ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ"

Transcript

1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο πρόβληµα του διακριτού λογάριθµου (DL), µας δίνεται µια οµάδα G, ένα στοιχείο g G τάξης n > 1 και κάποιο y g και ϑέλουµε να υπολογίσουµε το µικρότερο µη αρνητικό ακέραιο x τέτοιο ώστε y = g x. Αρχικά ϑα περιγράψουµε δύο αλγόριθµους που µπορούν να εφαρµοστούν σε οποιαδήποτε οµάδα G. Τέτοιους αλγόριθµους τους ονοµάζουµε γενικούς. Είναι ϕανερό ότι το x µπορεί να ϐρεθεί αν υπολογίσουµε µε τη σείρα τα g k για k = 0, 1, 2,..., n 1, και σε κάθε ϐήµα να συγκρίνουµε το g k µε το y. Οταν είναι ίσα έχουµε ϐρει το x. Ο αλγόριθµος αυτός ονοµάζεται συχνά και τετριµ- µένος και χρειάζεται O(n log n) πράξεις στη G. Στις επόµενες παραγράφους ϑα περιγράψουµε αλγόριθµους που ϐελτιώνουν το ϕράγµα αυτό. 2. Ο αλγοριθµος Baby-step/Giant-step Ο αλγόριθµος αυτός είναι του D. Shanks. Εστω ότι µας δίνεται το g G τάξης n (γνωστής) και το y g = {g k 0 k n 1}. Θέλουµε να υπολογίσουµε το 0 x n 1 τέτοιο ώστε y = g x. Εστω 1 < q < n ένας ακέραιος. Τότε γράφοντας την εξίσωση της διαίρεσης µε υπόλοιπο του x (που δεν ξέρουµε) µε το q έχουµε x = q i 0 + j 0, µε 0 i 0 < n q και 0 j 0 < q. Φυσικά τα i και j δεν τα ξέρουµε. Οµως ξέρουµε ότι υπάρχουν και ότι αν υπολογίσουµε τα i 0 και j 0 ϑα έχουµε υπολογίσει το x. Αυτό ϑα κάνουµε. Γράφουµε g x = y = g qi 0+j 0 yg j 0 = g gi 0. Η τελευταία εξίσωση υποδεικνύει τον ακόλουθο αλγόριθµο. (1) Υπολόγισε τα u = g 1 και w = g q. (2) Για j = 0, 1,..., n/q υπολόγισε το yu j και αποθήκευσε τα (yu j, j). 1

2 2 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ (3) Για i = 0, 1,..., q 1 υπολόγισε το w i και για κάθε µία τιµή που υπολογίζεις, κοίτα αν το w i είναι το πρώτο µέλος κάποιου Ϲεύγους που έχεις υπολογίσει στο ϐήµα (2). (4) Οταν ϐρείς το i 0 τέτοιο ώστε w i 0 = yu j 0, απάντησε x = qi 0 + j 0. Η ορθότητα του αλγόριθµου είναι ϕανερή από όσα είπαµε παραπάνω. Πόσες πράξεις στη G κάνει ο αλγόριθµος ; Εχουµε O(log q) πράξεις στο ϐήµα (1), O( n/q log(n/q)) πράξεις στο ϐήµα (2) και O(q log q) πράξεις στο ϐήµα (3). Συνολικά έχουµε O(q log q + (n/q) log(n/q)) πράξεις. Θυµηθείτε ότι έχουµε ακόµη την ελευθερία να επιλέξουµε το q. Αν δούµε το q + n/q σαν συνάρτηση του q, ελαχιστοποιήται για q = n. Βέβαια το q πρέπει να είναι ακέραιος, οπότε επιλέγουµε το q να είναι ένας ακέραιος κοντά στο n, για παράδειγµα το n. Τότε ο αριθµός των ϐηµάτων του αλγορίθµου είναι O( n log n). 3. Ο αλγοριθµος των Pohlig και Hellman Ο στόχος του αλγορίθµου των Pohlig και Hellman είναι διαφορετικός από αυτόν του Baby-step/Giant-step. Στόχος είναι να ανάγουµε τον υπολογισµό ενός διακριτού λογαρίθµου στην οµάδα g στο υπολογισµό πολλών διακριτών λογαρίθµων σε υποοµάδες της g. Για να το πετύχουµε αυτό χρειάζεται να γνωρίζουµε την ανάλυση του n σε πρώτους παράγοντες. Ας υποθέσουµε λοιπόν ότι η ανάλυση αυτή είναι n = p t 1 1 p tr r. Αν καταφέρουµε να υπολογίσουµε 0 a (i) < p t i i για i = 1,..., r τέτοια ώστε x a (i) (mod p t i ) τότε µπορούµε να ϐρούµε το x από τις παραπάνω σχέσεις µε το Κινέζικο Θεώρηµα Υπολοίπων. Άρα µένει να δείξουµε πώς µπορούν να υπολογιστούν τα a (i). Εστω ότι n = mp t µε (m, p) = 1. Αν y 0 = y m, g 0 = g m, τότε y 0 = g0 x και g 0 είναι στοιχείο τάξης p t. Αν 0 a < p t είναι ο διακριτός λογάριθµος του y 0 ως προς τη ϐάση g 0, τότε x a (mod p t ). Αν γράψουµε το a στη ϐάση p, έχουµε a = a 0 + a 1 p + + a t 1 p t 1, 0 a i < p, για i = 0, 1,..., t 1. Θέλουµε να υπολογίσουµε τα a 0, a 1,..., a t 1. Εχουµε ( ) a y 0 = g0 a y pt 1 0 = g pt 1 0 και ϑέτοντας h 0 = y pt 1 0, g 1 = g pt 1 0, έχουµε h 0 = g a 0+a 1 p+ +a t 1 p t 1 1 = g a 0 1, διότι η τάξη του g 1 είναι p. Από τα δεδοµένα µπορούµε να υπολογίσουµε τα h 0 = y n/p και g 1 = g n/p. Στη συνέχεια υπολογίζουµε το διακριτό λογάριθµο του h 0 ως προς τη ϐάση g 1. Το αποτέλεσµα είναι το a 0.

3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 3 Ας υποθέσουµε τώρα ότι έχουµε υπολογίσει τα a 0,..., a i 1 και ϑέλω να υπολογίσω το a i. Εχουµε οπότε y 0 = g a 0+a 1 p+ +a i 1 p i 1 +a i p i + +a t 1 p t 1 0, y 0 g a 0 a 1 p a i 1 p i 1 0 = g a ip i + +a t 1 p t 1 0. Υψώνοντας στην p t i 1 και τα δύο µέλη, έχουµε h i = g a i 1, όπου h i = (y 0 g a 0 a 1 p a i 1 p i 1 0 ) pt i 1. Κάναµε και πάλι χρήση του γεγονότος ότι η τάξη του g 1 είναι p. Από τα προηγούµενα ϐήµατα, έχουµε υπολογίσει τα a 0,..., a i 1, οπότε µπορούµε να υπολογίσουµε το h i και στη συνέχεια το διακριτό λογάριθµο του h i ως προς τη ϐάση g 1. Το αποτέλεσµα είναι το a i. Η πολυπλοκότητα του αλγορίθµου µπορεί να υπολογιστεί ως εξής. Για να υπολογίσουµε κάθε ένα από τα ψηφία a i απαιτούνται O(log n) πράξεις στην οµάδα καθώς και ο υπολογισµός ενός διακριτού λογαρίθµου σε µια οµάδα τάξης p. Με τον αλγόριθµο Baby-Step/Giant-Step αυτό µπορεί να γίνει µε O( p log p) πράξεις στην οµάδα. Συνεπώς, για να υπολογίστουν όλα τα ψηφία του x mod p t i i απαιτούνται O(t i pi log p i ) πράξεις στην οµάδα. Για να υπολογιστεί ο x modulo p t i i για i = 1,..., r απαιτούνται O ( r i=1 t ) i pi log p i πράξεις. Καθώς n p t i i για κάθε 1 i r, η παραπάνω ποσότητα ϕράσεται από την O ( log n r ) i=1 pi. Είναι εύκολο να δει κανείς ότι r log n/ log 2. Αν p = max{p 1,..., p r }, τότε ένα άνω ϕράγµα για τον αριθµό των πράξεων που απαιτεί ο αλγόριθµος είναι O ( p (log n) 2 ). Το δίδαγµα είναι ότι ο υπολογισµός ενός διακριτού λογαρίθµου σε µια κυκλική οµάδα τάξης n µπορεί πάντα να αναχθεί στον υπολογισµό διακριτών λογαρίθ- µων σε υποοµάδες πρώτης τάξης. Αν ϑέλουµε το πρόβληµα να είναι δύσκολο, πρέπει να σιγουρευτούµε ότι το n διαιρείται από κάποιο µεγάλο πρώτο. Για παράδειγµα, αν ο µόνος διαθέσιµος αλγόριθµος είναι αυτός των Pohlig και Hellman, και ϑέλουµε ο υπολογισµός του διακριτού λογαρίθµου να απαιτεί περίπου πράξεις στην οµάδα, τότε πρέπει να επιλέξουµε µια οµάδα τάξης n, όπου το n διαιρείται από κάποιο πρώτο µεγέθους περίπου (δηλαδή να έχει πρώτο διαιρέτη µε 200 περίπου bits). Παράδειγµα 3.1. Ας πούµε για παράδειγµα, ότι p = 2 t + 1 είναι πρώτος και ϑέλουµε να υπολογίζουµε διακριτούς λογάριθµους στην οµάδα F p. Η τάξη της οµάδας είναι n = p 1 = 2 t, που µπορεί να παραγοντοποιηθεί πολυ εύκολα. Χρησιµοποιόντας τον αλγόριθµο των Pohlig και Hellman µπορούµε να λύσουµε το πρόβληµα σε χρόνο O( 2 log 2 n) = O(log 2 p). ηλαδή το πρόβληµα λύνεται σε πολυωνυµικό χρόνο. Αν ϑέλουµε να ϐασίσουµε ένα σύστηµα ElGamal στην

4 4 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ οµάδα F p διαιρέτη. πρέπει να επιλέξουµε το p έτσι ώστε το p 1 να έχει µεγάλο πρώτο Παράδειγµα 3.2. Ας δούµε και ένα παράδειγµα υπολογισµού διακριτού λογάριθµου µε τη µέθοδο Pohlig-Hellman. Ας είναι η οµάδα µας η F 29 και µας δίνονται τα y = 10 και g = 3. Βλέπουµε ότι η τάξη της οµάδας είναι n = 29 1 = 28 = και η τάξη του g είναι 28, δηλαδή g = F 29. Θέλουµε να ϐρούµε 0 x 28 τέτοιο ώστε y = g x δηλαδή 10 3 x (mod 29). Το x υπολογίζεται mod 28. Σύµφωνα µε τον αλγόριθµο, ϑα υπολογίσω το x mod 2 2 και mod 7. ηλαδή, ϑα υπολογίσω a και b τέτοια ώστε Αρχικά υπολογίζω το a. Υπολογίζω x a (mod 2 2 ) x b (mod 7). y 0 = y 7 = (mod 29), g 0 = g 7 = (mod 29), g 1 = g 2 0 = (mod 29). Γράφω το a στη ϐάση 2, a = a 0 + 2a 1, µε 0 a 0, a 1 1. Για το a 0 υπολογίζω : h 0 = y 2 0 = mod 29. Καθώς h 0 = g 1 1, ϐλέπουµε ότι a 0 = 1. Στη συνέχεια, υπολογίζω : h 1 = y 0 g a 0 0 = mod 29, και το διακριτό λογάριθµο του h 1 ως προς τη ϐάση g 1, που είναι και πάλι ίσος µε 1. Άρα a 1 = 1. Συνεπώς a = = 3. Προχωρώ στον υπολογισµό του b. Καθώς στην ανάλυση 28 = το 7 εµφανίζεται µε εκθέτη 1, αρκει να υπολογίσω ένα µόνο ψηφίο, το ίδιο το b. Υπολογίζω y 0 = y 4 = mod 29, g 0 = g 4 = mod 29, g 1 = g 0. Επίσης, έχουµε h 0 = y 0. Ετσι έχουµε h 0 = g b 1, δηλαδή b (mod 29). Υπάρχουν 7 δυνατές επιλογές για το b (οι b = 0, 1,..., 6), τις οποίες µπορώ να εξετάσω µια προς µία. Φυσικά ϑα µπορούσα να εφαρµόσω τον αλγόριθµο Baby-step/Giant-step. Σε κάθε περίπτωση, ϐρίσκω b = 6.

5 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 5 Ετσι έχω να λύσω το σύστηµα x 3 (mod 4) x 6 (mod 7). Με τον αλγόριθµο για το Κινέζικο Θεώρηµα Υπολοίπων, ϐρίσκω x = 27. Πραγ- µατικά, µπορεί κανείς εύκολα να επαληθεύσει ότι 3 27 = 10 mod 29.

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου 1. Κεφάλαιο 6 Εκτίµηση και Οµόλογα 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου Είναι καµιά φορά δύσκολο να εξηγήσει κανείς τι σηµαίνει παρούσα αξία σε κάποιον που δεν το έχει µελετήσει. Αλλά, όπως έχει

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ

ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΣΠΟΥ ΑΣΤΗΣ: Ντελή Χασάν Μουσταφά Μουτλού ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου.

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου. Το υπόδειγµα οικονοµικής µεγέθυνσης του Solow σχεδιάστηκε προκειµένου να δείξει πως η µεγέθυνση του κεφαλαίου, του εργατικού δυναµικού αλλά και οι µεταβολές στην τεχνολογία αλληλεπιδρούν σε µια οικονοµία,

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό

Διαβάστε περισσότερα

Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ. Επιµέλεια Όµηρος Κορακιανίτης

Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ. Επιµέλεια Όµηρος Κορακιανίτης Βασικές γνώσεις Μαθηµατικών Α και Β Λυκείου που πρέπει να ξέρουµε για να ξεκινήσουµε τις σπουδές µας στο ΕΑΠ Επιµέλεια Όµηρος Κορακιανίτης Άλγερα και πράξεις: (ή το µυστικό της επιτυχίας) - Όταν ένα γινόµενο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΕΛΑΧΙΣΤΟΥ ΠΑΧΟΥΣ ΥΑΛΟΣΤΑΣΙΩΝ

ΥΠΟΛΟΓΙΣΜΟΣ ΕΛΑΧΙΣΤΟΥ ΠΑΧΟΥΣ ΥΑΛΟΣΤΑΣΙΩΝ ΥΠΟΛΟΓΙΣΜΟΣ ΕΛΑΧΙΣΤΟΥ ΠΑΧΟΥΣ ΥΑΛΟΣΤΑΣΙΩΝ Πολύ συχνά οι κατασκευαστές υαλοστασίων έχουν βρεθεί µπροστά στο δίληµµα για το ποιό πάχος γυαλιού θα έπρεπε να επιλέξουν για κάποια κατασκευή από τζάµι. Οι προβληµατισµοί

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α Ερώτηµα. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών που ορίζονται

Διαβάστε περισσότερα

Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες

Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες Νικόλαος Κατσίπης Μεταπτυχιακή Εργασία Επιβλέπων Καθηγητής Ν.Γ. Τζανάκης Τµήµα Μαθηµατικών - Πανεπιστήµιο Κρήτης Φθινοπωρινό εξάµηνο 2007 έκδοση

Διαβάστε περισσότερα

Οδοραµα mobile ΑΠΟΘΗΚΗ

Οδοραµα mobile ΑΠΟΘΗΚΗ Οδοραµα mobile ΑΠΟΘΗΚΗ Όπως βλέπετε, η αρχική οθόνη της εφαρµογής διαθέτει 9 κουµπιά τα οποία σας επιτρέπουν να πλοηγηθείτε σε αυτό. Αρχίζοντας από πάνω αριστερά βλέπετε τα εξής: 1. Τιµολόγηση: Προβολή

Διαβάστε περισσότερα

Νίκος Μαζαράκης Αθήνα 2010

Νίκος Μαζαράκης Αθήνα 2010 Νίκος Μαζαράκης Αθήνα 2010 Οι χάρτες των 850 Hpa είναι ένα από τα βασικά προγνωστικά επίπεδα για τη παράµετρο της θερµοκρασίας. Την πίεση των 850 Hpa τη συναντάµε στην ατµόσφαιρα σε ένα µέσο ύψος περί

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD

ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD Σε ορισµένες περιπτώσεις είναι ιδιαίτερα χρήσιµη η δηµιουργία ιστοσελίδων ενηµερωτικού περιεχοµένου οι οποίες στη συνέχεια µπορούν να δηµοσιευθούν σε κάποιο τόπο

Διαβάστε περισσότερα

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων; ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του

Διαβάστε περισσότερα

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ Μία από τις πιο σηµαντικές υπηρεσίες που προσφέρει το διαδίκτυο στην επιστηµονική κοινότητα είναι η αποµακρυσµένη πρόσβαση των χρηστών σε ηλεκτρονικές βιβλιοθήκες

Διαβάστε περισσότερα

Κατανεµηµένα Συστήµατα 1, Μάθηµα Βασικής Επιλογής Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Κατανεµηµένα Συστήµατα 1, Μάθηµα Βασικής Επιλογής Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα 1, Μάθηµα Βασικής Επιλογής Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 10 Ιανουαρίου, 2011 Κατανεµηµένα Συστήµατα

Διαβάστε περισσότερα

Ανάλυση του Βασικού Προβλήµατος

Ανάλυση του Βασικού Προβλήµατος Ανάλυση του Βασικού Προβλήµατος 1.1 Ορισµός του Προβλήµατος Υποθέτουµε ότι έχουµε 1000 δοχεία τα οποία περιέχουν κόκκινες και µαύρες µπάλες µε συγκεκριµένους συνδυασµούς. Ονοµάζουµε: α) τα δοχεία που περιέχουν

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου ιδακτικό υλικό µαθητή παράθυρα Κατά τη διάρκεια της µελέτης µας γράφουµε και διαβάζουµε, απλώνοντας πάνω στο γραφείο τετράδια και βιβλία. Ξεκινώντας ανοίγουµε αυτά που µας ενδιαφέρουν πρώτα και συνεχίζουµε

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ ΑΘΗΝΑ 2002 3 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...4 0. ΕΙΣΑΓΩΓΗ...6. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ...7 2. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ...0

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Εισαγωγή στο Internet και στο ηλεκτρονικό ταχυδροµείο

Εισαγωγή στο Internet και στο ηλεκτρονικό ταχυδροµείο Internet Το Internet ή ιαδίκτυο όπως λέγεται στην ελληνική ορολογία, είναι ένα παγκόσµιο δίκτυο που συνδέει εκατοµµύρια υπολογιστές, οι οποίοι µπορούν να επικοινωνούν µεταξύ τους. Το Internet είναι ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Εισαγωγή στους τελεστικούς ενισχυτές

Εισαγωγή στους τελεστικούς ενισχυτές ΗΥ121-Ηλεκτρονικά Κυκλώµατα Γιώργος ηµητρακόπουλος Εισαγωγή στους τελεστικούς ενισχυτές 1 Εισαγωγή Ο τελεστικός ενισχυτής είναι ένας ενισχυτής τάσης µε πολύ µεγάλο κέρδος. Το κέρδος µπορεί να παίρνει πολύ

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

Μεταβατικές καταστάσεις - Φόρτιση πυκνωτή

Μεταβατικές καταστάσεις - Φόρτιση πυκνωτή H5 Μεταβατικές καταστάσεις - Φόρτιση πυκνωτή 1. Σκοπός Σε µια µεγάλη ποικιλία φυσικών φαινοµένων, που εξελίσσονται ήπια, ο στιγµιαίος ρυθµός µετάβασης από τη την αρχική κατάσταση προς την τελική εξαρτάται

Διαβάστε περισσότερα