DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS"

Transcript

1 Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher Mathematics may it be calculus, vectors, three imensional geometry, functions-harmonic an simple an otherwise just cannot be processe without encountering trigonometric functions. Further within the specific limit, trigonometric functions give us the inverses as well. The question now arises : Are all the rules of fining the erivatives stuie by us so far appliacable to trigonometric functions? This is what we propose to eplore in this lesson an in the process, evelop the formulae or results for fining the erivatives of trigonometric functions an their inverses. In all iscussions involving the trignometric functions an their inverses, raian measure is use, unless otherwise specifically mentione.. OBJECTIVES After stuing this lesson, you will be able to : fin the erivative of trigonometric functions from first principle; fin the erivative of inverse trigonometric functions from first principle; apply prouct, quotient an chain rule in fining erivatives of trigonometric an inverse trigonometric functions; an fin secon orer erivative of a function. EXPECTED BACKGROUND KNOWLEDGE Knowlege of trigonometric ratios as functions of angles. Stanar limits of trigonometric functions namely. (i) tan lim 0 (ii) lim (iii) limcos (iv) lim Definition of erivative, an rules of fining erivatives of function. MATHEMATICS 5

2 MODULE - V Differentiation of Trigonometric Functions. DERIVATIVE OF TRIGONOMETRIC FUNCTIONS FROM FIRST PRINCIPLE (i) Let y For a small increment δ in, let the corresponing increment in y be δ y. y+δ y ( +δ) an δ y (+δ) δ δ cos + C+ D C D C D cos δ δy δ cos + δ δ δ δy δ lim lim cos + lim δ δ cos. δ 0 δ 0 δ 0 δ 0 δ lim δ Thus, cos i.e., () cos (ii) Let y cos For a small increment δ y+δ y cos( +δ) an δ y cos( +δ) cos in, let the corresponing increment in y be δ y. δ δ + δ δy δ + δ δ δ δy lim lim + lim δ δ δ 0 δ 0 δ 0 Thus, 5 MATHEMATICS

3 Differentiation of Trigonometric Functions i.e., ( cos ) (iii) Let y tan For a small increament δ y+ δ y tan( +δ ) in, let the corresponing increament in y be δ y. an δ y tan( +δ) tan (+δ) cos(+δ) cos MODULE - V (+δ) cos.cos(+δ) cos(+δ)cos [(+δ) ] cos(+δ)cos δ cos(+δ) cos δy δ δ δ cos(+δ)cos Thus, or sec δy δ lim lim lim δ δ cos(+δ)cos δ 0 δ 0 δ 0 cos sec δ lim δ δ 0 i.e. (tan) sec y sec (iv) Let For a small increament δ y+δ y sec( +δ) an δ y sec(+δ) sec in, let the corresponing increament in y be δ y. cos(+δ) cos cos cos(+δ) cos(+δ)cos δ δ + cos(+δ)cos MATHEMATICS 53

4 MODULE - V δ + δ δy lim lim δ cos(+δ)cos δ δ 0 δ 0 δ + δ δy lim lim lim δ cos( +δ)cos δ δ 0 δ 0 δ 0 Differentiation of Trigonometric Functions Thus, cos tan.sec cos cos sec.tan i.e. (sec) sec tan Similarly, we can show that (cot) cosec an (cosec) cosec cot Eample. Fin the erivative of Solution : y cot For a small increament δ y+δ y cot( +δ) cot from first principle. in, let the corresponing increament in y be δ y. an δ y cot(+δ) cot cos(+δ) cos ( +δ) cos(+δ) cos (+δ) ( +δ) [ ( +δ) ] ( +δ) [ δ () δ ] ( +δ) 54 MATHEMATICS

5 Differentiation of Trigonometric Functions [( +δ) δ] ( +δ) MODULE - V δy [( +δ) δ] δ δ ( +δ) δ y [(+δ) δ ] +δ an lim lim lim δ 0δ δ 0 δ (+δ ) δ 0 ( +δ) or Hence. ( ).cosec (cot ) cosec [(+δ) δ] lim δ (+δ) δ 0 Eample. Fin the erivative of cosec from first principle. Solution : Let y cosec an y+δ y cosec( +δ) δ y cosec(+δ) cosec cosec( +δ ) + cosec cosec(+δ ) + cosec cosec(+δ) cosec cosec(+δ ) + cosec ( +δ) cosec(+δ ) + cosec (+δ) cosec(+δ ) + cosec [ ( +δ ) ] cos δ δ + cosec( ) cosec ( +δ + ) ( +δ) [ ] δ cos + δy lim lim δ cosec(+δ ) + cosec] δ 0 δ 0 δ/ δ/ [( +δ).] cos or ( (cosec)() MATHEMATICS 55

6 MODULE - V (cosec) (coseccot) Thus, ( cosec) ( cosec) ( coseccot) Eample.3 Fin the erivative of Solution : Let y sec an y+δ y sec ( +δ) then, δ y sec ( +δ) sec Differentiation of Trigonometric Functions sec from first principle. cos cos ( +δ) cos (+δ)cos [( +δ + ][( +δ )] cos ( +δ)cos (+δ)δ cos (+δ)cos δ y (+δ)δ δ cos ( +δ)cos. δ Now, δ y ( +δ)δ lim lim δ 0δ δ 0 cos (+δ)cos. δ cos cos cos tan.sec cos cos sec(sec.tan) sec (sec tan ) CHECK YOUR PROGRESS.. Fin the erivative from first principle of the following functions with respect to : (a) cosec (b) cot (c) cos () cot (e) cosec (f). Fin the erivative of each of the following functions : (a) (b) cosec (c) tan 56 MATHEMATICS

7 Differentiation of Trigonometric Functions. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS You have learnt how we can fin the erivative of a trigonometric function from first principle an also how to eal with these functions as a function of a function as shown in the alternative metho. Now we consier some more eamples of these erivatives. Eample.4 Fin the erivative of each of the following functions : (i) (ii) tan (iii) 3 cosec(5 ) MODULE - V Solution : (i) Let y, t, where t By chain Rule, Hence, cost t t, we have t () cos (ii) Let y tan an t cos t (). cos t cos By chain rule, tan t where t sec t t an t, we have t sec t t sec sec Hence, ( tan ) Alternatively : Let y tan (iii) Let 3 y cosec(5 ) sec sec cosec(5 )cot(5 ) [5 ] cosec(5 )cot(5 ) or you may solve it by substituting 3 t 5 MATHEMATICS 57

8 MODULE - V Differentiation of Trigonometric Functions Eample.5 Fin the erivative of each of the following functions : (i) 4 y (ii) y + cos Solution : 4 y (i) (ii) 4 4 () + ( ) (Ug prouct rule) 4 3 (cos) + (4 ) 4 3 cos+ 4 3 [cos+ ] y + cos cos cos tan sec sec Alternatively : You may fin the erivative by ug quotient rule Let y + cos (+ cos) () + cos (+ cos) ( ) (+ cos)(cos) (+ cos) ( ) 58 cos + cos + (+ cos ) cos+ (+ cos) (+ cos) sec cos MATHEMATICS

9 Differentiation of Trigonometric Functions Eample.6 Fin the erivative of each of the following functions w.r.t. : (i) cos (ii) 3 MODULE - V Solution : (i) Let y cos t where t cos Ug chain rule t t an t, we have t cos. ( ) t (ii) Let 3 y cos 3 / 3 ( ) ( ) 3 cos 3 3 cos Thus, 3 3 cos Eample.7 Fin, when (i) y + (ii) y a( cost), a(t + t) Solution : We have, (i) y MATHEMATICS 59

10 MODULE - V Differentiation of Trigonometric Functions + ( cos)(+ ) ( )(cos) (+ ) + cos (+ ) + (+ ) Thus, / + + (+ ) + + Alternatively, it is more convenient to fin the erivative of such square root function by rationalig the enominator. y + cos sec tan sectan sec cos cos + (ii) a(t+ t), y a( cost) Ug chain rule, a(+ cost), a(t) t t t, we have t a(t) a(+ cost) t t cos t tan t cos 60 MATHEMATICS

11 Differentiation of Trigonometric Functions Eample.8 Fin the erivative of each of the following functions at the inicate points : (i) y + ( 5) at π (ii) y cot+ sec + 5 at π/6 Solution : (i) y + ( 5) π At, cos () + ( 5) ( 5) cos+ 4( 5) cosπ+ 4( π 5) + 4π 0 4π (ii) y cot+ sec + 5 π At, 6 cosec sec(sectan) + cosec + sec tan π π π cosec + sec tan MODULE - V Eample.9 If y (a+y), prove that ( + ) a y a Solution : It is given that y y (a+y) or (a+ y) Differentiating w.r.t. on both sies of () we get...() (a+ y)cosy ycos(a+ y) (a+ y) (a+ y y) or (a+ y) MATHEMATICS 6

12 MODULE - V or ( + ) a y a Differentiation of Trigonometric Functions Eample.0 If y to infinity, prove that Solution : We are given that cos y y toinfinity or y + y or y + y Differentiating with respect to, we get y cos+ or cos Thus, y (y ) cos CHECK YOUR PROGRESS.. Fin the erivative of each of the following functions w.r.t : (a) y 34 (b) y cos5 (c) y tan () y (e) y (f) y tan (g) y π cot3 (h) y sec0 (i) y cosec. Fin the erivative of each of the following functions : sec (a) f() sec + () ( ) + cos (b) f() cos (c) f() f() + cos(e) f() cosec (f) f() cos3 (g) f() 3 3. Fin the erivative of each of the following functions : (a) 3 y (b) y cos (c) 4 y tan () 4 y cot (e) 5 y sec (f) 3 y cosec (g) y sec (h) y sec+ tan sec tan 6 MATHEMATICS

13 Differentiation of Trigonometric Functions 4. Fin the erivative of the following functions at the inicate points : π + π (a) y cos( +π /), (b) y, 3 cos 4 MODULE - V 5. If y tan+ tan+ tan +..., to infinity Show that (y ) sec. 6. If cosy cos(a + y), prove that cos (a+ y). a.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS FROM FIRST PRINCIPLE We now fin erivatives of stanar inverse trignometric functions, first principle. (i) We will show that by first principle the erivative of ( ) ( ) w.r.t. is given by cos, tan, by Let y. Then y an so +δ (y+δy) Asδ 0, δy 0. Now, δ (y+δy) y or (y+δy) y δ (y+δy) y δy δy δ (y+δy) y δy lim lim δy 0 δy δ 0δ [On iviing both sies by δ ] [ δy 0when δ 0] cos y+ δy δy lim δy 0 δy ( cosy) cos y ( y) ( ) MATHEMATICS 63

14 MODULE - V ( ) ( ) ( cos ) (ii) ( ) For proof procee eactly as in the case of (iii) Now we show that, ( tan ) Differentiation of Trigonometric Functions +. Let y tan.then tany an so +δ tan(y+δy) Asδ 0, alsoδy 0 Now, δ tan(y+δy) tany tan(y+δy) tany δy δy δ tan(y+δy) tany δy lim lim δy 0 y δ 0 δ δ [ δy 0when δ 0] (y+δy) y lim δy δy 0 cos(y+δy) cosy (y+δy)cosy cos(y+δy)y lim δy 0 δ y.cos(y+δy)cosy (y+δy y) lim δy 0δ y.cos(y+δy)cosy δy lim δy 0 δ y cos(y+δy)cosy sec y cos y sec y + tan y + + ( tan ) + (iv) ( cot ) For proof procee eactly as in the case of tan. 64 MATHEMATICS

15 Differentiation of Trigonometric Functions (v) We have by first principle - (sec ) ( - ) Let y sec. Then sec y an so +δ sec(y+δy). As δ 0,also δy 0. Now δ sec(y+δy) secy. sec(y+δy) secy δy δy δ MODULE - V sec(y+δy) secy δy lim lim δy 0 y δ 0 δ δ [ δy 0when δ 0] y y y + δ δ lim ( ) δy 0 δ y.cosycos y+δy y y y + δ δ lim δy 0 cosycos( y+δy) δy y secytany cosycosy secytany secy sec y ( ) ( ) ( ) - (vi) ( ) sec cosec. ( - ) For proof procee as in the case of sec. Eample. Fin erivative of ( ) Solution : Let y from first principle. y Now, ( +δ ) (y +δy) ( ) ( ) +δ y+δy y δ δ MATHEMATICS 65

16 MODULE - V δy ( ) y cos y+ δ +δ δy lim lim lim (+δ) δy δ δ 0 δy 0 δ 0 Differentiation of Trigonometric Functions cosy cosy y 4. Eample. Fin erivative of Solution : Let y w.r.t. by elta metho. y..() Also (y+δ y) +δ..() From () an (), we get or or (y+δy) y +δ ( +δ )( +δ + ) δy δy cos y+ +δ + δ +δ + δy δ y cos y+ δ +δ + δy δy δy cos y + δ δy +δ + δy δy δy lim lim cos y lim + δ δy δ 0 δy 0 δy 0 or lim +δ + δ 0 cosy or ( δy 0 as δ 0) y cosy 66 MATHEMATICS

17 Differentiation of Trigonometric Functions CHECK YOUR PROGRESS.3. Fin by first principle that erivative of each of the following : (i) cos (iv) tan cos (ii) tan (v) (iii) cos (vi) tan MODULE - V.4 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS In the previous section, we have learnt to fin erivatives of inverse trignometric functions by first principle. Now we learn to fin erivatives of inverse trigonometric functions by alternative methos. We start with stanar inverse trignometric functions,cos,... (i) Derivative of Solution : Let y y (i) Differentiating w.r.t. y cosy or y y...[ug (i) ] y Hence, [ ] Similarly we can show that (ii) Derivative of [cos ] tan Solution : Let tan y tany Differentiating w.r.t. y, sec y MATHEMATICS 67

18 MODULE - V Differentiation of Trigonometric Functions an sec y [ We have written tan y in terms of ] + tan y Hence, ( tan ) Similarly, ( cot ) (iii) Derivative of sec Solution : Let sec y sec y an secytany sec ytan y secy[ ± sec y] ± sec y sec y sec y π Note : (i) When >, sec y is + ve an tan y is + ve, y 0, π (ii) When <, sec y is ve an tan y is ve, y, π Hence, (sec ) Similarly (cosec ) Eample.3 Fin the erivative of each of the following : (i) (ii) cos Solution : (i) Let y (iii) (cosec ) 68 MATHEMATICS

19 Differentiation of Trigonometric Functions ( ) ( ) MODULE - V / (ii) Let y cos ( ) ( ) (iii) Let ( ) cos y (cosec ) () 4 4 ( ) (cosec ) cosec (cosec ) cosec (cosec ) cosec Eample.4 Fin the erivative of each of the following : (i) Solution : Let (i) cos tan + cos y tan + tan π π + cos (ii) ( ) MATHEMATICS 69

20 MODULE - V π tan tan 4 π 4 / (ii) y ( ) Let y ( ) Differentiation of Trigonometric Functions cos( ) ( ) cos( ) cos( ) Eample.5 Show that the erivative of tan w.r.t + is. Solution : Let Let tan θ y tan an z + tanθ y tan tan θ an z tan (tan θ) an z ( θ) θ an z θ θ an z θ tanθ + tan θ θ (By chain rule) θ z 70 CHECK YOUR PROGRESS.4 Fin the erivative of each of the following functions w.r.t. an epress the result in the simplest form (-3) :. (a) (b) cos (c) cos cos. (a) tan (cosec cot) (b) cot (sec + tan) (c) tan cos+ MATHEMATICS

21 Differentiation of Trigonometric Functions 3. (a) (cos ) (b) sec(tan ) 3 () cos (4 3) (e) cot Fin the erivative of : tan + tan w.r.t. tan. (c) ( ) MODULE - V.5 SECOND ORDER DERIVATIVES We know that the secon orer erivative of a function is the erivative of the first erivative of that function. In this section, we shall fin the secon orer erivatives of trigonometric an inverse trigonometric functions. In the process, we shall be ug prouct rule, quotient rule an chain rule. Let us take some eamples. Eample.6 Fin the secon orer erivative of (i) (ii) cos (iii) cos Solution : (i) Let y Differentiating w.r.t. both sies, we get cos Differentiating w.r.t both sies again, we get (ii) Let y cos y (cos) y Differentiating w.r.t. both sies, we get ( ) cos. + cos + Differentiating w.r.t. both sies again, we get y ( cos) + (.cos+ ).cos y (.cos ) + MATHEMATICS 7

22 MODULE - V Differentiation of Trigonometric Functions (iii) Let y cos Differentiating w.r.t. both sies, we get Differentiating w.r.t. both sies, we get / ( ) ( ) ( ) ( ) 3/ y y Eample.7 If y ( ) 3/ ( ) 3/, show that ( ) y y 0 enote the secon an first, orer erivatives of y w.r.t.. Solution : We have, y Differentiating w.r.t. both sies, we get, where y an y respectively or or ( ) y 0 (squaring both sies) Differentiating w.r.t. both sies, we get ( ) ( ) ( ) y y + y 0 or ( ) y y y 0 or ( ) y y 0 7 CHECK YOUR PROGRESS.5. Fin the secon orer erivative of each of the following : (a) (cos) (b) tan MATHEMATICS

23 Differentiation of Trigonometric Functions. If y ( ), show that ( ) 3. If y (), prove that 4. If y + tan, show that y y. y tan ycos y cos y 0 + MODULE - V (i) (iii) LET US SUM UP () cos (ii) (tan) sec (iv) (cos) (cot) cosec (v) (sec) sectan (vi) If u is a erivabale function of, then (i) (iii) (v) (i) u (u) cosu (ii) u (tanu) sec u (iv) u (secu) secutanu (vi) ( ) (ii) (cosec) coseccot u (cosu) u u (cotu) cosec u u (coseu) cosecucotu (cos ) (iii) (tan ) (iv) + (cot ) + (v) (sec ) If u is a erivable function of, then u (i) ( u) u (vi) (ii) (cosec ) u (cos u) u (iii) u (tan u) + u (iv) u (cot u) + u (v) u (sec u) u u (vi) u (cosec u) u u The secon orer erivative of a trignometric function is the erivative of their first orer erivatives. MATHEMATICS 73

24 MODULE - V SUPPORTIVE WEB SITES Differentiation of Trigonometric Functions TERMINAL EXERCISE. If. Evaluate, 3. If 3 y tan, fin. 4 4 π + cos at an 0. 5 y + cos (+ ) 3 ( ), fin. 4. If + y sec +, then show that If 3 3 acos θ,y a θ, then fin If y , fin. 7. Fin the erivative of 8. If y cos(cos), prove that y cot y If y tan show that (+ ) y + y 0. w.r.t. cos 0. If y (cos ), show that. ( )y y 0 74 MATHEMATICS

25 Differentiation of Trigonometric Functions ANSWERS MODULE - V CHECK YOUR PROGRESS. () (a) coseccot (b) cosec (c) cos () cosec (e) cosec cot (f). (a) (b) cosec cot (c) tansec CHECK YOUR PROGRESS.. (a)cos4 (b) 55 sec (c) (e) cos (f) sec (g) 3πcosec 3 (h)0sec0tan0 (i) coseccot () cos sectan. (a) (sec + ) () cos (+ ) (b) ( cos) (c) cos+ (e) cosec( cot) (f) coscos (a) 3 cos (g) 3cos3 3 (b) (c) 3 4tan sec () 3 4cot cosec (e) 5 5sec tan (f) 3 3cosec cot (g) (h) sec( sec + tan) 4. (a) (b) + CHECK YOUR PROGRESS.3. (i) 4 cos (ii) sec tan (iii) ( ) (iv) 4 + tan (v) (+ ) (vi) ( + ) CHECK YOUR PROGRESS.4. (a) 4 (b) 4 (c) MATHEMATICS 75

26 MODULE - V. (a) ( ) cos cos 3. (a) (b) Differentiation of Trigonometric Functions (c) (b) ( sec tan ) + (c) 3 () (e) (+ ) 4. ( ) + tan CHECK YOUR PROGRESS.5. (a) coscos(cos) (cos) (b) (+ ) + tan (+ ) TERMINAL EXERCISE. 3 tan sec + 3 tan. 0, 0 5(3 ) ( ) 3 (4+ ) 5. secθ 6. y MATHEMATICS

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2, Logsine integrals Notes by G.J.O. Jameson The basic logsine integrals are: log sin θ dθ = log( sin θ) dθ = log cos θ dθ = π log, () log( cos θ) dθ =. () The equivalence of () and () is obvious. To prove

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα