Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:"

Transcript

1 Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α gounaris/courses/dwdm/

2 Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν το σύγγραμμα «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» Αρχικές εκδόσεις από μέρος των διαφανειών ετοιμάστηκαν από τον Δρ. Α. Νανόπουλο. Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Introduction to Data Mining» των Tan, Steinbach, Kumar, και «Data Mining: Concepts and Techniques» των Jiawei Han, Micheline Kamber. 2

3 Τί είναι ομαδοποίηση η ανάλυση συστάδων Συστάδα: συλλογή από αντικείμενα που είναι όμοια ή σχετίζονται με κάποιο τρόπο με τα υπόλοιπα αντικείμενα της ομάδας. και που δεν είναι τόσο) όμοια ή δεν σχετίζονται με τα αντικείμενα άλλων ομάδων. Ανάλυση συστάδων Ομαδοποίηση αντικειμένων σε συστάδες. Η ομαδοποίηση μπορεί να θεωρηθεί ως μη επιβλεπόμενη κατηγοριοποίηση: δεν υπάρχουν προκαθορισμένες κατηγορίες. Tυπικές εφαρμογές Ως αυτόνομο εργαλείο ανάλυσης και κατανόησης δεδομένων. Ως προεπεξεργασία δεδομένων. 3

4 Παραδείγματα εφαρμογών Χρήση γης: Εντοπισμός περιοχών με παρόμοια χρήση γης σε μία βάση δεδομένων με φωτογραφίες από δορυφόρους. Χωροταξικά σχέδια: Εντοπισμός ομάδων κτιρίων σύμφωνα με τον τύπο κατοικίας, αξία, γεωγραφική περιοχή, κλπ. Σεισμογραφικές μελέτες: Ομαδοποίηση βάσει επικέντρων και άλλων χαρακτηριστικών των σεισμών. Ανάλυση προτύπων επεξεργασία ξργ εικόνας. Δεδομένα παγκοσμίου ιστού: ομαδοποίηση ιστοσελίδων, ομαδοποίηση συμπεριφορών χρήσης. Marketing: Βοήθεια στην ανακάλυψη ομάδων πελατών για στοχευμένη διαφήμιση/marketing. 4

5 Πότε η ομαδοποίηση η είναι καλή; Μία καλή μέθοδος ομαδοποίησης παράγει συστάδες Με μεγάλη ομοιότητα μεταξύ των αντικειμένων στην ίδια συστάδασ Και μικρή ομοιότητα μεταξύ των αντικειμένων σε διαφορετικές συστάδες. Η ποιότητα εξαρτάται από Τη μέθοδο υλοποίησης της τεχνικής ομαδοποίησης. Το μέτρο ομοιότητας που χρησιμοποιείται. Επίσης εξαρτάται από το πόσο μπορεί να ανακαλύψει κρυφά πρότυπα στα δεδομένα. 5

6 Έννοια συστάδας Αλλά η έννοια της συστάδας δεν είναι πάντοτε αντικειμενική How man clusters? Si Clusters Two Clusters Four Clusters 6

7 Διαχωρισμοί μεταξύ ομαδοποιήσεων Ιεραρχική vs Διαχωριστική Partitional) ομαδοποίηση Η ιεραρχική ομαδοποίηση παράγει εμφωλιασμένες συστάδες που ανήκουν σε μια ιεραρχία Η διαχωριστική παράγει μη επικαλυπτόμενες συστάδες Αποκλειστική vs μη-αποκλειστική vs ασαφής Πλήρης vs μερική 7

8 Τύποι Συστάδων: Καλά διαχωρισμένες Καλά διαχωρισμένες Well-Separated) συστάδες: Οι συστάδες είναι σύνολα σημείων όπου κάθε σημείο είναι πιο κοντά σε κάθε άλλο σημείο της ίδιας συστάδας παρά σε κάποιο σημείο άλλης συστάδας. 3 καλά διαχωρισμένες συστάδες 8

9 Τύποι Συστάδων: Βασισμένες στο κέντρο Η συστάδα περιέχει τα αντικείμενα που είναι κοντύτερα στο δικό της «κέντρο». Centroid vs medoid 9

10 Άλλοι Τύποι Συστάδων Βάσει γειτνίασης Κάθε σημείο της συστάδας είναι πιο κοντά σε τουλάχιστον ένα άλλο σημείο της συστάδας παρά σε κάθε σημείο εκτός συστάδας. Οι αντίστοιχες τεχνικές βασίζονται κυρίως σε θεωρίες γράφων. Παράδειγμα με 8 συστάδες Βάσει πυκνότητας Πιο γενικά, βάσει κοινών ιδιοτήτων 10

11 Γενικές Απαιτήσεις στην ΕΔ Κλιμάκωση Δυνατότητα χειρισμού διαφορετικών τύπων δεδομένων Ανακάλυψη συστάδων με οποιοδήποτε σχήμα. Ελάχιστη ή μηδαμινή απαίτηση γνώσης πεδίου domain knowledge) Ικανότητα χειρισμού θορύβου και ανωμαλιών Όχι εξάρτηση από την σειρά των δεδομένων Χειρισμός πολλών διαστάσεων Εισαγωγή περιορισμών Ευχρηστία και εύκολη κατανόηση/επεξήγηση η/ η 11

12 Μέτρα ομοιότητας/απόστασης: επανάληψη ρ μ η ς/ ης ηψη Ιδιότητες μέτρων ομοιότητας Ιδιότητες μέτρων ομοιότητας Ανακλαστική Συμμετρική ) ) 1 ), s s s = = Συμμετρική ΑΠΟΣΤΑΣΗ=ΜΟΝΟΤΟΝΑ_ΦΘΗΝΟΥΣΑΟΜΟΙΟΤΗ ΤΑ) ), ), s s = ΤΑ) Ιδιότητες μετρικού απόστασης Θετικότητα Ανακλαστικη 0 ), 0 ), d d = = Συμμετρικη Τριγωνική ανισότητα ), ), ), ), ), z d z d d d d + = 12

13 Τί θα εξετάσουμε 4 βασικές κατηγορίες αλγορίθμων ομαδοποίησης Αλγ. τμηματοποίησης Ιεραρχικοί ρχ αλγόριθμοι Αλγ. βασισμένοι στην πυκνότητα Αλγ. βασισμένοι στην θεωρία γράφων Κλιμάκωση Έλεγχος Εγκυρότητας και τάσης ομαδοποίησης 13

14 Αλγόριθμοι Τμηματοποίησης Partitioning Algorithms) Μεθοδολογία: Δημιουργία τμηματοποίησης μίας ΒΔ D με n αντικείμενα σε ένα σύνολο k συστάδων. Δεδομένου του k, πρέπει να βρεθεί η τμηματοποίηση η η που βελτιστοποιεί το κριτήριο τμηματοποίησης. Βέλτιστη λύση: πρέπει να εξεταστούν όλες οι περιπτώσεις. Ευρετικές μέθοδοι: k-means, k-medoids, k-nn k-means MacQueen 67): Κάθε συστάδα αντιπροσωπεύεται από το κέντρο της. k-medoids or PAM Partition around medoids) Kaufman & Rousseeuw 87): Κάθε συστάδα αντιπροσωπεύεται από ένα αντικείμενό της. 14

15 Συνολικός αριθμός ομαδοποιήσεων Sn,k): αριθμός ομαδοποιήσεων n σημείων σε k ομάδες Sn-1,k-1) περιπτώσεις για k-1 ομάδες με n-1 σημεία. Το n-οστό σημείο δημιουργεί νέα ομάδα που συνδυάζεται με κάθε μία από τις Sn-1,k-1) ώστε να προκύψουν k ομάδες με n σημεία. Προκύπτουν συνολικά Sn-1,k-1) περιπτώσεις. Sn-1,k) περιπτώσεις για k ομάδες με n-1 σημεία. Το n- οστό σημείο εντάσσεται σε κάθε μία από τις ομάδες ώστε να προκύψουν k ομάδες με n σημεία. Προκύπτουν συνολικά k*sn-1,k) περιπτώσεις. 15

16 Συνολικός αριθμός ομαδοποιήσεων Παράδειγμα: ABCDσημεία A,B,C,D σημεία. S4,3) =? A,B) C) A,C) B) A,B) C) D) A,C) B) D) A)B,C) ) A) B,C) D) S3,2) = 3 S3,2) περιπτώσεις A) B) C) S3,3) = 1 A,D) B) C) A) B, D) C) A) B) C, D) 3*S3,3) περιπτώσεις 16

17 Συνολικός αριθμός ομαδοποιήσεων ς ρ μ ς μ ή n k k n S n n S n S k n ks k n S k n S > + = 0 ) 1 ) 1 1) ) 1, 1) 1, ), n k k n S n n S n S > = = =, 0 ), 1, ), 1,,1) k=4 n k k i k k k n S = 1 1)! 1 ), i i k = 1 )! ), 17

18 K-means 1. Διάλεξε k τυχαία κέντρα. Τα κέντρα μπορεί να μην αντιστοιχούν σε ένα από τα δεδομένα αντικείμενα.) 2. Ανάθεσε κάθε αντικείμενο στο πλησιέστερο προς αυτό κέντρο. 3. Για κάθε μία από τις k ομάδες, υπολόγισε το νέο κέντρο. 4. Αν όλα τα νέα κέντρα συμπίπτουν με τα προηγούμενα δηλαδή, δεν υπήρξε μεταβολή), τότε τερμάτισε γιατί ο αλγόριθμος έχει συγκλίνει. Αλλιώς, επανάλαβε το βήμα 2. 18

19 παράδειγμα K-means, βήμα 1 Y k 1 Διάλεξε τα αρχικά 3 κέντρα των συστάδων τυχαία) k 2 k 3 X 19

20 παράδειγμα K-means, βήμα 2 Y k 1 Ανάθεσε κάθε σημείο στο κοντυνότερο κέντρο k 2 k 3 X 20

21 παράδειγμα K-means, βήμα 3 Y k 1 k 1 Μετακίνησε κάθε κέντρο στο μέσο της συστάδας. k 2 k 3 k 2 k 3 X 21

22 παράδειγμα K-means, βήμα 4 Αναθεώρησε την ανάθεση των σημείων για τα οποία υπάρχει κοντινότερο κέντρο Ε: Ποια είναι αυτά τα σημεία; Y k 1 k 3 k 2 X 22

23 παράδειγμα K-means, βήμα 4α Y 3 σημεία ανατίθενται διαφορετικά k 3 k 2 k 1 X 23

24 παράδειγμα K-means, βήμα 4ββ Y Επαναυπολογισμός μέσων k 3 k 2 k 1 X 24

25 παράδειγμα K-means, βήμα 5 Y k 1 Τα κέντρα των συστάδων μετακινούνται στο μέσο τους k 2 k 3 X 25

26 Σύγκλιση σε τοπικά ελάχιστα SSE = 4 SSE = 16 Επανάληψη με άλλα αρχικά κέντρα 26

27 Ευαισθησία σε θόρυβο/outliers / 27

28 Εναλλακτικές συνθήκες τερματισμού μ Μετά από συγκεκριμένο αριθμό επαναλήψεων. Το άθροισμα των μεταβολών των κέντρων είναι κάτω άωαπό ένα κατώφλι. αώφ 28

29 Πρόβλημα αρχικής επιλογής κέντρων Αν υπάρχουν K συστάδες πραγματικά με n σημεία η κάθε μία,, η πιθανότητα επιλογής ενός κέντρου σε κάθε μία συστάδα είναι μικρή: Για K = 10, τότε Ρ = 10!/10 10 = Κάποιες φορές τα κέντρα θα αυτορυθμιστούν σωστά, και κάποιες φορές όχι. 29

30 Σημασία αρχικής επιλογής κέντρων 3 Iteration

31 Σημασία αρχικής επιλογής κέντρων 3 Iteration 1 3 Iteration 2 3 Iteration Iteration 4 3 Iteration 5 3 Iteration

32 Σημασία αρχικής επιλογής κέντρων 3 Iteration

33 Σημασία αρχικής επιλογής κέντρων 3 Iteration 1 3 Iteration Iteration 3 3 Iteration 4 3 Iteration

34 Λύσεις Πολλαπλές επαναλήψεις. Δειγματοληψία και εφαρμογή ιεραρχικής ομαδοποίησης. Επιλογή περισσότερων αρχικών σημείων και κατόπιν επιλογής των πιο απομακρυσμένων. Εκ των υστέρων επεξεργασία Διχοτομικός Bisecting) K-means 34

35 Bisecting K-means - Παράδειγμα 35

36 Μη σφαιρικά σχήματα K-means 2 Clusters) Original Points K-means 10 Clusters) 36

37 Χαρακτηριστικά K-means Πλεονεκτήματα Απλός Γρήγορος Ond)) Μειονεκτήματα Επιλογή k Τοπικά ελάχιστα Ευαισθησία σε θόρυβο, outliers Χαμηλή αποτελεσματικότητα όταν οι πραγματικές συστάδες είναι διαφορετικού μεγέθους, πυκνότητας, ή δεν έχουν σφαιρικό σχήμα. Χρειάζονται αυξημένο k 37

38 Παραλλαγές K-means K-medians αντί για μέσες τιμές, χρησιμοποιούνται οι ενδιάμεσες Mean των 1, 3, 5, 7, 9: 5 Mean των 1, 3, 5, 7, 1009: Median των 1, 3, 5, 7, 1009: 205 Προτέρημα των Median τιμών: δεν επηρεάζονται από ακραίες τιμές Δειγματοληψία Δ λ ί για μεγάλες ΒΔ) 5 38

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Γ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 10: Ομαδοποίηση Μέρος Δ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: FP-Growth Ευχαριστίες Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» «Introduction to Data

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining»,

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining», Συσταδοποίηση Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

Ομαδοποίηση ΙΙ (Clustering)

Ομαδοποίηση ΙΙ (Clustering) Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 2: Επεξεργασία Δεδομένων Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

11 Ανάλυση Συστάδων

11 Ανάλυση Συστάδων 11 Ανάλυση Συστάδων Σύνοψη Η Ανάλυση Συστάδων (ΑΣ) (Clustering) είναι μια από τις βασικότερες εργασίες Εξόρυξης Δεδομένων. Στόχος της ΑΣ είναι ο επιμερισμός ενός συνόλου παραδειγμάτων σε συστάδες. Οι συστάδες

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Συστάσεις Ι Ποιός είμαι εγώ: Email: tsap@cs.uoi.gr Γραφείο: Β.3 Προτιμώμενες ώρες γραφείου: 11:00-18:00 Ενδιαφέροντα Web mining, Social networks, User Generated Content Mobile

Διαβάστε περισσότερα

Ανάλυση κατά Συστάδες. Cluster analysis

Ανάλυση κατά Συστάδες. Cluster analysis Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες

Διαβάστε περισσότερα

ιαµέριση - Partitioning

ιαµέριση - Partitioning ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ Σ ε λ ί δ α 0 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ Διπλωματική

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 6 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα,

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Ηλίας Κ. Σάββας Εξόρυξη Δεδομένων Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, Μετατροπή δεδομένων σε ΠΛΗΡΟΦΟΡΙΑ, Πολλά δεδομένα αποθηκευμένα

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Εισαγωγή Ο αλγόριθμος k-means Αποστάσεις Ιεραρχική Συσταδοποίηση Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Τι

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση II Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Εξόρυξη Δεδομένων: Ακ. Έτος 008-009 ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση

Διαβάστε περισσότερα

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ Δομή παρουσίασης Εισαγωγή Βασικές Έννοιες Σχετικές μελέτες Εφαρμογή Δεδομένων Συμπεράσματα Εισαγωγή Μελέτη και προσαρμογή των διάφορων

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Προεπεξεργασία Δεδομένων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Η διαδικασίας της ανακάλυψης γνώσης Knowledge Discovery (KDD) Process Εξόρυξη δεδομένων- πυρήνας της διαδικασίας ανακάλυψης

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Διπλωματική Εργασία: Ομαδοποίηση γράφων με τους αλγόριθμους k-means και DBSCAN. Σπουδαστής: Νικηφοράκης

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Κοινωνικά Πειράματα. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Κοινωνικά Πειράματα. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Κοινωνικά Πειράματα Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΕΙΣΑΓΩΓΗ Τα πειράματα αφορούν: Την ανάληψη δράσης Την παρατήρηση των συνεπειών αυτής της δράσης 7-3 ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων Θεωρία Αποφάσεων ο Φροντιστήριο Λύσεις των Ασκήσεων Άσκηση Έστω ένα πρόβλημα ταξινόμησης μιας διάστασης με δύο κατηγορίες, όπου για κάθε κατηγορία έχουν συλλεχθεί τα παρακάτω δεδομένα: D = {, 2,,,,7 }

Διαβάστε περισσότερα

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής Data Mining: Στοχεύοντας στους σωστούς πελάτες To CRM front-office πελατών Οι Προμηθευτές Οι Πελάτες ΟΟργανισμός Τροφοδότηση ενεργειών Μάρκετινγκ ΒΙ Απόταδεδομέναστηγνώση Επιχειρηματική Γνώση Επιχειρηματικοί

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 1: Εισαγωγή Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα 6ο Πανελλήνιο Συνέδριο των Εκπαιδευτικών για τις ΤΠΕ «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη» Σύρος 6-8 Μαϊου 2011 Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά

Διαβάστε περισσότερα

Κεφάλαιο 8. Ομαδοποίηση δεδομένων

Κεφάλαιο 8. Ομαδοποίηση δεδομένων Κεφάλαιο 8. Ομαδοποίηση δεδομένων Σύνοψη Σ αυτό το κεφάλαιο θα μελετήσουμε την τεχνική της ομαδοποίησης (clustering). Το Clustering αποτελεί μια τεχνική ομαδοποίησης των δεδομένων μιας βάσης σε υποσύνολα

Διαβάστε περισσότερα

Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις

Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 6: Κατηγοριοποίηση Μέρος Β Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Η δειγματοληψία Ι. (Από Saunders, Lewis & Thornhill 2009)

Η δειγματοληψία Ι. (Από Saunders, Lewis & Thornhill 2009) Η δειγματοληψία Ι (Από Saunders, Lewis & Thornhill 2009) Η δειγματοληψία ΙΙ Η δειγματοληψία ΙΙΙ (Από Saunders, Lewis & Thornhill 2009) Ο πειραματισμός Εισαγωγή - Θέματα κατάλληλα για πειράματα Τα πειράματα

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Σχήμα 8.46: Δίκτυο αεραγωγών παραδείγματος.

Σχήμα 8.46: Δίκτυο αεραγωγών παραδείγματος. Παράδειγμα 8.8 Διαστασιολόγηση και υπολογισμός δικτύου αεραγωγών με τη μέθοδο της σταθερής ταχύτητας Να υπολογιστούν οι διατομές των αεραγωγών και η συνολική πτώση πίεσης στους κλάδους του δικτύου αεραγωγών

Διαβάστε περισσότερα

Μάρκετινγκ Υπηρεσιών Τουρισμού Διάλεξη 7η ( ) Τιμολόγηση Υπηρεσιών

Μάρκετινγκ Υπηρεσιών Τουρισμού Διάλεξη 7η ( ) Τιμολόγηση Υπηρεσιών Μάρκετινγκ Υπηρεσιών Τουρισμού Διάλεξη 7η (2016-17) Τιμολόγηση Υπηρεσιών Δρ. Αλέξανδρος Αποστολάκης Email: aapostolakis@staff.teicrete.gr Τηλ.: 2810379621 E-class μαθήματος: https://eclass.teicrete.gr/courses/dsη141

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων)

Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων) Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων) Των Raymond T. Ng και Jiawei Han (1994) Παρουσίαση

Διαβάστε περισσότερα

Κεφάλαιο 6: Συσταδοποίηση

Κεφάλαιο 6: Συσταδοποίηση Κεφάλαιο 6: Συσταδοποίηση Σύνοψη Ο βασικός στόχος αυτού του κεφαλαίου είναι η εξοικείωση με θέματα που αφορούν την τρίτη σημαντική εργασία της εξόρυξης δεδομένων, δηλαδή την ανάλυση των συστάδων. Πιο συγκεκριμένα,

Διαβάστε περισσότερα

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Ανάλυση κατά Συστάδες σε δεδοµένα Χρονολογικών σειρών Κωνσταντίνα Κ. Μεντζέλου ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τµήµα Στατιστικής του Οικονοµικού Πανεπιστηµίου

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA Μαρκαντωνάτου Μαρία Α.Μ.: 379 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ. Τσιμπίρης

Διαβάστε περισσότερα

Κεφάλαιο 5. Ανάλυση αλγορίθμων

Κεφάλαιο 5. Ανάλυση αλγορίθμων Κεφάλαιο 5 Ανάλυση αλγορίθμων 5.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να κατανοήσουν οι μαθητές τις τεχνικές ανάλυσης των αλγορίθμων και να εξοικειωθούν με την έννοια της πολυπλοκότητας

Διαβάστε περισσότερα

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Τεχνολογία Ηλεκτρονικού Εμπορίου

Τεχνολογία Ηλεκτρονικού Εμπορίου Τεχνολογία Ηλεκτρονικού Εμπορίου 7η διάλεξη: Τεχνολογίες Εξατομίκευσης (personalization) σε Περιβάλλοντα Ηλεκτρονικού Εμπορίου Χρήστος Γεωργιάδης ιαστάσεις της τεχνολογίας του ηλεκτρονικού εμπορίου Η πανταχού

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,

Διαβάστε περισσότερα

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 15η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Τεχνικές Εξόρυξης Δεδομένων

Τεχνικές Εξόρυξης Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Διατμηματικό Μεταπτυχιακό Πρόγραμμα στα Πληροφοριακά Συστήματα ( MIS ) Τεχνικές Εξόρυξης Δεδομένων για την βελτίωση της απόδοσης σε Κατανεμημένα Συστήματα Ζάχος Δημήτριος Επιβλέποντες:

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Διαχείριση Εφοδιαστικών Αλυσίδων. Φίλιππος Ι. Καρυπίδης Καθηγητής. Τμήμα: Τεχνολόγων Γεωπόνων Αγροτικής Οικονομίας

ΜΑΘΗΜΑ: Διαχείριση Εφοδιαστικών Αλυσίδων. Φίλιππος Ι. Καρυπίδης Καθηγητής. Τμήμα: Τεχνολόγων Γεωπόνων Αγροτικής Οικονομίας ΜΑΘΗΜΑ: Διαχείριση Εφοδιαστικών Αλυσίδων Διδάσκων: Φίλιππος Ι. Καρυπίδης Καθηγητής Τμήμα: Τεχνολόγων Γεωπόνων Αγροτικής Οικονομίας Σειρά Διαλέξεων μαθήματος ΔΙΑΛΛΕΞΗ: Παγκόσμια κανάλια διανομής προϊόντων

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Επιλογή Δείγματος Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Δειγματοληψία Να κατανοηθούν: Γιατί κάνουμε δειγματοληψία Ορισμοί δειγματοληψίας Αντιπροσωπευτικότητα Κύριοι μέθοδοι δειγματοληψίας Λάθη

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Αλγόριθμος Ομαδοποίησης

Αλγόριθμος Ομαδοποίησης Αλγόριθμος Ομαδοποίησης Εμπειρίες από τη μελέτη αναλλοίωτων χαρακτηριστικών και ταξινομητών για συστήματα OCR Μορφονιός Κωνσταντίνος Αθήνα, Ιανουάριος 2002 Γενικά Ένα σύστημα OCR χρησιμοποιείται για την

Διαβάστε περισσότερα

Μοντελοποίηση της πλοήγησης των χρηστών στον Παγκόσµιο Ιστό µε χρήση. Κορφιάτης Γιώργος ιπλωµατική Εργασία

Μοντελοποίηση της πλοήγησης των χρηστών στον Παγκόσµιο Ιστό µε χρήση. Κορφιάτης Γιώργος ιπλωµατική Εργασία Μοντελοποίηση της πλοήγησης των χρηστών στον Παγκόσµιο Ιστό µε χρήση µεθόδων Συµπερασµού Γραµµατικών Κορφιάτης Γιώργος ιπλωµατική Εργασία Αντικείµενο Κατασκευή µοντέλου ικανού να περιγράψει την πλοήγηση

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ), που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες:. P ( Ω ). 2. Η πιθανότητα της αριθμήσιμης

Διαβάστε περισσότερα

«Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης»

«Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης» «Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης» Ονοματεπώνυμο: Ταχταρά Κατερίνα Σειρά: 8 η Επιβλέπων Καθηγητής: Βρεχόπουλος Αδάμ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

κυρτών και σύνθετων σωμάτων

κυρτών και σύνθετων σωμάτων Τ.Ε.Ι. Αθηνών τμήμα Πληροφορικής Διπλωματική εργασία Ανίχνευση συγκρούσεων σε σκηνές 3Δ κυρτών και σύνθετων σωμάτων Κόνιαρης Χαράλαμπος Επιβλέπων καθηγητής : Δρ. Ιωάννης Πρατικάκης Περιληπτικά (1) Γενικά

Διαβάστε περισσότερα

Πληροφορική ΙΙ Ενότητα 1

Πληροφορική ΙΙ Ενότητα 1 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 7. Κοινωνικά πειράματα 7-1

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 7. Κοινωνικά πειράματα 7-1 Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 7 Κοινωνικά πειράματα 7-1 Σύνοψη κεφαλαίου Θέματα κατάλληλα για πειράματα Το κλασικό πείραμα Επιλέγοντας υποκείμενα Παραλλαγές πειραματικών σχεδιασμών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα # 6: ΟΡΓΑΝΩΣΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα # 6: ΟΡΓΑΝΩΣΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα # 6: ΟΡΓΑΝΩΣΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης

Διαβάστε περισσότερα

Πίνακας περιεχομένων. Μέρος 1ο ΑΝΤΑΓΩΝΙΣΤΙΚΟ ΠΛΕΟΝΕΚΤΗΜΑ ΜΕΣΩ ΤΩΝ LOGISTICS

Πίνακας περιεχομένων. Μέρος 1ο ΑΝΤΑΓΩΝΙΣΤΙΚΟ ΠΛΕΟΝΕΚΤΗΜΑ ΜΕΣΩ ΤΩΝ LOGISTICS Πίνακας περιεχομένων Εισαγωγικό Σημείωμα Ελληνικής Έκδοσης..............................................17 Εισαγωγικό σημείωμα................................................................ 19 Ευχαριστίες

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή

Διαβάστε περισσότερα