Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z)."

Transcript

1 Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από τη διδασκαλία ενός ϐασικού εισαγωγικού µαθήµατος άλγεβρας. Προκειµένου όµως να στηρίξουµε, κατά κάποιο τρόπο, την αυτοτέλεια του κειµένου ϑα αναφερθούµε εν συντοµία στις έννοιες αυτές καθώς και στις ϐασικές τους ιδιότητες. Ο αναγνώστης που επιθυµεί να αναζητήσει περισσότερες πληροφορίες µπορεί να ανατρέξει σε γενικά ϐιβλία Άλγεβρας όπως τα [5], [4], [3], [2], [1] Οµάδες Ορισµός Ενα µη-κενό σύνολο G εφοδιασµένο µε µια διµελή πράξη { } G G G (x, y) x y λέγεται οµάδα όταν επαληθεύει τα ακόλουθα αξιώµατα: G1 Για όλα τα στοιχεία x, y, z του συνόλου G ισχύει (αξίωµα προσεταιριστικότητας): (x y) z= x (y z). G2 Υπάρχει ένα στοιχείο e G τέτοιο ώστε για όλα τα στοιχεία g Gνα ισχύει (αξίωµα ύπαρξης µοναδιαίου): e g=g e= g. G3 Αν g G τότε υπάρχει ένα στοιχείο g G τέτοιο ώστε να ισχύει (αξίωµα ύπαρξης αντιστρό- ϕου): g g = e= g g Παρατήρηση Εύκολα αποδεικνύεται ότι σε µια οµάδα (G, ), το µοναδιαίο στοιχείο είναι µοναδικό καθώς και ότι για κάθε g G υπάρχει ακριβώς ένα αντίστροφο αυτού g. Στη συνέχεια αντί του συµβολισµού g ϑα χρησιµοποιούµε τον συµβολισµό g

2 352 Παράρτηµα Ορισµός Η οµάδα (G, ) λέγεται αβελιανή οµάδα όταν για όλα τα στοιχεία x, y της G ισχύει x y=y x. Ορισµός Μια οµάδα (G, ) λέγεται πεπερασµένη οµάδα όταν το σύνολο G είναι ένα πεπερασµένο σύνολο. Αν το σύνολο G είναι απειροσύνολο, τότε η οµάδα (G, ) λέγεται άπειρη οµάδα. Παραδείγµατα οµάδων 1. Το σύνολο των ακέραιων αριθµών Z µε πράξη τη (συνήθη) πρόσθεση αποτελεί άπειρη αβελιανή οµάδα. Το ίδιο ισχύει και για τα σύνολα (Q,+), (R,+), (C,+). 2. Το σύνολο των κλάσεων υπολοίπων modulo n, n N, n > 1: Z n ={ā := amodn a Z} µε (καλά ορισµένη) πράξη την πρόσθεση κλάσεων { } Zn Z n Z n (ā, b) ā b αποτελεί πεπερασµένη, αβελιανή, οµάδα. 3. Το σύνολο M n (R) των τετραγωνικών n n πινάκων µε στοιχεία πραγµατικούς αριθµούς και πράξη την πρόσθεση πινάκων αποτελεί άπειρη αβελιανή οµάδα. 4. Εστω ω := e 2πi n. Το σύνολο {1, ω, ω 2,..., ω n 1 } µε πράξη τον πολλαπλασιασµό µιγαδικών αριθµών, αποτελεί πεπερασµένη αβελιανή οµάδα. Η οµάδα αυτή λέγεται οµάδα των n-ϱιζών της µονάδας. 5. Το σύνολο των πρώτων κλάσεων υπολοίπων modn, n N, n > 1 Z n={ā := amodn a Z, (a, n)=1} µε πράξη τον (καλά ορισµένο) πολλαπλασιασµό κλάσεων Z { n Z n Z } n (ā, b) ā b αποτελεί πεπερασµένη, αβελιανή οµάδα. 6. Τα σύνολαq,r,c των µη-µηδενικών στοιχείων τωνq,r καιcµε πράξη τον συνήθη πολλαπλασιασµό αποτελούν άπειρη, αβελιανή οµάδα. 7. Το σύνολο M n (R) των n n πινάκων µε στοιχεία πραγµατικούς αριθµούς και πράξη τον πολλαπλασισµό πινάκων δεν αποτελεί οµάδα, αφού υπάρχουν n n πίνακες µε στοιχεία πραγµατικούς οι οποίοι δεν έχουν αντίστροφο. Αν ϑεωρήσουµε το υποσύνολο του M n (R) GL n (R) :={A M n (R) det(a) 0}, τότε αυτό µε πράξη τον πολλαπλασιασµό πινάκων αποτελεί άπειρη οµάδα. Η οµάδα αυτή, αν n > 1, δεν είναι αβελιανή επειδή δεν ισχύει εν γένει A B=B A.

3 11.2. ΟΜΑ ΕΣ Υποοµάδες και παραδείγµατα Ορισµός Αν (G, ) οµάδα και H ένα µη κενό υποσύνολο της G, τότε το H λέγεται υποο- µάδα της G, όταν το (H, ), εφοδιασµένο µε την επαγόµενη πράξη από το G, είναι οµάδα. Συµβολίζουµε το ότι H υποοµάδα της G µε H G. Ισχύει η ακόλουθη Πρόταση Αν H είναι ένα υποσύνολο της οµάδας (G, ), τότε οι ακόλουθες προτάσεις είναι µεταξύ τους ισοδύναµες: 1. Η (H, ) είναι υποοµάδα της (G, ). 2. Το υποσύνολο H G πληροί τις ακόλουθες συνθήκες: (αʹ) Το µοναδιαίο e της G ανήκει στο σύνολο H. (ϐʹ) Αν x, y H, τότε και x y H. (γʹ) Αν x H, τότε και x 1 H 3. Το σύνολο H πληροί τις ακόλουθες συνθήκες: (αʹ) Το µοναδιαίο e της G ανήκει στο σύνολο H (ϐʹ) Αν a, b H, τότε και ab 1 H. Παραδείγµατα υποοµάδων: 1. ΠροφανώςZ Q R Cκαθώς καιq R C. 2. Το σύνολο είναι υποοµάδα της GL n (R) Κυκλικές οµάδες SL n (R) :={A GL n (R) det(a)=1} Ορισµός Μια οµάδα (G, ) λέγεται κυκλική οµάδα όταν υπάρχει κάποιο στοιχείο αυτής x G, τέτοιο ώστε όλα τα στοιχεία της G να γράφονται ως δυνάµεις του x. Κάθε τέτοιο στοιχείο σε µια κυκλική οµάδα λέγεται γεννήτορας αυτής. Σηµείωση: Αν g G και n Z, τότε η δύναµη g n ορίζεται ως εξής: g g g όταν n 1 } {{ } n ϕορές g n = e όταν n= 0 g 1 g n g 1 όταν n < 0 } {{ } n ϕορές Συµβολισµός Αν G είναι κυκλική µε γεννήτορα g, τότε γράφουµε G= g. Παραδείγµατα: Οι οµάδες των παραδειγµάτων 4 και 5 είναι κυκλικές. Ορισµός Το πλήθος των στοιχείων µιας πεπερασµένης οµάδας, λέγεται τάξη αυτής. Πρόταση Αν η οµάδα G είναι πεπερασµένη και κυκλική τάξης n, G= g, τότε οι γεννήτορες αυτής είναι τα στοιχεία της µορφής g d µε (d, n)=1.

4 354 Παράρτηµα Το ϑεώρηµα του Lagrange Υποθέτουµε ότι (G, ) είναι µια οµάδα και H G είναι µια υποοµάδα αυτής. Στο σύνολο G G ορίζουµε τη σχέση: a, b G, a b a 1 b H. Η σχέση αυτή είναι µια σχέση ισοδυναµίας. Η κλάση ισοδυναµίας του στοιχείου a είναι το σύνολο ah :={ah h H}. Ορισµός Το πλήθος των κλάσεων ισοδυναµίας της H στην G, λέγεται δείκτης της H στην G και συµβολίζεται µε [G : H]. Η τάξη µιας οµάδας (G, ) συµβολίζεται µε G. Το παρακάτω είναι γνωστό ως ϑεώρηµα του Lagrange. Θεώρηµα (Lagrange). Υποθέτουµε ότι η G είναι µια πεπερασµένη οµάδα και H G. Ισχύει G =[G : H] H. Εποµένως, η τάξη µιας υποοµάδας µιας πεπερασµένης οµάδας διαιρεί την τάξη της οµάδας Οµάδα πηλίκου Εστω G µια οµάδα και H G µια υποοµάδα αυτής. Στο σύνολο των κλάσεων ισοδυναµίας που ορίσαµε παραπάνω, έχουµε τις κλάσεις{ah a G}. Θα ϑέλαµε να ορίσουµε ένα πολλαπλασιασµό στο σύνολο κλάσεων ώστε να αποκτήσει δοµή οµάδας, την οποία ονοµάζουµε οµάδα πηλίκου. Αυτό όµως δεν είναι πάντοτε δυνατό. Ορισµός Εστω G µια οµάδα και H G. Η H λέγεται κανονική υποοµάδα της G όταν ισχύει ah= Ha για κάθε a G, όπου Ha={ha h H}. Αν τώρα G είναι οµάδα και H κανονική υποοµάδα της G, τότε το σύνολο µε πράξη τον (καλά ορισµένο) πολλαπλασιασµό G/H :={ah a G} (ah)(bh)=ab(h), αποτελεί οµάδα. Άµεση συνέπεια του ϑεωρήµατος του Lagrange είναι ότι η τάξη της οµάδας G/H είναι ίση µε G / H. Αν τώρα G είναι αβελιανή, τότε κάθε υποοµάδα αυτής H είναι κανονική και συνεπώς πάντοτε ορίζεται η οµάδα πηλίκου G/H ακτύλιοι Ορισµοί και παραδείγµατα Ορισµός Ενα µη-κενό σύνολο R εφοδιασµένο µε δύο (διµελής) πράξεις, πρόσθεσης { } R R R + (a, b) a+ b και πολλαπλασίασµου { R R R (a, b) a b λέγεται δακτύλιος, όταν επαληθεύει τα ακόλουθα αξιώµατα: }

5 11.3. ΑΚΤΥΛΙΟΙ 355 R1 Ο (R,+) αποτελεί αβελιανή οµάδα. R2 Για όλα τα στοιχεία x, y, z R ισχύει (αξίωµα προσεταιριστικότητας) (x y) z= x (y z). R3 Για όλα τα στοιχεία x, y, z R ισχύουν (αξιώµατα επιµεριστικότητας) (x+ y) z= x z+ y z. x (y+z) = x y+x z Αν επιπλέον ισχύει το αξίωµα ύπαρξης µοναδιαίου R4 Υπάρχει ένα στοιχείο 1 R R, 1 R 0, τέτοιο ώστε για όλα τα στοιχεία x R να ισχύει 1 R x= x 1 R, τότε ο δακτύλιος R λέγεται δακτύλιος µε µοναδιαίο. Αν για τον R ισχύει επιπλέον το αξίωµα της αντιµετάθεσης R5 Για όλα τα στοιχεία x, y R ισχύει: x y=y x, τότε ο δακτύλιος R λέγεται αντιµεταθετικός δακτύλιος. Τέλος αν ισχύουν τα αξιώµατα (R4) και (R5) συγχρόνως τότε ο R λέγεται αντιµεταθετικός δακτύλιος µε µοναδιαίο. Παραδείγµατα: 1. Το σύνολο των ακέραιων Z µε πράξεις τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού είναι ένας αντιµεταθετικός δακτύλιος µε µοναδιαίο. 2. Για κάθε m N, m > 1, το σύνολο των κλάσεων υπολοίπων modm,z m, µε πράξεις τις (καλά ορισµένες) πράξεις πρόσθεσης κλάσεων { } Zn Z n Z n (ā, b) ā b και πολλαπλασιασµού κλάσεων { Zn Z n Z n (ā, b) ā b } αποτελεί επίσης αντιµεταθετικό δακτύλιο µε µοναδιαίο. 3. Το σύνολο των ακέραιων του Gauss Z[i]={a+ bi a, b Z} µε πράξεις τις συνήθεις πράξεις µιγαδικών αποτελεί επίσης αντιµεταθετικό δακτύλιο µε µοναδιαίο.

6 356 Παράρτηµα Ορισµός Εστω R κάποιος αντιµεταθετικός δακτύλιος. Ενα στοιχείο x R, x 0, λέγεται διαιρέτης του µηδενός αν και µόνο αν υπάρχει y R, y 0µε x y=0. Ορισµός Ενας αντιµεταθετικός δακτύλιος µε µοναδιαίο στοιχείο λέγεται ακέραια περιοχή, όταν δεν έχει διαιρέτες του µηδενός. Παραδείγµατα: 1. Ο δακτύλιος (Z,+, ) είναι ακέραια περιοχή. 2. Οι δακτύλιοι (Z m,+, ) είναι ακέραιες περιοχές αν και µόνο αν ο m είναι πρώτος. 3. Ο δακτύλιοςz[i] είναι επίσης ακέραια περιοχή. Ορισµός Ενα µη κενό υποσύνολο R 1 του αντιµεταθετικού δακτυλίου R λέγεται υποδακτύλιος του R όταν είναι δακτύλιος ως προς τις πράξεις πρόσθεσης και πολλαπλασιασµού του R. Ισχύει: Πρόταση Ενα µη κενό υποσύνολο R 1 του αντιµεταθετικού δακτυλίου R, είναι υποδακτύλιος του R ακριβώς τότε όταν για όλα τα στοιχεία x, y R 1 ισχύει x y R 1 και x y R Ιδεώδη ενός αντιµεταθετικού δακτυλίου Ορισµός Εστω R ένας αντιµεταθετικός δακτύλιος µε µοναδιαίο στοιχείο και I ένα µηκενό υποσύνολο του R. Το I λέγεται ιδεώδες όταν ισχύουν τα αξιώµατα: Ι1 Το I αποτελεί οµάδα ως προς την πρόσθεση, Ι2 Για κάθε r R και x I ισχύει rx I. Ορισµός Αν α R, τότε το κύριο ιδεώδες του R το οποίο παράγεται από το στοιχείο α, ορίζεται α :={rα r R}. Αν ο R είναι ακέραια περιοχή και όλα τα ιδεώδη του R είναι κύρια, τότε ο R λέγεται περιοχή κυρίων ιδεωδών. Παράδειγµα: Η ακέραια περιοχή των ακέραιων αριθµών (Z,+, ) όπως και ο δακτύλιος του Gauss είναι περιοχές κυρίων ιδεωδών. Ορισµός Αν R ακέραια περιοχή, το στοιχείο p Rλέγεται ανάγωγο, όταν δεν είναι µονάδα του R, δηλαδή δεν είναι πολλαπλασιαστικό αντίστροφο του R, και δεν αναλύεται σε γινόµενο µη τετριµµένων παραγόντων, δηλαδή, αν p=a b, τότε ένα από τα a, b είναι µονάδα του R. Ορισµός Μια ακέραια περιοχή R λέγεται περιοχή µονοσήµαντης ανάλυσης, όταν κάθε στοιχείο a 0 αυτής είναι µονάδα ή ανάγωγο στοιχείο του R ή γινόµενο αναγώγων στοιχείων του R και επιπλέον η παράσταση αυτή είναι (ουσιαστικά) µονοσήµαντη.

7 11.4. ΣΩΜΑΤΑ 357 Ισχύει η Πρόταση Κάθε περιοχή κυρίων ιδεωδών είναι και περιοχή µονοσήµαντης ανάλυσης. Παρατήρηση εν είναι κάθε ακέραια περιοχή, περιοχή µονοσήµαντης ανάλυσης. Για παράδειγµα στην ακέραια περιοχή Z[ 5]={a+ b 5 a, b Z} ο αριθµός 6 έχει δύο, διαφορετικές µεταξύ τους, γνήσιες αναλύσεις σε γινόµενο αναγώγων στοιχείων: 6=2 3=(1+ 5)(1 5) Σώµατα Ορισµός και παραδείγµατα Ορισµός Ενας αντιµεταθετικός δακτύλιος µε µοναδιαίο στοιχείο στον οποίο κάθε µη- µηδενικό στοιχείο είναι αντιστρέψιµο, λέγεται σώµα. Παραδείγµατα σωµάτων 1. Οι αντιµεταθετικοί δακτύλιο µε µοναδιαίο (Q, +, ), (R, +, ), (C, +, ) είναι σώµατα. 2. Αν p πρώτος αριθµός, τότε ο δακτύλιος (Z p,, ) είναι σώµα. 3. Αν d Z\{0, 1} ελεύθερος τετραγώνου, τότε ο δακτύλιος K=Q( d)={a+ b d a, b Q}, είναι σώµα. 4. Αν K σώµα και x ανεξάρτητη µεταβλητή, τότε το σύνολο K(x)= { } f (x) f (x), g(x) K[x], g(x) 0 g(x) είναι επίσης σώµα και λέγεται το σώµα των ϱητών συναρτήσεων υπεράνω του K. Κάθε σώµα K περιέχει (ισόµορφα) το σώµα των ϱητών αριθµώνqήένα σώµαz p για κάποιο πρώτο αριθµό p. Στην πρώτη περίπτωση λέµε ότι το σώµα είναι χαρακτηριστικής µηδέν ενώ στην δεύτερη ότι το σώµα είναι χαρακτηριστικής p Επεκτάσεις σωµάτων Ορισµός Αν ένα σώµα L περιέχει ως υπόσωµα το σώµα K, τότε λέµε ότι το L είναι επέκταση του K και την επέκταση τη συµβολίζουµε µε L/K. Παρατήρηση Αν L/K επέκταση σωµάτων, τότε το σώµα L µπορεί να ϑεωρηθεί ως K- διανυσµατικός χώρος.

8 358 Παράρτηµα Ορισµός Βαθµός της επέκτασης σωµάτων L/K λέγεται η διάσταση του L ως K-διανυσµατικού χώρου και συµβολίζεται µε [L : K]. Η επέκταση λέγεται πεπερασµένη όταν [L : K] <, αλλιώς λέγεται άπειρη. Αν L/K επέκταση σωµάτων και α L, το α λέγεται αλγεβρικό ως προς το σώµα K όταν υπάρχει ένα, µη-µηδενικό, πολυώνυµο f (x) K[x], τέτοιο ώστε να έχει το α ως ϱίζα του. Η επέκταση L/K λέγεται αλγεβρική όταν κάθε στοιχείο του L είναι αλγεβρικό ως προς το σώµα K. Ισχύει η Πρόταση Κάθε πεπερασµένη επέκταση L/K είναι κατ ανάγκη αλγεβρική. Παρατήρηση Το αντίστροφο δεν ισχύει. Υπάρχουν και άπειρες αλγεβρικές επεκτάσεις Επισύναψη Ορισµός Αν L/K επέκταση σωµάτων και a 1, a 2,..., a n L, µε K(a 1, a 2,..., a n ) συµβολίζουµε το ελάχιστο υπόσωµα του L το οποίο περιέχει το σώµα K και τα στοιχεία a 1, a 2,..., a n. Το σώµα αυτό λέµε ότι είναι το σώµα που προκύπτει από το K µε επισύναψη των a 1, a 2,..., a n. Παρατήρηση Αν τα στοιχεία a 1, a 2,..., a n του L είναι αλγεβρικά στοιχεία ως προς του K τότε το K(a 1, a 2,..., a n )={f (a 1,..., a n ) f (x 1,..., x n ) K[x 1,..., x n ]}. Παρατήρηση Αν L/K επέκταση σωµάτων και α L, αλγεβρικό στοιχείο ως προς το σώµα K, τότε ισχύει [K(α) : K]=deg Irr(α, K), όπου Irr(α, K) συµβολίζει το ανάγωγο (ελάχιστο) πολυώνυµο του α ως προς το K Σώµα ανάλυσης Ορισµός Αν L/K επέκταση σωµάτων, το L λέγεται σώµα ανάλυσης του πολυωνύµου f (x) K[x] ως προς το K, όταν το f (x) αναλύεται πλήρως στον δακτύλιο L[x], δηλαδή ότι και επιπλέον L= K(α 1,..., α n ). f (x)=α(x α 1 )(x α 2 ) (x α n ), Πρόταση Για κάθε πολυώνυµο f (x) µε συντελεστές από ένα σώµα K υπάρχει ένα σώµα ανάλυσης αυτου L f και µάλιστα είναι µοναδικό κατά προσέγγιση ισοµορφίας Επεκτάσεις Galois Ορισµός Ενα πολυώνυµο f (x) K[x] λέγεται διαωρίσιµο πολυώνυµο ως προς το K, όταν υπάρχει µια επέκταση L/K τέτοια ώστε κάθε ανάγωγος παράγοντας του f (x) στον δακτύλιο K[x] αναλύεται στον δακτύλιο L[x] σε γινόµενο διαφόρων µεταξύ τους παραγόντων πρώτου ϐαθµού. Το στοιχείο α L λέγεται διαχωρίσιµο ως προς το K, όταν υπάρχει ένα διαχωρίσιµο ως προς το K πολυώνυµο f (x) K[x] του οποίου το α είναι ϱίζα. Η επέκταση L/K λέγεται διαχωρίσιµη επέκταση όταν κάθε στοιχείο α L είναι διαχωρίσιµο ως προς το K.

9 11.4. ΣΩΜΑΤΑ 359 Πρόταση Κάθε αλγεβρική επέκταση L του σώµατος K χαρακτηριστικής µηδέν είναι διαχωρίσιµη ως προς το K. Ορισµός Η επέκταση σωµάτων L/K λέγεται επέκταση Galois, ακριβώς τότε όταν το σώµα L είναι σώµα ανάλυσης ενός διαχωρισίµου ως προς το K πολυωνύµου f (x) K[x]. Αν ϑεωρήσουµε την οµάδα των K-αυτοµορφισµών του σώµατος L, τότε στην περίπτωση που η επέκταση L/K είναι Galois, υπάρχι µια αµφιµονοσήµαντη αντιστοιχία ανάµεσα στις υποοµάδες της οµάδας Galois και στα ενδιάµεσα σώµατα της επέκτασης L/K. Ορισµός Ενας K-αυτοµορφισµός του σώµατος L, K L είναι ένας αυτοµορφισµός του L ο οποίος αφήνει όλα τα στοιχεία του K σταθερά. Ορισµός Μια επέκταση L/K λέγεται απλή επέκταση όταν υπάρχει στοιχείο θ L τέτοιο ώστε L= K(θ). Αν το θ είναι αλγεβρικό ως προς το σώµα K, τότε η L/K λέγεται απλή αλγεβρική. Πρόταση Κάθε πεπερασµένη και διαχωρίσιµη επέκταση L/K είναι απλή αλγεβρική. Πόρισµα Αν η L είναι πεπερασµένη επέκταση ενός σώµατος K χαρακτηριστικής µηδέν, τότε η επέκταση L/K είναι απλή αλγεβρική.

10 360 Παράρτηµα

11 Βιβλιογραφία [1] Hungerford, T.W.: Algebra. Graduate Texts in Mathematics. Springer New York, 2012, ISBN [2] Jacobson, N.: Basic Algebra I: Second Edition. Dover Books on Mathematics. Dover Publications, 2012, ISBN [3] Lang, S.: Algebra. Graduate Texts in Mathematics. Springer New York, 2012, ISBN [4] Fraleigh B. John: Εισαγωγή στην Αλγεβρα. Πανεπιστηµιακές Εκδόσεις Κρήτης, 1995, 2011, ΙΣΒΝ [5] Βάρσος., εριζιώτης., Εµµανουήλ Ι. Μαλιάκας Μ. Ταλέλλη Ο.: Μια εισαγωγή στην Αλγε- ϐρα. Εκδόσεις Σοφία 2012, ΙΣΒΝ

12 362 ΒΙΒΛΙΟΓΡΑΦΙΑ

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη

Διαβάστε περισσότερα

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha. Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}. Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.

Διαβάστε περισσότερα

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων.

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. Κεφάλαιο 4 Πεπερασµένα σώµατα Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. 4.1 Βασικές Εννοιες Εστω F ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 26 Μαίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Ασκησεις Βασικης Αλγεβρας

Ασκησεις Βασικης Αλγεβρας Ασκησεις Βασικης Αλγεβρας Αποστολος Μπεληγιαννης Απόστολος Μπεληγιάννης Καθηγητής Τµήµα Μαθηµατικών Πανεπιστήµιο Ιωαννίνων Ασκήσεις Βασικής Αλγεβρας Ιωαννινα εκεµβριος 2015 Ασκήσεις Βασικής Αλγεβρας Συγγραφή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

ακτύλιοι και Υποδακτύλιοι

ακτύλιοι και Υποδακτύλιοι Κεφάλαιο 6 ακτύλιοι και Υποδακτύλιοι 6.1 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία την έννοια του δακτυλίου και υποδακτυλίου, και επικεντρωνόµαστε στις ϐασικές ιδιότητες και κατασκευές

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΡΟΣΟΧΗ: Τα θέµατα που ακολουθούν καλύπτουν ένα ευρύ φάσµα διαφόρων περιοχών των Μαθηµατικών. Αυτό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Παράρτηµα. Στοιχεία από τη Θεωρία Οµάδων

Παράρτηµα. Στοιχεία από τη Θεωρία Οµάδων Παράρτηµα I Στοιχεία από τη Θεωρία Οµάδων Ορισµός I.1. Ενα µη κενό σύνολο G λέγεται οµάδα (group) αν σε αυτό ορίζεται µία πράξη µε τις ακόλουθες ιδιότητες : : G G G, (a, b) ab α. Η πράξη είναι προσεταιριστική,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Οµάδες και Υποοµάδες. Κεφάλαιο Συνοπτική Θεωρία Η Εννοια της Οµάδας - Βασικές Ιδιότητες Οµάδων

Οµάδες και Υποοµάδες. Κεφάλαιο Συνοπτική Θεωρία Η Εννοια της Οµάδας - Βασικές Ιδιότητες Οµάδων Κεφάλαιο 2 Οµάδες και Υποοµάδες 2.1 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία την έννοια της οµάδας και ιδιαίτερα του πίνακα Cayley µιας οµάδας, την έννοια της υποοµάδας και ιδιαίτερα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Abstract Algebra: The Basic Graduate Year: Robert B. Ash

Abstract Algebra: The Basic Graduate Year: Robert B. Ash Περιεχόμενα I Εναρξη μαθήματος 2 II Βασική άλγεβρα. Αρχικά μαθήματα 4 1 Μάθημα 1 4 1.1 Πορεία μελέτης............................ 4 1.2 Διάφορα σχόλια............................ 5 1.3 Πορεία μελέτης............................

Διαβάστε περισσότερα

Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F

Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Νίκος Μαρμαρίδης 23 Ιανουαρίου 2017 Π Έστω ότι F είναι ένα σώμα, ότι F [t] είναι ο πολυωνυμικός δακτύλιος στη μεταβλητή t και ότι

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή

Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή Κεφάλαιο 1 Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή 11 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία ϐασικές έννοιες και αποτελέσµατα αναφορικά µε : (α) τις σχέσεις µερικής διάταξης

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 15 εκεµβρίου 2017

Διαβάστε περισσότερα