν καθορισµό συστήµατος συντεταγµένων r 1 r 2 r 3

5 Περιστρεφόμενα συστήματα αναφοράς ΦΥΣ Διαλ.27 5 q Έστω ότι η θέση ενός σώµατος ως προς στατικό καρτεσιανό σύστηµα: r =1,2,3 q ενώ η θέση ενός σώµατος σχετικά µε περιστρεφόµενο σύστηµα είναι: r =1,2,3 q Το διάνυσµα θέσης εποµένως στα δυο συστήµατα αναφοράς θα είναι: r = r e µε e τα διανύσµατα των στατικών αξόνων συντεταγµένων ŷ yˆ Ø Ανάλογα: r = zˆ ˆx ẑ xˆ r e Ø Για κάποιο περιστρεφόµενο σώµα: διάνυσµα µε συνιστώσες διανύσµατα e = e 1 e 2 e 3 r r e µε τα διανύσµατα των περιστρεφόµενων αξόνων χωρικές συντεταγµένες = στατικές συντεταγµένες σώµατος = περιστρεφόµενες Ø Τι σηµαίνει όµως ότι τα 2 συστήµατα συντεταγµένων σχετίζονται µεταξύ τους µέσω περιστροφής? e Οι στατικοί άξονες,, σχετίζονται µε τους περιστρεφόµενους άξονες,, µέσω µιας γραµµικής σχέσης: e = U e e r 1 r = r 2 r 3 r = 3 3 πίνακας µετασχηµατισµού πίνακας περιστροφής r 1 r 2 r 3

6 Περιστρεφόμενα συστήματα αναφοράς q Μπορούµε να γράψουµε: e = U e ΦΥΣ Διαλ.27 6 q Ο πίνακας περιστροφής U εν γένει εξαρτάται από τον χρόνο t, άρα έχουµε U (t) q Η σύνδεση µε τις συνιστώσες θέσης ενός σώµατος µέσω του µετασχηµατισµού: r = r e = U r e = U r Ø και θέλουµε να το συγκρίνουµε µε: r e = r e εφόσον r είναι αµετάβλητο q Η σχέση µεταξύ των «χωρικών» και «περιστροφικών» συντεταγµένων: r = r U Ø και θα µπορούσαµε να το γράψουµε µε την µορφή: r = U Τ r e e = δ e e e e = δ q O πίνακας U έχει την ιδιότητα ότι τα και είναι ορθοκανονική βάση: δηλαδή τα µετασχηµατισµένα διανύσµατα παραµένουν ορθοκανονικά Ορισµός περιστροφής e e = δ e = U q Από την σχέση και την e θα έχουµε: k U k ek l U le l = δ U k U l ek e l k,l = δ k,l U U k lδ kl = δ

7 Πίνακας περιστροφής q Από την συνθήκη ορθοκανονικότητας έχουµε: q Ουσιαστικά είναι ο τύπος πολ/σµου πινάκων: U k U l δ kl = U k U k q Εποµένως µπορούµε να γράψουµε την (1) σαν: U U Τ = 1 Δηλαδή, ο πίνακας περιστροφής είναι ορθοκανονικός k,l A B k ΦΥΣ Διαλ.27 7 k k = A B U Τ = U 1 q Το σύνολο όλων των πινάκων περιστροφής για τους οποίους ισχύει U Τ = U 1 αποτελούν την οθογώνια οµάδα Ο(3) Ø Επειδή U Τ = U 1 det U Τ = det U 1 Ø αλλά det U = det U T και det U 1 = 1 det U det U = ±1 (1) Ορισµός ορθοκανονικού πίνακα ² Το σύνολο των ορθογώνιων πινάκων µε det U = +1 αποτελούν την οµάδα SO(3) στην QM θα δείτε τους πίνακες Paul (πίνακες spn) που ανήκουν στην SO(3) q Ο πίνακας U εξαρτάται εν γένει από τον χρόνο και έχουµε δει ότι: r = r e = r e

8 ΦΥΣ Διαλ.27 8 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t Ø Η σχέση P q Eξετάζουµε την κίνηση του P ως προς ακίνητο παρατηρητή Ø Πόσο µετακινείται το P σε χρόνο dt? Ø Έστω r ( t + dt) r ( t) + d r όπου d r η απειροστή µετατόπιση ˆn d r d r = rsnθdϕ και d r d ϕ d r r δφ Ø Χρησιµοποιώντας το διάνυσµα ˆn r ( t + dt) r ( t) ˆn r = r snθ θ d r = d ϕ r Ø Εποµένως: d r = dϕ ˆn r Ø Θεωρώντας: d ϕ dϕ ˆn d r = d ϕ r Ø Η ταχύτητα του σηµείου P για συνεχή περιστροφή θα είναι: Ø Ορίζουµε γωνιακή ταχύτητα ω: ισχύει µόνο για απειροστές περιστροφές ω d ϕ dt u P = d r dt = d ϕ dt r οπότε: u P = ω r Ø Τα διανύσµατα ω και dφ δεν είναι ακριβώς διανύσµατα αλλά ψευδο-διανύσµατα u ψευδοδιανύσµατα περιστρέφονται σαν διανύσµατα αλλά είναι αµετάβλητα ως προς χωρικούς αντικατοπτρισµούς Χ Χ,Υ Υ,Ζ Ζ

9 Πίνακας περιστροφής ΦΥΣ Διαλ.27 9 q Ο πίνακας U εξαρτάται εν γένει από τον χρόνο και έχουµε δει ότι: r = r = r e e q Η ταχύτητα εποµένως του σηµείου µε διάνυσµα θέσης r r " = r " e τα e είναι σταθερά και δεν µεταβάλλονται µε τον χρόνο Ø Αλλά αν προσπαθήσω να γράψω την ταχύτητα του r στο περιστρεφόµενο σύστηµα τα e δεν είναι σταθερά και µεταβάλλονται µε τον χρόνο Ø H χρονική παράγωγος του r θα αποτελείται από δυο τµήµατα: r " = "r e + r "e Ø Ποια η χρονική παράγωγος των " e? e " = d U e dt = U " e "e = "U U 1 k ek k "e = ( "U U Τ ) e Ø Εποµένως καταλήγουµε ότι: "r = "r e + r ( "U U Τ ) e "r = "r + ( "U U Τ ) r e Διόρθωση για το γεγονός ότι οι άξονες συντεταγµένων δεν είναι σταθεροί χρονικά

10 Πίνακας περιστροφής q Είδαµε ότι στο περιστρεφόµενο σύστηµα συντεταγµένων: " r = q Ορίζουµε τον πίνακα: A = U U Τ Ø Α αντισυµµετρικός γιατί: U U Τ = 1 d dt A = U U Τ A Τ = ΦΥΣ Διαλ ο οποίος είναι αντισυµµετρικός "r + ( "U U Τ ) r ( U U Τ ) = 0 U U Τ + U U Τ = 0 ( U U Τ ) Τ A Τ = ( U Τ ) Τ U Τ A Τ = U U Τ Ø Εποµένως: U U Τ + U U Τ = 0 A + A Τ = 0 A = A Τ e Α αντισυµµετρικός q Α είναι ένας 3 3 αντισυµµετρικός πίνακας 0 Ø Καθορίζεται πλήρως µε τον ορισµό των A = 0 στοιχείων πάνω από την κύρια διαγώνιο 0 Εποµένως τα στοιχεία α 12, α 13 και α 23 0 ω 3 ω 2 0 ω αντισυµµετρικός 3 ω 2 A = 0 ω A = 1 ω 3 0 ω 1 0 ω 2 ω 1 0 q Χρησιµοποιώντας φορµαλισµό δεικτών: A k = ε k ω k µε ε k το σύµβολο Lev-Cvta 1 (,,k) = (1,2,3),(2,3,1),(3,1,2) k ε ι k = -1 (,,k) = (1,3,2),(3,2,1),(2,1,3) 0

11 ΦΥΣ Διαλ Ταχύτητα σε περιστρεφόμενο σύστημα συντεταγμένων q Είδαµε ότι µπορούµε να γράψουµε: Α = q Τα ω είναι οι συνιστώσες του διανύσµατος: k ε k ω k ω = ω e q Με βάση τα παραπάνω, µπορούµε να γράψουµε τις ποσότητες: " e = "U U Τ e και e " = Α e = ε k ω k e k r " = "r + "U U Τ r e γωνιακή ταχύτητα " e = ω e Ø Από το εξωτερικό γινόµενο διανυσµάτων: e k e = ε k e = ε k e q To διάνυσµα της ταχύτητας θα γραφεί: "r = "r + Α r e "r = "r + r ω q Η παραπάνω απόδειξη ισχύει εν γένει, για οποιοδήποτε διάνυσµα w και την παράγωγό του ως προς χρόνο σε περιστρεφόµενο σύστηµα αναφοράς: w = w e = w e w " = "w + w ω e [ ] e Άθροισµα δυο όρων, ο ένας εκ των οποίων είναι κάθετος στα διανύσµατα και ίσος µε e w ω e

12 ΦΥΣ Διαλ Επιτάχυνση σε περιστρεφόμενο σύστημα αναφοράς q Θεωρήστε ένα σώµα µε θέση που δίνεται από το διάνυσµα: r = e q Η ταχύτητά του θα είναι: " r = "r + r ω q Η επιτάχυνση του σώµατος (στο περιστρεφόµενο σύστηµα) προκύπτει από την παράγωγο της (1): a = d "r dt e Ø Είδαµε όµως: " "w = dw dt = "w + w ω και θεωρήστε ότι: w = r + r ω d " Ø Εποµένως θα έχουµε: a = [ ( "r + r ω ) + r + r ω dt a = [r "" + r " ω +r " ω + r " ω +r ω ω ] e a = r "" + 2 "r ω + r ω ω + r "ω e (1) r e " ω " e διάνυσµα επιτάχυνσης σε περιστρεφόµενο σύστηµα q Η έκφραση αυτή της επιτάχυνσης οδηγεί στην εισαγωγή «φαινοµενικών» δυνάµεων

13 ΦΥΣ Διαλ ος Νόμος του Newton σε περιστρεφόμενο σύστημα q Θεωρούµε δυο νέα διανύσµατα ορισµένα στο περιστρεφόµενο σύστηµα (αγνοώντας τις διορθώσεις από την περιστροφή των αξόνων) v σωµ. = "r e και a σωµ. = "" r e q Με τα παραπάνω διανύσµατα, το διάνυσµα της επιτάχυνσης στο περιστρεφόµενο σύστηµα αναφοράς µπορεί να γραφεί: a = r "" + 2 "r ω + r ω ω + r "ω e a = a σωµ. + 2 ω v σωµ. + ω ω r + " ω r (προσοχή: δεν είναι ταχύτητα ή επιτάχυνση) F = m a επιτάχυνση σε περιστρεφόµενο σύστηµα συντεταγµένων q Εποµένως για περιστρεφόµενο σύστηµα αναφοράς, οι εξισώσεις κίνησης είναι: Ø Σύµφωνα µε τον 2 ο νόµο του Newton: Ø Σύµφωνα µε την έκφραση της πραγµατικής επιτάχυνσης α συναρτήσει της α σωµ. εµφανίζονται 3 νέοι όροι: a 1 = ω ( ω r ) φυγόκεντρος επιτάχυνση a 2 = 2 ω v σωµ. Corols επιτάχυνση a 3 = συνεπίπεδη της κίνησης και ω " κάθετη στη φυγόκεντρο. r Euler επιτάχυνση Εµφανίζεται λόγω µεταβολής της ω

14 ΦΥΣ Διαλ Μη αδρανειακές δυνάμεις με φορμαλισμό Lagrange q Θα θέλαµε να βρούµε τις µη αδρανειακές δυνάµεις χρησιµοποιώντας τον φορµαλισµό Lagrange q H Lagrangan ενός σώµατος που κινείται σε ένα δυναµικό, γράφεται: L = 1 2 m "r 2 V ( r) q Στο στατικό σύστηµα συντεταγµένων θα γραφεί: L = 1 2 m r " 2 V ( r) L = 1 2 m r r V r q Οι εξισώσεις κίνησης χρησιµοποιώντας τις στατικές συντεταγµένες βρίσκονται από τις εξισώσεις Euler-Lagrange και την µορφή της Lagrangan από την (2) q Ποια θα ήταν η µορφή των εξισώσεων κίνησης χρησιµοποιώντας τις συντεταγµένες του περιστρεφόµενου συστήµατος q Θυµηθήτε από πριν ότι: r = U 1 r = U T r r = U r q Ενώ η παράγωγος του r ως προς t θα είναι: r = U r +U r (1) (2) q Με βάση τις εξισώσεις (3) και (4) µπορούµε να αντικαταστήσουµε στην (2) και τις εξισώσεις E-L και να χρησιµοποιήσουµε τα r σαν τις δυναµικές µεταβλητές (3) (4)

15 ΦΥΣ Διαλ Μη αδρανειακές δυνάμεις με φορμαλισμό Lagrange q Παραλείποντας τους δείκτες θα µπορούσαµε να γράψουµε: r = Ur + Ur q Εποµένως η Lagrangan θα γραφεί: L 1 2 m Ur + Ur V L 1 2 m U Ur 2 + U Urr + UUr 2 q Η εξίσωση Euler-Lagrange: t L r = L U Ur + UUr + U Ur + UU r = V Ar r Euler ω "r Corols φυγόκεντρος ( Ur + Ur ) V (παραλείποντας όρους x2) r t( U Ur + UUr ) = U Ur + U Ur V επιτάχυνση σώµατος q Άσκηση: Προσπαθήστε να λύσετε το παραπάνω µε τους σωστούς δείκτες Σε κάποιους από τους όρους θα πρέπει να θυµηθείτε την συνθήκη ορθοκανονικότητας (π.χ. o όρος που δίνει ) UU r r

16 Εφαρμογές ΦΥΣ Διαλ q To κλασικό παράδειγµα ενός περιστρεφόµενου συστήµατος είναι η Γη: Ø Η γωνιακή ταχύτητα είναι: ω = 2π s rad sec q Μια µάζα η οποία κρέµεται στην άκρη ενός εκκρεµούς βρισκόµενο σε γεωγραφικό πλάτος λ : ω y z q Οι περιστρεφόµενες συντεταγµένες συντεταγµένες είναι: λ q Η γωνιακή ταχύτητα x z : κατακόρυφος άξονας y : προς τον βόρρειο πόλο x : «ανατολικά» ω ω = ω 0,cosλ,snλ άξονες συντεταγµένων σώµατος στο σύστηµα συντεταγµένων του σώµατος θα είναι: q Θεωρούµε ότι η µάζα του εκκρεµούς έχει διάνυσµα θέσης (σε συντεταγµένες σώµατος): r = ( 0,0, R γη )

17 Εφαρμογές Κίνηση στην επιφάνεια της Γης ΦΥΣ Διαλ q Ας θεωρήσουµε αρχικά ότι η µάζα δεν κινείται (οπότε η δύναµη Corols είναι 0) ω = ω ( 0,cosλ,snλ ) q Χρειάζεται εποµένως να υπολογίσουµε την φυγόκεντρο δύναµη ω y z Ø Η δύναµη της βαρύτητας είναι: λ r = 0,0, R γη x Ø Η φυγόκεντρος δύναµη είναι: F ϕυγοκ. = m ω ( ω Rcosλ ˆx ) F βαρ. = mgẑ F ϕυγοκ. = m ω F ϕυγοκ. = mω 2 R cos 2 λẑ + snλ cosλŷ q H φυγόκεντρος δύναµη αποτελείται από δυο όρους: Ø H µάζα θα αποκλίνει προς την y-διεύθυνση («νότια»): ² Το αποτέλεσµα «χάνεται» στους πόλους και ισηµερινό Ø Η βαρυτική δύναµη «ελαττώνεται» κατά ένα ποσοστό: ² Το αποτέλεσµα «χάνεται» στους πόλους (cosλ = 0) και γίνεται µέγιστο στον ισηµερινό ω 2 R g 45 o ω 2 R g 45 o 0.3% 0.3% ω r

18 Εφαρμογές Παράδειγμα δύναμης Corols ΦΥΣ Διαλ q Ας θεωρήσουµε ότι αφήνουµε µια µάζα να πέσει από την κορυφή ενός κτιρίου q Πως επιρεάζει η δύναµη Corols την κίνηση του σώµατος? Ø Το αποτέλεσµα της δύναµης αυτής θα είναι πολύ µικρό Ø Σε χαµηλότερη τάξη µεγέθους, η ταχύτητα θα είναι: υ o = gtẑ (το σώµα αφέθηκε την στιγµή t=0, να πέσει από το σηµείο x=y=0, z=z): Ø H δύναµη Corols θα είναι: F Corols = 2ω 0,cosλ,snλ F Corols = 2 ω v = 2 ω v 0 +" ( gtẑ) F Corols = 2ω cosλ ( gt) ˆx Ø H δύναµη αυτή θα είναι (1 η τάξη αναπτύγµατος της επιτάχυνσης του σώµατος): F Corols = m "v 1 = 2mωgt cosλ ˆx ² Όπου: v = v 0 + v v1 = ωgt 2 cosλ ˆx 1 +" Ø H απόκλιση της θέσης του σώµατος είναι: d r = v 1 dt = ωgt 3 cosλ ˆx 3 Ø Το σώµα αυτό θα αποκλίνει «ανατολικά» Ø Στο νότιο ηµισφαίριο, λ<0, το σώµα θα αποκλίνει «δυτικά» Ø Για ένα 10-όροφο κτίριο η απόκλιση είναι ~5mm

19 Περιστρεφόμενο σύστημα συντεταγμένων q Ξεκινήσαµε να µελετάµε περιστρεφόµενα συστήµατα συντεταγµένων: q Είδαµε ότι για ένα σώµα το οποίο έχει διάνυσµα θέσης r Ø το r γράφεται είτε συναρτήσει στατικών συντεταγµένων: Ø είτε συναρτήσει περιστρεφόµενων συντεταγµένων: e ΦΥΣ Διαλ r = r e r = r e τα δεν είναι σταθερά αλλά µεταβάλλονται µε τον χρόνο ενώ τα είναι σταθερά e Ø Τα και e περιγράφουν τους άξονες συντεταγµένων των δυο συστηµάτων q Τα δυο συστήµατα αναφοράς σχετίζονται µέσω του πίνακα περιστροφής U: e = U e q O πίνακας U είναι ένας ορθογώνιος πίνακας: U Τ = U 1 και det U = ±1 q Τι θα δούµε σήµερα: Ø πως µετασχηµατίζεται η ταχύτητα στο περιστρεφόµενο σύστηµα Ø πως µετασχηµατίζεται η επιτάχυνση στο περιστρεφόµενο σύστηµα Ø η µορφή του 2 ου νόµου του Newton στο περιστρεφόµενο σύστηµα e

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

) = 0 όπου: ω = κ µε m-εκφυλισµό

) = 0 όπου: ω = κ µε m-εκφυλισµό Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!

( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e! Κίνηση στερεών σωμάτων ΦΥΣ 11 - Διαλ.30 1 q Κίνηση στερεού σώµατος: Ø Υπολογισµός της κινητικής ενέργειας Ø Θεωρήσαµε ότι ένα σώµα διακριτής ή συνεχούς κατανοµής µάζας q Η κινητική ενέργεια δίνεται από

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i ΦΥΣ - Διαλ.03 Ολική στροφορμή q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r = r R q Ορίζουμε επίσης τις ταχύτητες: v = " r v = και R " Ø Υπολογίζουμε την ολική στροφορμή L = r p = L = R M v

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου

Διαβάστε περισσότερα

Mηχανή Atwood µε κινούµενη τροχαλία

Mηχανή Atwood µε κινούµενη τροχαλία ΦΥΣ 131 - Διαλ.11 1 Mηχανή Atwood µε κινούµενη τροχαλία Θεωρείστε τη µηχανή Atwood του σχήµατος. (α) Να γραφούν οι τρεις εξισώσεις Fmα. Θεωρείστε θετική τη φορά προς τα πάνω. (β) Να βρεθεί η επιτάχυνση

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ 1. Γιατί η δύναµη είναι διανυσµατικό µέγεθος; 2. Να διατυπώσετε τον πρώτο νόµο της κίνησης. 3. Ένα αυτοκίνητο κινείται σε ευθεία και το ταχύµετρο δείχνει σταθερά 50km/h. Τι συµπεραίνουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Νόµοι Newton: Μερικές ακόµα εφαρµογές

Νόµοι Newton: Μερικές ακόµα εφαρµογές Νόµοι Newton: Μερικές ακόµα εφαρµογές ΦΥΣ 111 - Διαλ.18 1 Κινήσεις σώµατος µέσα σε υγρά ή αέρα Σώµα κινούµενο µέσα σε κάποιο υγρό ή τον αέρα ασκεί µια δύναµη στο µέσο στο οποίο κινείται. Το µέσο αντιδρά

Διαβάστε περισσότερα

Hamiltonian φορμαλισμός

Hamiltonian φορμαλισμός ΦΥΣ - Διαλ.0 Hamltonan φορμαλισμός q = H H Οι εξισώσεις Hamlton είναι:, p = p q Ø (p,q) ονομάζονται κανονικές μεταβλητές Ø Η είναι συνάρτηση που ονομάζεται Hamltonan Ø Κανονικές μεταβλητές ~ θέση και ορμή

Διαβάστε περισσότερα

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται 1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του

Διαβάστε περισσότερα

Για τη συνέχεια σήμερα...

Για τη συνέχεια σήμερα... ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,

Διαβάστε περισσότερα

ΦΥΣ Διαλ Δυναµική

ΦΥΣ Διαλ Δυναµική ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N

Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N Παράδειγµα roller coaster ΦΥΣ 131 - Διαλ.13 1 Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; y-διεύθυνση:

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

Έργο Ενέργεια Παραδείγµατα

Έργο Ενέργεια Παραδείγµατα ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ

Διαβάστε περισσότερα

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

( ) ( ) Hamiltonian φορμαλισμός. = L!q i. p i. q i. , p i = H. !p i. !q i, L q i, t S = L dt µεγιστοποιείται σε µια λύση της εξίσωσης κίνησης

( ) ( ) Hamiltonian φορμαλισμός. = L!q i. p i. q i. , p i = H. !p i. !q i, L q i, t S = L dt µεγιστοποιείται σε µια λύση της εξίσωσης κίνησης Hamiltonian φορμαλισμός q Πριν αρκετό καιρό, είδαµε τον φορµαλισµό Hamilton: Ø Για ένα σύστηµα µε βαθµούς ελευθερίας και Lagrangian ² Ορίσαµε p i = L! ² και την hamiltonian: H = και ² Λύσαµε την εξίσωση

Διαβάστε περισσότερα

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης 1. Μια µάζα m είναι εξαρτηµένη από το άκρο ενός ελατηρίου µε φυσική συχνότητα ω. Η µάζα αφήνεται να κινηθεί από την κατάσταση

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1 Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση

Διαβάστε περισσότερα

Καρτεσιανό Σύστηµα y. y A. x A

Καρτεσιανό Σύστηµα y. y A. x A Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ. ΦΥΣ 111 - Διαλ.6 1 Κίνηση με σταθερή επιτάχυνση, α() =σταθ. Από την εξίσωση κίνησης = a( )d + Αντικαθιστώντας στην x = x + ( )d x = x + ( a + )d = x + ( a)d + d = a + (1) x = x + 1 a + () Λύνοντας ως προς

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

ΜΕΡΟΣ Α! Κινηµατική άποψη

ΜΕΡΟΣ Α! Κινηµατική άποψη ΜΕΡΟΣ Α Κινηµατική άποψη Θεωρούµε στερεό σώµα που κινείται στον χώρο, ενώ ένα σηµείο του Ο είναι διαρκώς ακίνητο ως προς το αδρανειακό σύττηµα από το οποίο εξετάζεται. Η θέση του στερεού καθορίζεται κάθε

Διαβάστε περισσότερα

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

Ενέργεια στην περιστροφική κίνηση

Ενέργεια στην περιστροφική κίνηση ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #3-Λύσεις

Οµάδα Ασκήσεων #3-Λύσεις Οµάδα Ασκήσεων #3-Λύσεις Πρόβληµα # (α) Ο βραχίονας είναι επίπεδος. Μπορούµε να βρούµε τον προσπελάσιµο χώρο εργασίας µε µια βήµα-προς-βήµα προσέγγιση. Πρώτα βρίσκουµε το χώρο που καλύπτεται όταν η άρθρωση-3

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β

i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β Φύλλο Εργασίας: ΚΙΝΗΜΑΤΙΚΗ ΟΜΑΛΗΣ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Λίγη γεωµετρία πριν ξεκινήσουµε: Σε κύκλο ακτίνας, η επίκεντρη γωνία Δθ µετρηµένη σε ακτίνια (rad) και το µήκος του τόξου Δs στο οποίο βαίνει, συνδέονται

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. (αποστολή µέχρι ευτέρα 1/4/ βδοµάδα)

ΕΡΓΑΣΙΑ 3 η. (αποστολή µέχρι ευτέρα 1/4/ βδοµάδα) ΕΡΓΑΣΙΑ η (αποστολή µέχρι ευτέρα /4/ + βδοµάδα) Άσκηση (5 µονάδες): Να βρεθεί η συνισταµένη των δυνάµεων που ενεργούν πάνω στο σώµα µάζας Kg, όπως φαίνεται στο σχήµα. Ποιό είναι το µέτρο και η διεύθυνσή

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #1-Λύσεις

Οµάδα Ασκήσεων #1-Λύσεις Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 1 η Πρόοδος: 13-Οκτωβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται

Διαβάστε περισσότερα

ΦΥΣ Διαλ.12. Παράδειγμα Τάσεων

ΦΥΣ Διαλ.12. Παράδειγμα Τάσεων ΦΥΣ 111 - Διαλ.1 1 Παράδειγμα Τάσεων Το παιδί της διπλανής εικόνας θέλει να φθάσει ένα µήλο στο δέντρο χωρίς να σκαρφαλώσει. Χρησιµοποιεί ένα σχοινί αµελητέας µάζας και µια αβαρή τροχαλία. Τραβάει το σχοινί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάσαµε την κίνηση ενός υλικού σηµείου υπό την επίδραση µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού σηµείου έχοµε ένα στερεό σώµα.

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4) ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή

Διαβάστε περισσότερα

Σφαιρικά σώµατα και βαρύτητα

Σφαιρικά σώµατα και βαρύτητα ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 1ο: ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις ηµιτελείς παρακάτω προτάσεις να γράψετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς ΚΕΦΑΛΑΙΟ 9 Μη αδρανειακά συστήµατα αναφοράς Στην Εισαγωγή στη Μηχανική, πριν το Κεφάλαιο 1, είδαµε ότι ο εύτερος Νόµος του Νεύτωνα ισχύει µόνο για αδρανειακούς παρατηρητές, δηλαδή για παρατηρητές που είτε

Διαβάστε περισσότερα

ΦΥΣ Διαλ.27. Νόµος παγκόσµιας έλξης

ΦΥΣ Διαλ.27. Νόµος παγκόσµιας έλξης ΦΥΣ 111 - Διαλ.27 1 Νόµος παγκόσµιας έλξης ΦΥΣ 111 - Διαλ.27 2 Κοιτάζοντας τα άστρα... Η εξήγηση για τη δυναμική μεταξύ ουράνιων σωμάτων ξεκίνησε από παρατηρήσεις και πνευματικές αναζητήσεις από την αρχή

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ. ΤΑΞΗ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ δ β

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του.

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. . Δύναμη Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. Υπάρχουν δυνάμεις οι οποίες ασκούνται ακόμη και όταν

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός

Διαβάστε περισσότερα

Κίνηση σε δύο διαστάσεις

Κίνηση σε δύο διαστάσεις ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης

Διαβάστε περισσότερα

Παράδειγµα διατήρησης στροφορµής

Παράδειγµα διατήρησης στροφορµής Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α! Λυκείου. Νόμοι του Νεύτωνα. Φροντιστήριο ΦΑΣΜΑ. Ζήτημα 1 ο. A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ;

Διαγώνισμα Φυσικής Α! Λυκείου. Νόμοι του Νεύτωνα. Φροντιστήριο ΦΑΣΜΑ. Ζήτημα 1 ο. A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ; 1 Διαγώνισμα Φυσικής Α! Λυκείου Νόμοι του Νεύτωνα Ζήτημα 1 ο A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ; 1 Το αποτέλεσμα της δύναμης που ασκείται σε ένα σώμα εξαρτάται : α) Μόνο από το μέτρο της δύναμης

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα