Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών"

Transcript

1 Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) πλήθος κορυφών πλήθος ακμών

2 Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) Μερικά είδη γραφημάτων: Κατεύθυνση ακμών - μη κατευθυνόμενα - κατευθυνόμενα Βάρος ακμών - μη σταθμισμένα - σταθμισμένα

3 Αναπαράσταση Γραφήματος Μήτρα γειτνίασης (adjacency matrix) Χρησιμοποιούμε έναν πίνακα, όπου Χώρος: bits 4 5 συμμετρικός πίνακας Ελέγχουμε αν σε χρόνο Επεξεργαζόμαστε όλες τις ακμές σε χρόνο

4 Αναπαράσταση Γραφήματος Μήτρα γειτνίασης (adjacency matrix) Χρησιμοποιούμε έναν πίνακα, όπου Χώρος: bits 4 5 Ελέγχουμε αν σε χρόνο Επεξεργαζόμαστε όλες τις ακμές σε χρόνο

5 Αναπαράσταση Γραφήματος Μήτρα γειτνίασης (adjacency matrix) class AdjacencyMatrix { } public static void main(string[] args) { int N = Integer.parseInt(args[0]); int M = Integer.parseInt(args[1]); boolean adj[][] = new boolean[n][n]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) adj[i][j] = false; for (int i = 0; j < N; j++) adj[i][i] = true; for (In.init();!In.empty();) { int i = In.getInt(), j = In.getInt(); adj[i][j] = true; adj[j][i] = true; } } Διαβάζει μη κατευθυνόμενο γράφημα

6 Αναπαράσταση Γραφήματος Λίστες γειτνίασης (adjacency lists) Χρησιμοποιούμε έναν πίνακα, όπου είναι αναφορά σε λίστα A των κόμβων που γειτονεύουν με τnν κορυφή Χώρος: λέξεις Κάθε ακμή εμφανίζεται 2 φορές Ελέγχουμε αν σε χρόνο Επεξεργαζόμαστε όλες τις ακμές σε χρόνο

7 Αναπαράσταση Γραφήματος Λίστες γειτνίασης (adjacency lists) Χρησιμοποιούμε έναν πίνακα, όπου είναι αναφορά σε λίστα A των κόμβων που γειτονεύουν με τnν κορυφή Χώρος: λέξεις Ελέγχουμε αν σε χρόνο Επεξεργαζόμαστε όλες τις ακμές σε χρόνο

8 Αναπαράσταση Γραφήματος adj Λίστες γειτνίασης (adjacency lists) class AdjacencyLists { static class Node { int v; Node next; Node(int v, Node t) { this.v = v; next = t; } } } public static void main(string[] args) { int N = Integer.parseInt(args[0]); int M = Integer.parseInt(args[1]); Node adj[] = new Node[V]; for (int i = 0; i < N; i++) adj[i] = null; for (In.init();!In.empty();) { int i = In.getInt(), j = In.getInt(); adj[j] = new Node(i, adj[j]); adj[i] = new Node(j, adj[i]); } } Διαβάζει μη κατευθυνόμενο γράφημα

9 Αναπαράσταση Γραφήματος Λίστες γειτνίασης (adjacency lists) Χρησιμοποιούμε έναν πίνακα, όπου είναι αναφορά σε λίστα A των κόμβων που γειτονεύουν με τnν κορυφή Χώρος: λέξεις Αν το γράφημα είναι στατικό (δεν έχουμε εισαγωγές ή διαγραφές ακμών) τότε μπορούμε να αναπαραστήσουμε τις λίστες γειτνίασης με 2 μονοδιάστατους πίνακες

10 Αναπαράσταση Γραφήματος Λίστες γειτνίασης (adjacency lists) Αν το γράφημα είναι στατικό (δεν έχουμε εισαγωγές ή διαγραφές ακμών) τότε μπορούμε να αναπαραστήσουμε τις λίστες γειτνίασης με 2 μονοδιάστατους πίνακες Οι γείτονες του κόμβου βρίσκονται στις θέσεις όπου και Χώρος: λέξεις για μη κατευθυνόμενο γράφημα, για κατευθυνόμενο

11 Τυχαία Γραφήματα Επιλέγουμε ακμές τυχαία (από κάποια κατανομή) σε γράφημα με κόμβους

12 Τυχαία Γραφήματα Επιλέγουμε ακμές τυχαία (από κάποια κατανομή) σε γράφημα με κόμβους

13 Τυχαία Γραφήματα Ομοιόμορφα τυχαία επιλογή κόμβων Eπιλέγουμε ομοιόμορφα τυχαία τους δύο κόμβους της κάθε ακμής από τους κόμβους του γραφήματος import java.util.random;... Random rand = new Random(seed); for(int i=0; i<m; i++) { int j = rand.nextint(n) + 1; int k = rand.nextint(n) + 1; addedge(j,k); } Κατασκευάζει γράφημα με κόμβους και ακμές αλλά μπορεί να περιέχει βρόχους και πολλαπλές (επαναλαμβανόμενες) ακμές βρόχος διπλή ακμή

14 Τυχαία Γραφήματα Ομοιόμορφη δειγματοληψία Το παρακάτω πρόγραμμα επιλέγει κάθε μια από τις δυνατές ακμές με πιθανότητα import java.util.random;... Random rand = new Random(seed); double p = (double) 2*m/(n*(n-1)); for (int k=1; k<=n; k++) for (int j=1; j<k; j++) if ( rand.nextdouble() < p ) addedge(j,k); Κατασκευάζει γράφημα με κόμβους και αναμενόμενο αριθμό ακμών

15 Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα σειρά γενικότητας) : κόμβος Δυαδικά και Μ-αδικά δένδρα Διατεταγμένα δένδρα Δένδρα με ρίζα Ελεύθερα δένδρα διαδρομή

16 Δένδρα με Ρίζα ρίζα πρόγονος του γονέας του αδελφός του παιδί του απόγονος του Ο είναι πρόγονος του (ο απόγονος του ) αν βρίσκεται στο μονοπάτι από τη ρίζα στο

17 Δυαδικά Δένδρα Δυαδικό δένδρο (αναδρομικός ορισμός) = εξωτερικός κόμβος, ή εσωτερικός κόμβος που συνδέεται με ένα δυαδικό δένδρο στα αριστερά και ένα δυαδικό δένδρο στα δεξιά.

18 Δυαδικά Δένδρα Δυαδικό δένδρο - Υλοποίηση class Node { Item item; Node l; Node r; Node(Item v, Node l, Node r) { this.item = v; this.l = l; this.r = r; } } Οι εξωτερικοί κόμβοι αντιστοιχούν σε μηδενικές (null) αναφορές

19 Δυαδικά Δένδρα Δυαδικό δένδρο - Υλοποίηση class Node { Αν δεν υπάρχει πρόβλημα χώρου τότε μπορούμε να έχουμε σε κάθε κόμβο μια αναφορά προς το γονέα του. Αυτό απλοποιεί την υλοποίηση ορισμένων λειτουργιών. } Item item; Node l; Node r; Node p; Node(Item v, Node l, Node r, Node p) { this.item = v; this.l = l; this.r = r; this.p = p; } Οι εξωτερικοί κόμβοι αντιστοιχούν σε μηδενικές (null) αναφορές

20 Μ-αδικά Δένδρα M-αδικό δένδρο (αναδρομικός ορισμός) = εξωτερικός κόμβος, ή εσωτερικός κόμβος που συνδέεται με διατεταγμένη ακολουθία Μ-αδικών δένδρων.

21 Διατεταγμένα Δένδρα Διατεταγμένο δένδρο (αναδρομικός ορισμός) = κόμβος (ρίζα του δένδρου) που συνδέεται με διατεταγμένη ακολουθία διατεταγμένων δένδρων.

22 Διατεταγμένα Δένδρα Διατεταγμένο δένδρο - Υλοποίηση προς επόμενο αδελφό προς 1 ο παιδί

23 Διατεταγμένα Δένδρα Διατεταγμένο δένδρο Μετατροπή σε δυαδικό δένδρο

24 Διατεταγμένα Δένδρα Διατεταγμένο δένδρο Μετατροπή σε δυαδικό δένδρο 1-προς-1 αντιστοιχία

25 Ισομορφικά Δένδρα Διαφορετικά διατεταγμένα δένδρα μπορεί να αντιστοιχούν στο ίδιο μη διατεταγμένο δένδρο.

26 Αναπαραστάσεις Ειδικού Σκοπού Αναπαράσταση με συνάρτηση γονέα Αποθηκεύουμε τον γονέα κάθε κόμβου, π.χ. σε ένα πίνακα parent[1:n] Για τη ρίζα j του δένδρου θέτουμε parent[j]=j.

27 Αναπαραστάσεις Ειδικού Σκοπού Αναπαράσταση πλήρους δυαδικού δένδρου με πίνακα θέσης Ένα πλήρες δυαδικό δένδρο μπορεί να αποθηκευτεί σε ένα πίνακα b[1:n] : Το στοιχείο στη θέση i είναι ο γονέας των στοιχείων στις θέσεις 2i και 2i+1. [1] α [2] [3] β γ [4] [5] δ ε [6] ζ η [7] [8] θ [9] ι κ [10] λ [11] μ [12] b = [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] α β γ δ ε ζ η θ ι κ λ μ

28 Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set)

29 Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 διαδρομή απλή διαδρομή (απλός) κύκλος

30 Γράφημα Κάθε δένδρο είναι ένα γράφημα. Ένα γράφημα είναι δένδρο ένα ισχύει ένα από τα παρακάτω: έχει Ν-1 ακμές και κανένα κύκλο έχει Ν-1 ακμές και είναι συνδεδεμένο έχει μοναδική απλή διαδρομή για κάθε ζεύγος κόμβων είναι συνδεδεμένο αλλά παύει να είναι μετά την αφαίρεση κάποιας ακμής

31 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους

32 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους Απόδειξη με επαγωγή. Για Ν=0 το δένδρο είναι ένας εξωτερικός κόμβος. Έστω ότι ισχύει για λιγότερους από Ν εσωτερικούς κόμβους.

33 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους Απόδειξη με επαγωγή. Για Ν=0 το δένδρο είναι ένας εξωτερικός κόμβος. Έστω ότι ισχύει για λιγότερους από Ν εσωτερικούς κόμβους. O συνολικός αριθμός εξωτερικών κόμβων είναι

34 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει 2Ν ακμές: N-1 συνδέουν εσωτερικούς κόμβους και Ν+1 συνδέουν εσωτερικό με εξωτερικό κόμβο.

35 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει 2Ν ακμές: N-1 συνδέουν εσωτερικούς κόμβους και Ν+1 συνδέουν εσωτερικό με εξωτερικό κόμβο. Κάθε κόμβος εκτός από τη ρίζα έχει μοναδικό γονέα. Άρα έχουμε Ν-1 εσωτερικούς κόμβους που συνδέονται με το γονέα τους. Αντίστοιχα, καθένας από τους Ν+1 εξωτερικούς κόμβους συνδέεται με τον γονέα του που είναι εσωτερικός κόμβος.

36 Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1

37 Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα

38 Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1 ύψος δένδρου = μέγιστο επίπεδο Μήκος διαδρομής = άθροισμα επιπέδου κάθε κόμβου (=30) Μήκος εσωτερικής διαδρομής = άθροισμα επιπέδου κάθε εσωτερικού κόμβου (=9) Μήκος εξωτερικής διαδρομής = άθροισμα επιπέδου κάθε εξωτερικού κόμβου (=21)

39 Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1 ύψος δένδρου = μέγιστο επίπεδο Μήκος διαδρομής = άθροισμα επιπέδου κάθε κόμβου (=30) Μήκος εσωτερικής διαδρομής = άθροισμα επιπέδου κάθε εσωτερικού κόμβου (=9) Μήκος εξωτερικής διαδρομής = άθροισμα επιπέδου κάθε εξωτερικού κόμβου (=21) Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

40 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

41 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν ξεκινάμε με εξωτερικό κόμβο

42 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν ξεκινάμε με εξωτερικό κόμβο σε κάθε βήμα

43 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

44 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

45 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

46 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

47 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

48 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

49 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

50 Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν Αντικατάσταση εσωτερικού κόμβου στο επίπεδο k μήκος εσωτερικής διαδρομής αυξάνει κατά k μήκος εξωτερικής διαδρομής αυξάνει κατά k+2

51 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν

52 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν εσωτερικοί κόμβοι στο επίπεδο ένας εσωτερικός κόμβος ανά επίπεδο

53 Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν εσωτερικοί κόμβοι στο επίπεδο ένας εσωτερικός κόμβος ανά επίπεδο μήκος εσωτερικής διαδρομής = μήκος εσωτερικής διαδρομής =

54 Διάσχιση Δυαδικού Δένδρου προδιάταξη (preorder) σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί ενδοδιάταξη (inorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. γονέας 3. δεξί παιδί μεταδιάταξη (postorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας

55 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } προδιάταξη (preorder) σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί ενδοδιάταξη (inorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. γονέας 3. δεξί παιδί μεταδιάταξη (postorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας

56 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder)

57 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder) 1

58 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder) 1 2

59 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder) 1 2 3

60 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder)

61 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder)

62 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder)

63 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; h.item.visit(); traverse(h.l); traverse(h.r); } προδιάταξη (preorder)

64 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

65 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

66 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

67 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

68 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder) 1

69 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder) 2 1

70 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder) 2 1 3

71 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

72 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

73 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

74 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); h.item.visit(); traverse(h.r); } ενδοδιάταξη (inorder)

75 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

76 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

77 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

78 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

79 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder) 1

80 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder) 1 2

81 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder) 3 1 2

82 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

83 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

84 Διάσχιση Δυαδικού Δένδρου void traverse(node h) { if (h == null) return; traverse(h.l); traverse(h.r); h.item.visit(); } μεταδιάταξη (postorder)

85 Διάσχιση Δυαδικού Δένδρου προδιάταξη (preorder) σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί μεταδιάταξη (postorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών

86 Διάσχιση Δυαδικού Δένδρου Ένα δυαδικό δένδρο με εσωτερικού κόμβους μπορεί να αναπαρασταθεί από μια ακολουθία από δυαδικά ψηφία, που ικανοποιεί τις ακόλουθες συνθήκες: ψηφιά είναι και ψηφία είναι Για κάθε θέση, ο αριθμός των που βρίσκονται πριν το είναι μεγαλύτερος ή ίσος του αριθμού των που βρίσκονται πριν το

87 Διάσχιση Δυαδικού Δένδρου Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

88 Διάσχιση Δυαδικού Δένδρου Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

89 Διάσχιση Δυαδικού Δένδρου Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

90 Διάσχιση Δυαδικού Δένδρου Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

91 Διάσχιση Δυαδικού Δένδρου Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

92 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

93 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

94 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

95 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

96 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

97 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

98 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

99 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

100 Διάσχιση Δυαδικού Δένδρου Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο. Κατασκευή με αναδρομή class Node { Item item; Node l; Node r; Node(Item v, Node l, Node r) { this.item = v; this.l = l; this.r = r; } } int k; // τρέχουσα θέση Node createbt(char[] Β) { if (k == B.length) return null; if (B[k++] == '0') return null; } Item v = Node x = new Node(v,null,null); x.l = createbt(b); x.r = createbt(b); return x;

101 Διάσχιση Δυαδικού Δένδρου Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών Προδιάταξη : Πρώτα ο γονέας, μετά τα παιδιά σε σειρά από αριστερά προς τα δεξιά Μεταδιάταξη : Πρώτα τα παιδιά σε σειρά από αριστερά προς τα δεξιά, μετά ο γονέας

102 Διάσχιση Δυαδικού Δένδρου Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών Προδιάταξη : Πρώτα ο γονέας, μετά τα παιδιά σε σειρά από αριστερά προς τα δεξιά Μεταδιάταξη : Πρώτα τα παιδιά σε σειρά από αριστερά προς τα δεξιά, μετά ο γονέας Ένας κόμβος είναι απόγονος ενός κόμβου αν και μόνο αν στη σειρά προδιάταξης και στη σειρά μεταδιάταξης

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

Πανεπιζηήμιο Πειραιώς Τμήμα Πληροθορικής Πρόγραμμα Μεηαπηστιακών Σποσδών «Πληροθορική»

Πανεπιζηήμιο Πειραιώς Τμήμα Πληροθορικής Πρόγραμμα Μεηαπηστιακών Σποσδών «Πληροθορική» Πανεπιζηήμιο Πειραιώς Τμήμα Πληροθορικής Πρόγραμμα Μεηαπηστιακών Σποσδών «Πληροθορική» Μεταπτυχιακή Διατριβή Τίηλος Διαηριβής Θεωρία γραφημάτων: Επίπεδα γραφήματα Ειδικές μορφές γραφημάτων - Χρωματισμός

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Java Παύλος Εφραιμίδης Java Βασικά Στοιχεία της γλώσσας Java 1 Τύποι Δεδομένων Η Java έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) τύπους δεδομένων αναφορές Java Βασικά

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

public void printstatement() { System.out.println("Employee: " + name + " with salary: " + salary);

public void printstatement() { System.out.println(Employee:  + name +  with salary:  + salary); Κληρονομικότητα Η κληρονομικότητα (inheritance) αποτελεί έναν από τους χαρακτηριστικότερους μηχανισμούς των αντικειμενοστρεφών γλωσσών προγραμματισμού. Επιτρέπει την δημιουργία μιας νέας κλάσης απορροφώντας

Διαβάστε περισσότερα

API: Applications Programming Interface

API: Applications Programming Interface ÒØ Ñ ÒÓ ØÖ ÔÖÓ» Ñ ÒØ Ñ ÒÓ ØÖ ÔÖÓ Ö ÑÑ Ø Ñ ½ Ö Ø Ò Ô Ö Ø ÒØ Ñ ÒÛÒ ÒÒÓ ôòøóù ÔÖ Ñ Ø Ó ÑÓÙ Ì ÔÓ ÓÑ ÒÛÒ Ì µ (i) ÒÓÐÓØ ÑôÒ (ii)ôö Ü º Ð ØÖ Ò Ò ÖÛÔÓ ØÖ ÔÐ Ò Ø Ó Ó Ù Ø Ñ Ø ººº ½ºÈÖÛØ ÓÒØ Ø ÔÓ int double char

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα

Διαβάστε περισσότερα

Το πρόγραμμα HelloWorld.java. HelloWorld. Κλάσεις και Αντικείμενα (2) Ορισμός μιας Κλάσης (1) Παύλος Εφραιμίδης pefraimi ee.duth.

Το πρόγραμμα HelloWorld.java. HelloWorld. Κλάσεις και Αντικείμενα (2) Ορισμός μιας Κλάσης (1) Παύλος Εφραιμίδης pefraimi <at> ee.duth. Το πρόγραμμα HelloWorld.java Σχόλια στη Java HelloWorld Παύλος Εφραιμίδης pefraimi ee.duth.gr Java Το πρόγραμμα HelloWorld 1 Java Το πρόγραμμα HelloWorld 2 Σχόλια στη Java ΗγλώσσαJava υποστηρίζει

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Generics και ArrayLists

Generics και ArrayLists ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Αλγοριθμική και Προγραμματισμός Παναγιώτης Σφέτσος sfetsos@it.teithe.gr Generics και ArrayLists Προσοχή!!! Να εκτελεστούν πρώτα όλες οι ασκήσεις τις Θεωρίας

Διαβάστε περισσότερα

Στοιχεία εξεταζόµενου Αριθµός Απάντησης Βαθµολογία. Σύνολο (Θέµα 4 ο )

Στοιχεία εξεταζόµενου Αριθµός Απάντησης Βαθµολογία. Σύνολο (Θέµα 4 ο ) Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Εισαγωγή στον Προγραµµατισµό των Υπολογιστών Καθηγητής Ι. Κάβουρας Εξεταστική περίοδος Φεβρουαρίου 2004 Τετάρτη 10/3/2004, ώρα 8.00 Στοιχεία εξεταζόµενου

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εισαγωγή στη Java III

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εισαγωγή στη Java III ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Εισαγωγή στη Java III Το if-else statement Το if-else statement δουλεύει καλά όταν στο condition θέλουμε να περιγράψουμε μια επιλογή με δύο πιθανά ενδεχόμενα.

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 ΕΝΟΤΗΤΑ ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΗΥ24 - Παναγιώτα Φατούρου 1 Ισοζυγισµένα ένδρα Χρονική Πολυπλοκότητα αναζήτησης σε δοµές που έχουν ήδη διδάχθει: Στατική Μη-Ταξινοµηµένη Λίστα -> Ο(n), όπου

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση

Διαβάστε περισσότερα

ΕΠΛ233 Βιβλιοθήκες και Προσδιοριστές Πρόσβασης στην JAVA

ΕΠΛ233 Βιβλιοθήκες και Προσδιοριστές Πρόσβασης στην JAVA Βιβλιοθήκες και Προσδιοριστές Πρόσβασης στην JAVA 2 «Μονάδα Μετάφρασης» 2 «Μονάδα Μετάφρασης» Όταν δημιουργείται ένα αρχείο πηγαίου κώδικα στην Java, το αρχείο καλείται µονάδα µετάφρασης (compilation unit)

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές)

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές) ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πολυμορφισμός Αφηρημένες κλάσεις Interfaces (διεπαφές) Βρείτε τα λάθη Στο πρόγραμμα στην επόμενη διαφάνεια υπάρχουν διάφορα λάθη Ποια είναι? public abstract

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και αντικείμενα στην Java Strings Πίνακες

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και αντικείμενα στην Java Strings Πίνακες ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και αντικείμενα στην Java Strings Πίνακες ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΑ Κλάση Μια κλάση είναι μία αφηρημένη περιγραφή αντικειμένων με κοινά χαρακτηριστικά

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ 4 ο ΕΞΑΜΗΝΟ Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

3 Αλληλεπίδραση Αντικειμένων

3 Αλληλεπίδραση Αντικειμένων Αφαίρεση και Αρθρωσιμότητα 3 Αλληλεπίδραση Αντικειμένων Πώς συνεργάζονται τα αντικείμενα που δημιουργούμε Αφαίρεση (abstraction) είναι η δυνατότητα να αγνοούμε τις λεπτομέρειες και να εστιάζουμε την προσοχή

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 14 Δυναμική διαχείριση μνήμης Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Στατική δέσμευση μνήμης Με τη δήλωση απλών μεταβλητών

Διαβάστε περισσότερα

Διάγραμμα Κλάσεων. Class Diagram

Διάγραμμα Κλάσεων. Class Diagram Διάγραμμα Κλάσεων Class Diagram Γενικά Ορίζει τις κλάσεις αντικειμένων σε ένα σύστημα, τις μεθόδους και τις συναρτήσεις τους, και τις συσχετίσεις μεταξύ των κλάσεων. Περιγράφουν την δομή και συμπεριφορά

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εξαιρέσεις

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εξαιρέσεις ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Εξαιρέσεις Εξαιρέσεις Στα προγράμματα μας θα πρέπει να μπορούμε να χειριστούμε περιπτώσεις που το πρόγραμμα δεν εξελίσσεται όπως το είχαμε προβλέψει Π.χ., κάνουμε

Διαβάστε περισσότερα

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Προϋποθέσεις για Αµοιβαίο Αποκλεισµό Μόνο µία διεργασία σε κρίσιµο τµήµασεκοινό πόρο Μία διεργασία που σταµατά σε µη κρίσιµο σηµείο δεν πρέπει να επιρεάζει τις υπόλοιπες διεργασίες εν πρέπει να υπάρχει

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Μέθοδοι. Μέθοδοι ηµιουργοί, Υπερφόρτωση και Υπέρβαση Μεθόδων

Μέθοδοι. Μέθοδοι ηµιουργοί, Υπερφόρτωση και Υπέρβαση Μεθόδων Μέθοδοι Μέθοδοι ηµιουργοί, Υπερφόρτωση και Υπέρβαση Μεθόδων Μέθοδοι Οιµέθοδοικαθορίζουντηνσυµπεριφοράενόςαντικειµένου. Τα βασικά µέρη από τα οποία αποτελείται µία µέθοδος είναι τα εξής: Το όνοµα της µεθόδου

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Προγραµµατισµός JAVA. ρ Γεώργιος Μαυροµµάτης Πειραιάς 2004

Προγραµµατισµός JAVA. ρ Γεώργιος Μαυροµµάτης Πειραιάς 2004 Προγραµµατισµός JAVA ρ Γεώργιος Μαυροµµάτης Πειραιάς 2004 Αλγόριθµος Ένας Αλγόριθµος είναι µία καλά ορισµένη υπολογιστική διαδικασία που δέχεται κάποιες τιµές σαν είσοδο και παράγει κάποιες τιµές σαν έξοδο.

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Nα κατασκευάσουν πίνακες από δεδομένα. Να κατασκευάσουν συναρτήσεις με πίνακες. Να κάνουν χρήση

Διαβάστε περισσότερα

Πρόλογος. if (παράσταση) εντολή1 else εντολή2. Από εδώ και πέρα θα αναφέρεται ως K&R.

Πρόλογος. if (παράσταση) εντολή1 else εντολή2. Από εδώ και πέρα θα αναφέρεται ως K&R. Περιεχόμενα Πρόλογος v ΚΕΦΑΛΑΙΟ 1 Προπαρασκευαστική εισαγωγή 1 ΚΕΦΑΛΑΙΟ 2 Τύποι, τελεστές, και παραστάσεις 43 ΚΕΦΑΛΑΙΟ 3 Η ροή του ελέγχου 59 ΚΕΦΑΛΑΙΟ 4 Συναρτήσεις και δομή του προγράμματος 69 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Τ.Ε.Ι. Μεσολογγίου, Τµήµα τηλεπικοινωνιακών Συστημάτων & Δικτύων

Τ.Ε.Ι. Μεσολογγίου, Τµήµα τηλεπικοινωνιακών Συστημάτων & Δικτύων Εργαστήριο Java Lab09 Αντικείμενο: Πολυνηματικές εφαρμογές Η χρήση περισσότερων από μιας ροής εντολών μέσα σε ένα πρόγραμμα είναι γνωστή ως multithreading. H κάθε μια ροή εντολών μέσα στο πρόγραμμα ονομάζεται

Διαβάστε περισσότερα

Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού

Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού Μια συνάρτηση κατακερματισμού (hash function) h απεικονίζει κλειδιά ενός δοσμένου τύπου σεακεραίουςενόςσταθερούδιαστήματος [0,N 1]όπουΝτομέγεθοςτουπίνακα. Πχ: Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ιαδικτυακές Εφαρµογές

ιαδικτυακές Εφαρµογές ιαδικτυακές Εφαρµογές µε Java2 Στοιχεία ικτυακής Επικοινωνίας Όροι IP address 32bit αριθµός που χρησιµοποιείται από το Internet Protocol για την παράδοση δεδοµένων στο σωστό υπολογιστή στο δίκτυο. Port

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Αρχιτεκτονική Υπολογιστών II 6 --0 Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Θέμα. Τι γνωρίζετε για την τοπικότητα των αναφορών και ποιών μονάδων του υπολογιστή ή τεχνικών η απόδοση εξαρτάται από

Διαβάστε περισσότερα

ιαδικτυακές Εφαρµογές Πραγµατικού Χρόνου µε Java

ιαδικτυακές Εφαρµογές Πραγµατικού Χρόνου µε Java ιαδικτυακές Εφαρµογές Πραγµατικού Χρόνου µε Java Java Media Framework Ηβιβλιοθήκη JMF Εγκαθίσταται επιπρόσθετα στη Java Αναπαραγωγή πολυµέσων Αποστολή και λήψη πολυµέσων σε πραγµατικό χρόνο Γραφικά αντικείµενα

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System)

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System) 2.1.1 Εισαγωγή στη διαχείριση αρχείων Οι Η/Υ αποθηκεύουν τα δεδομένα και τα επεξεργάζονται. Εφαρμογή Προγράμματος C:\Documents and Settings\user\Τα έγγραφά μου\leitourgika.doc Λ.Σ. File System Γι αυτό

Διαβάστε περισσότερα

Εισαγωγή στο Moodle- Εργασία 2

Εισαγωγή στο Moodle- Εργασία 2 Εισαγωγή στο Moodle- Εργασία 2 Μωυσίδης Σάββας 6028 Δ η μ ο κ ρ ί τ ε ι ο Π α ν ε π ι σ τ η μ ι ο Θ ρ ά κ η ς Τ μ ή μ α Η λ ε κ τ ρ ο λ ό γ ω ν Μ η χ α ν ι κ ώ ν κ α ι Μ η χ α ν ι κ ώ ν Υ π ο λ ο γ ι σ

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΟΜΕΣ Ε ΟΜΕΝΩΝ (Σηµειώσεις Θεωρίας)

ΑΛΓΟΡΙΘΜΟΙ & ΟΜΕΣ Ε ΟΜΕΝΩΝ (Σηµειώσεις Θεωρίας) TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΛΓΟΡΙΘΜΟΙ & ΟΜΕΣ Ε ΟΜΕΝΩΝ (Σηµειώσεις Θεωρίας) Ευάγγελος Γ. Ούτσιος Σέρρες 2004 2 ΑΛΓΟΡΙΘΜΟΙ & ΟΜΕΣ

Διαβάστε περισσότερα

ΕΙΣΟ ΟΣ-ΕΞΟ ΟΣ Ε ΟΜΕΝΩΝ

ΕΙΣΟ ΟΣ-ΕΞΟ ΟΣ Ε ΟΜΕΝΩΝ ΕΙΣΟ ΟΣ-ΕΞΟ ΟΣ Ε ΟΜΕΝΩΝ Στην java οι πληροφορίες αποθηκεύονται και ανακαλούνται/ανασύρονται µε τη χρήση ενός συστήµατος επικοινωνίας που χρησιµοποιεί την έννοια του stream (κανάλι επικοινωνίας). Σαν stream

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Περιεχόμενα. Λίγα λόγια για αυτή την έκδοση... 23

Περιεχόμενα. Λίγα λόγια για αυτή την έκδοση... 23 Περιεχόμενα Λίγα λόγια για αυτή την έκδοση...... 23 Κεφάλαιο 1 Εισαγωγή... 25 O στόχος του βιβλίου και σε ποιους απευθύνεται... 27 Πώς να διαβάσετε αυτό το βιβλίο... 27 Εκπαίδευση από απόσταση... 29 Ιστορική

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 13 Αρχεία Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αρχεία Συλλογές δεδομένων Αποθηκεύονται στην περιφερειακή μνήμη π.χ. σκληρός

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα