maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)"

Transcript

1 Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η οποία μεγιστοποιεί τα κέρδη του έχει ως εξής: maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) 3x 1 + 2x 2 18 (διαθέσιμη ποσότητα ασημιού, ουγκιές) 2x 1 + 4x 2 24 (διαθέσιμη ποσότητα μετάλλου, ουγκιές) x 1 4 (απορροφητικότητα της αγοράς σε μπρασελέ) x 1, x Να βρεθεί η άριστη λύση του. 2. Υπολογίστε το διάστημα αριστότητας των αντικειμενικών συντελεστών. 3. Υπολογίστε το διάστημα εφικτότητας των δεξιών μελών του μοντέλου. 4. Υποθέστε ότι η διαθέσιμη ποσότητα ασημιού μπορεί να ανέβει στις 22 ουγκιές. Ποια επίδραση θα έχει κάτι τέτοιο στην άριστη λύση; 1/12

2 2/12

3 Μια οικογένεια διαθέτει 410 εκτάρια καλλιεργήσιμης γης στην περιοχή της Μακεδονίας στην οποία καλλιεργεί καπνό και ρύζι. Κάθε εκτάριο που καλλιεργείται με καπνό κοστίζει (:σπορά, καλλιέργεια, συγκομιδή, κλπ) κατά μέσο όρο 105 χρηματικές μονάδες, ενώ κάθε εκτάριο ρυζιού κοστίζει αντίστοιχα 210 χ.μ. Η οικογένεια διαθέτει έναν προϋπολογισμό ύψους χ.μ. για την τρέχουσα χρονιά. Υποθέστε ότι ο τοπικός Αγροτικός Συνεταιρισμός περιορίζει το πλήθος των εκταρίων που μπορούν να καλλιεργηθούν με ρύζι στα 100 το πολύ, κι ότι το κάθε εκτάριο καπνού αποδίδει κατά μέσο όρο (καθαρό κέρδος) 300 χ.μ., ενώ το κάθε εκτάριο ρυζιού 520 χ.μ. Να διαμορφώσετε ένα πρότυπο π.γ.π. για τον προσδιορισμό του βέλτιστου σχεδίου καλλιέργειας. Στη συνέχεια να το επιλύσετε γραφικά. Πόση έκταση θα πρέπει να καλλιεργηθεί από κάθε προϊόν και πόσο θα είναι το συνολικό καθαρό κέρδος; Θα μείνει έκταση ακαλλιέργητη και πόση; Θα καλλιεργηθούν όλα τα επιτρεπόμενα εκτάρια ρυζιού; Ένας γείτονας της οικογένειας προσπαθεί να πείσει την οικογένεια να νοικιάσουν τη δική του γη προς 100 χ.μ. το εκτάριο. Πιστεύετε ότι πρέπει να δεχθούν; Υποθέστε ότι η οικογένεια του παραδείγματός μας σκέφτεται να πάρει ένα μικρό δάνειο ώστε να αυξήσουν τον διαθέσιμο προϋπολογισμό τους για τις καλλιέργειες που περιγράψαμε παραπάνω. Ο τόκος που πρόκειται να πληρώσουν είναι της τάξης του 25%. Πιστεύετε ότι θα πρέπει να προχωρήσουν; Αν η οικογένεια αποφασίσει να μειώσει την καλλιεργήσιμη γη κατά 50 εκτάρια πως επηρεάζεται το προταθέν σαν βέλτιστο σχέδιο καλλιέργειας για τον καπνό; 3/12

4 4/12

5 Αγροτικός συνεταιρισμός κερδίζει 4, 3 και 6 χρηματικές μονάδες από τις πωλήσεις που πραγματοποιεί αντίστοιχα στις τρεις διαφορετικές κονσέρβες, έστω Α, Β και Γ, που παράγει αναμιγνύοντας ροδάκινο, βερίκοκο κι ανανά. Σε γενικές γραμμές η συζητούμενη παραγωγική διαδικασία μπορεί να διαχωριστεί σε δύο στάδια : την αποφλοίωση/κοπή (Σ1) και τη μείξη/συσκευασία (Σ2). Στον πίνακα που ακολουθεί δίνονται οι απαιτήσεις του κάθε προϊόντος σε πρώτες ύλες (Kr) και σε χρόνους επεξεργασίας (min), καθώς επίσης και η διαθεσιμότητα κάθε παραγωγικού συντελεστή ΠΑΡΑΓΩΓΙΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΟΝΣΕΡ Ροδάκινο Βερίκοκο Ανανάς 1ο Στάδιο 2ο Στάδιο (Kr) (Kr) (Kr) (min) (min) Α Β Γ ΔΙΑΘ/ΤΗΤΑ , Αφού διαπιστώσετε ποιο είναι το πρόβλημα του συνεταιρισμού, διαμορφώσετε ένα π.γ.π. που μπορεί να το επιλύσει. Στη συνέχεια, χρησιμοποιώντας τη λύση και την ανάλυση ευαισθησίας που δίνεται στη συνέχεια από το LINDO, απαντήστε στα εξής ερωτήματα : 2. Πόσο πρέπει να είναι το κέρδος του προϊόντος Β ώστε να είναι συμφέρουσα η παραγωγή του και γιατί; 3. Ο συνεταιρισμός εξετάζει την περίπτωση να αντικαταστήσει το μηχανολογικό εξοπλισμό των παραγωγικών σταδίων Σ1 και Σ2 πριν την έναρξη της παραγωγής. Ο καινούργιος εξοπλισμός είναι δυναμικότητας 1,200 λεπτών για το 1ο στάδιο και 700 λεπτών για το 2ο στάδιο. Θα μεταβληθεί η βέλτιστη λύση; 4. Αν ο συνεταιρισμός είχε τη δυνατότητα να προμηθευτεί 10 επιπλέον κιλά ροδάκινα ή βερίκοκα ποιο φρούτο έπρεπε να προτιμήσει και γιατί; 5/12

6 5. Η διοίκηση πληροφορείται ότι υπάρχουν διαθέσιμα ακόμα 50 κιλά ανανά. Αν τα χρησιμοποιήσει ποια θα είναι η επίδραση στο συνολικό κέρδος; LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) VARIABLE VALUE REDUCED COST X X X ROW SLACK OR SURPLUS DUAL PRICES 2) ) ) ) ) NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X X INFINITY X RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE INFINITY INFINITY INFINITY /12

7 1. Φανερά, ο συνεταιρισμός ενδιαφέρεται να προσδιορίσει το πλήθος των κονσερβών τύπου Α, Β και Γ που πρέπει να παράγει μέσα στις συγκεκριμένες διαθεσιμότητες των παραγωγικών του συντελεστών σε τρόπο ώστε να μεγιστοποιείται το συνολικό κέρδος. Ορίζουμε να είναι x Α, x B, x Γ το πλήθος των κονσερβών Α, Β και Γ που πρέπει να παραχθούν. Τότε το συνολικό κέρδος ανέρχεται σε 4x Α + 3x B + 6x Γ χρηματικές μονάδες. Οι περιορισμοί του προβλήματος προκύπτουν αφενός μεν από τη διαθεσιμότητα των φρούτων, αφετέρου δε από το διαθέσιμο χρόνο στα δύο στάδια της επεξεργασίας : 3x Α + 2x B + x Γ 920 (διαθέσιμη ποσότητα ροδάκινων, Kr) 2x Α + 2x B + 2x Γ 900 (διαθέσιμη ποσότητα βερίκοκων, Kr) x Α + 2x B + 3x Γ 930 (διαθέσιμη ποσότητα ανανά, Kr) 1.2x Α + 1.4x B + 1.5x Γ 1,260 (διαθέσιμος χρόνος στο 1ο Στάδιο, min) x Α + 2x B + x Γ 600 (διαθέσιμος χρόνος στο 2ο Στάδιο, min) x Α, x B, x Γ 0 Από τα αποτελέσματα του LINDO βλέπουμε ότι η βέλτιστη λύση του προβλήματος x Α = 210, x Γ = 240 οδηγεί σε κέρδος 2,280 χρηματικών μονάδων. 2. Το ερώτημα αφορά το ευκαιριακό κόστος της x B που είναι ίσο με 2. Αν το κέρδος από τις κονσέρβες τύπου Β γίνει τουλάχιστον 5 (= 3 + 2) χρηματικές μονάδες τότε θα συμφέρει η παραγωγή τους. 7/12

8 3. Οι περιορισμοί που αναφέρονται στο διαθέσιμο χρόνο για τα δύο στάδια της παραγωγικής διαδικασίας είναι χαλαροί με περιθώριες τιμές 648 (ο 4 ος που αφορά το στάδιο Σ1) και 150 (ο 5 ος που αφορά το στάδιο Σ2). Η δοθείσα τροποποίηση θα αυξήσει απλά την περιθώρια τιμή του 5 ου κατά 100 μονάδες και θα ελαττώσει αυτή του 4 ου κατά 60. Συνεπώς, η βέλτιστη λύση θα παραμείνει η ίδια. 4. Ο πόρος με τη μεγαλύτερη αξία (: δυική τιμή) είναι τα «βερίκοκα» (για την ακρίβεια, η βέλτιστη λύση αφήνει ανεκμετάλλευτα 50Kr ροδάκινων). 5. Ο πόρος «ανανάς» έχει δυϊκή τιμή ίση με 1. Συνεπώς αύξηση της διαθέσιμης ποσότητάς του κατά 50Kr θα οδηγήσει σε αύξηση του συνολικού κέρδους κατά 1 50 χρηματικές μονάδες. 8/12

9 Μια εταιρεία δημοσκοπήσεων που συμφώνησε να προχωρήσει σε μια έρευνα αγοράς, προσπαθεί να υπολογίσει τον αριθμό των "συνεντευκτών" που θα απαιτηθούν για τη διεξαγωγή της. Η έρευνα θα γίνει με τη μέθοδο της προσωπικής συνέντευξης και της τηλεφωνικής επικοινωνίας, με τον κάθε συνεντευκτή να μπορεί να πραγματοποιήσει σε ημερήσια βάση 80 τηλεφωνικές ή 40 προσωπικές επαφές. Σύμφωνα με τον σχεδιασμό αντιπροσωπευτικότητας της έρευνας, θα πρέπει να γίνουν τουλάχιστον 1000 τηλεφωνικές και τουλάχιστον 800 προσωπικές συνεντεύξεις, με το σύνολό τους να πρέπει να είναι τουλάχιστον Λαμβάνοντας υπόψη ότι το ημερήσιο κόστος για τον κάθε "τηλεφωνικό" συνεντευκτή ανέρχεται στις 50 χρηματικές μονάδες, ενώ για τον κάθε "προσωπικό" στις υποδείξτε ένα π.γ.π. για την εύρεση του αριθμού συνεντευκτών που θα απαιτηθούν σε τρόπο ώστε η έρευνα να πραγματοποιηθεί με το μικρότερο δυνατό κόστος, 2. δώστε το πλήθος των "τηλεφωνικών" και "προσωπικών" συνεντευκτών που πρέπει να χρησιμοποιηθούν, 3. βρείτε τη νέα (;) βέλτιστη λύση στην περίπτωση που το ημερήσιο κόστος για τον κάθε "τηλεφωνικό" συνεντευκτή υπο-διπλασιαστεί, 4. βρείτε τη νέα (;) βέλτιστη λύση στην περίπτωση που το ημερήσιο κόστος για τον κάθε "προσωπικό" συνεντευκτή διπλασιαστεί. 5. Υποθέστε ότι αν μειωθούν οι ελάχιστες απαιτήσεις μιας μόνο εκ των τεχνικών συνέντευξης (προσωπικής ή τηλεφωνικής) η αντιπροσωπευτικότητα του δείγματος δεν επηρεάζεται. Στην περίπτωση αυτή, ποια θα έπρεπε να επιλεγεί ώστε η εταιρεία δημοσκοπήσεων να εξοικονομήσει όσο το δυνατόν περισσότερα χρήματα. 9/12

10 1. Ορίζουμε να είναι x 1, x 2 το αντίστοιχο πλήθος των «τηλεφωνικών» και "προσωπικών" συνεντευκτών που πρέπει να χρησιμοποιηθούν. Τότε το συνολικό κόστος για την εταιρεία δημοσκοπήσεων που πρέπει να ελαχιστοποιηθεί ανέρχεται σε (50x x 2 ) χρηματικές μονάδες. Οι περιορισμοί του προβλήματος προκύπτουν από i) το ελάχιστο συνολικό πλήθος συνεντεύξεων που πρέπει να πραγματοποιηθούν : 80x x 2 3,000 ii) το ελάχιστο πλήθος τηλεφωνικών συνεντεύξεων που πρέπει να πραγματοποιηθούν : 80x 1 1,000 iii) το ελάχιστο πλήθος προσωπικών συνεντεύξεων που πρέπει να πραγματοποιηθούν : 40x i) τη μη-αρνητικότητα των μεταβλητών απόφασης : x 1, x /12

11 Το σημείο B(27.5, 20) αντιστοιχεί στη βέλτιστη λύση και δίνει τιμή της αντικειμενικής συνάρτησης ίση με 2,775. Συνεπώς για την πραγματοποίηση της έρευνας απαιτούνται x 1 = 27.5 «τηλεφωνικοί» και x 2 = 20 προσωπικοί συνεντευκτές. 11/12

12 2. Για να απαντήσουμε στο ερώτημα θα πρέπει να προχωρήσουμε σε ανάλυση ευαισθησίας για τον αντικειμενικό συντελεστή c 1. Το σημείο B(27.5, 20) είναι η άριστη λύση στο πρόβλημά μας όσο που δίνει κλίση της ευθείας κλίση της ευθείας z κλίση της ευθείας c c (η κλίση της ευθείας που είναι παράλληλη προς τον οριζόντιο άξονα είναι μηδέν). Έτσι για c 2 = 70 παίρνουμε ως εύρος αριστότητας του αντικειμενικού συντελεστή c 1 το [0, 140] Συνεπώς για c 1 = 25 (υπο-διπλάσιο κόστος «τηλεφωνικής» συνέντευξης) βέλτιστη λύση του προβλήματος παραμένει το σημείο Β(27.5, 20) με νέα τιμή της αντικειμενικής συνάρτησης ίση με 2, Ανάλογα, θα πρέπει να προχωρήσουμε σε ανάλυση ευαισθησίας για τον αντικειμενικό συντελεστή c 2. Το εύρος αριστότητάς του είναι το [25, ) και συνεπώς, για c 2 = 140 (διπλάσιο κόστος «προσωπικής» συνέντευξης), βέλτιστη λύση του προβλήματος παραμένει το σημείο Β(27.5, 20) με νέα τιμή της αντικειμενικής συνάρτησης ίση με 4, Για να απαντήσουμε στο ερώτημα απαιτείται η γνώση των δυικών τιμών που αντιστοιχούν στον 2 ο (αξία μιας «τηλεφωνικής» συνέντευξης) και 3 ο (αξία μιας «προσωπικής» συνέντευξης) περιορισμό. Παρατηρούμε όμως ότι 2 ος περιορισμός είναι χαλαρός (με περιθώρια τιμή ίση με 1200) : το b 2 μπορεί να ελαττωθεί απεριόριστα χωρίς να μεταβληθεί η βέλτιστη λύση. Συνεπώς η αντίστοιχη δυική τιμή ισούται με μηδέν. Κάτι τέτοιο δε συμβαίνει και με τον 3 ο περιορισμό ο οποίος είναι δεσμευτικός (η βέλτιστη λύση είναι σημείο τομής των ευθειών και ). Η αντίστοιχη δυική τιμή είναι διάφορη του μηδενός,. 12/12

υϊκή Θεωρία, Ανάλυση Ευαισθησίας

υϊκή Θεωρία, Ανάλυση Ευαισθησίας υϊκή Θεωρία, Ανάλυση Ευαισθησίας Το δυϊκό πρόβληµα Χρησιµότητα, εφαρµογές Ανάλυση ευαισθησίας Παραδείγµατα 1 Το δυϊκό πρόβληµα Σε κάθε πρόβληµα γραµµικού προγραµµατισµού πρωτεύον, primal - αντιστοιχεί

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΠΡΟΒΛΗΜΑ 1 Μία επιχείρηση κατασκευάζει τρία προϊόντα, έστω α, β και γ, τα οποία πουλάει

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία :

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Εισαγωγή Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : Συνειδητή προσπάθεια για το

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ 2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 6 η και 7 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν

Διαβάστε περισσότερα

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών Αθήνα, 2007 Η ΠΕΡΙΠΤΩΣΗ ΕΛΕΓΧΟΥ ΑΠΟΘΕΜΑΤΩΝ

Διαβάστε περισσότερα

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού.

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού. ΠΜΣ: Μαθηματικά των Υπολογιστών και των Αποφάσεων. Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος: 2012-13 Διδάσκων: Ν. Τσάντας Homework 1 1. Ασκήσεις: δείτε τις σελίδες 2-6 του παρόντος. 2. Πρόκειται για

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας.

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας. Το πρόγραµµα λογιστικών φύλλων (spreadsheet) Microsoft Excel ενσωµατώνει ρουτίνα επίλυσης προτύπων γραµµικού προγραµµατισµού. Η ρουτίνα ονοµάζεται Solver και χρησιµοποιεί το λογιστικό φύλλο του Microsoft

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Εάν το ποσοστό υποχρεωτικών καταθέσεων είναι 25% και υπάρξει μια αρχική κατάθεση όψεως 2.000 σε μια εμπορική Τράπεζα, τότε η μέγιστη ρευστότητα που μπορεί να δημιουργηθεί από αυτή την κατάθεση είναι: Α.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΕ 5 ΕΙΣΑΓΩΓΗ /ΑΝΑΠΤΥΞΗ ΚΑΙ ΧΡΗΣΗ ΝΕΩΝ ΤΡΟΠΩΝ ΠΑΡΟΧΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Δ.5.1 Πιλοτική Εφαρμογή

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθηµα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ηµεροµηνία και ώρα εξέτασης: ευτέρα 9 Ιουνίου 2008 7:30-10:00

Διαβάστε περισσότερα

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model Πάντειο Πανεπιστήμιο Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics Lecture 1: Trading in a Ricardian Model Το Ρικαρδιανό υπόδειγμα με ένα συντελεστή (συνέχεια) 1. Ο μόνος σημαντικός

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463 Εισαγωγή Η ελαχιστοποίηση του περιβαλλοντικού κόστους μπορεί να χρησιμοποιηθεί ως κριτήριο για τον προσδιορισμό της βέλτιστης τιμής της συγκέντρωσης C του ρυπαντή στο περιβάλλον ή στο σημείο εκροής από

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20013-2014 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20013-2014 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου 2 ο Πακέτο Ασκήσεων Ημερομηνία παράδοσης: Πέμπτη 12

Διαβάστε περισσότερα

d) 20 a) 0,5 b) 2 c) 0,2 d) 30

d) 20 a) 0,5 b) 2 c) 0,2 d) 30 ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ Να σηµειώσετε Σ αν είναι σωστό ή Λ αν είναι λάθος στο τέλος των προτάσεων: 1. Το µαγνητόφωνο ενός παιδιού είναι καταναλωτό αγαθό. 2. Το οικόπεδο πάνω στο οποίο

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ FV Η συνάρτηση αυτή υπολογίζει την μελλοντική αξία μιας επένδυσης βάσει περιοδικών, σταθερών πληρωμών και σταθερού επιτοκίου. =FV(επιτόκιο; αριθμός περιόδων; δόση αποπληρωμής; παρούσα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Ερώτημα 3α. Στον παρακάτω πίνακα φαίνονται τα παρακάτω:

Ερώτημα 3α. Στον παρακάτω πίνακα φαίνονται τα παρακάτω: Θέμα 3ο Ερώτημα 3α Αναφορά στον έλεγχο της οικονομικής προόδου ενός έργου γίνεται στην ενότητα 6.2 του Β τόμου. Επίσης, στην σελίδα 76 του τόμου β (σχήμα 11) απεικονίζεται ένα διάγραμμα αθροιστικών χρηματικών

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ 100 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ ΠΡΟΣ ΕΠΙΛΥΣΗ Vol. 1 ΑΘΗΝΑ ΜΑΪΟΣ 2013 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ 1 ΤΟΜΟΣ 1 ΜIΚΡΟΟΙΚΟΝΟΜΙΑ ΘΕΩΡΙΑ ΚΑΤΑΝΑΛΩΤΗ 1) Εάν ο οριακός λόγος υποκατάστασης

Διαβάστε περισσότερα

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10 Λύσεις 2 1. (α) Όταν η πρόσβαση στις λίµνες είναι ελεύθερη τότε ο κάθε ψαράς κοιτάζει την δικιά του σοδειά που είναι το µέσο προϊόν: Ψ χ /Β χ = 10 - ½ B X για την λίµνη Χ, και Ψ υ /Β υ = 5 για την λίµνη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN Σχεδιασµός συστηµάτων: Κοστολόγηση κατά έργο ή κατά παραγγελία Άσκηση 1. Η εταιρεία ΛΑΜΑΠΛΑΣΤ Α.Ε. αντιµετωπίζει

Διαβάστε περισσότερα

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Αιμ. Κονδύλη, Ι. Κ. Καλδέλλης, Χρ. Παπαποστόλου ΤΕΙ Πειραιά, Τμήμα Μηχανολογίας Απρίλιος 2007 Στόχοι της εργασίας Η τεχνική

Διαβάστε περισσότερα

Άλυτες ασκήσεις από το βιβλίο «Επιχειρησιακή Έρευνα» του καθηγητή Π. Υψηλάντη

Άλυτες ασκήσεις από το βιβλίο «Επιχειρησιακή Έρευνα» του καθηγητή Π. Υψηλάντη 3.1) Για την κατασκευή µεταλλικών βαλβίδων απαιτείται ένα µείγµα 3 µετάλλων σιδήρου, νικελίου και χρωµίου. Για να εξασφαλιστούν ορισµένεs φυσικέs ιδιότητες (όπωs αντοχή, ελαστικότητα κ.λ.π.) οι ακόλουθεs

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40 ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1 Το πρόβλημα των περιορισμένων πόρων Κάθε επιχειρηματική

Διαβάστε περισσότερα

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Σύμφωνα με αυτή την τεχνική θα πρέπει να επιλέγουμε επενδυτικά σχέδια τα οποία έχουν Καθαρή Παρούσα Αξία μεγαλύτερη του μηδενός. Συγκεκριμένα δίνεται

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη.

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη. Άσκηση Έστω δυο επενδυτικές προτάσεις, Α και Β, αρχικού κόστους 200000000 και 236000000 η καθεμία αντίστοιχα. Το ελάχιστο απαιτούμενο ποσοστό απόδοσης που θέτεται ως manager είναι 8%. Οι μελλοντικές ταμιακές

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Στην καθημερινή ζωή μας ακούμε φράσεις όπως: Ο έμπορος κερδίζει 30% (τριάντα τοις εκατό ή τριάντα στα εκατό) στην τιμή της αγοράς Τι σημαίνει ο έμπορος κερδίζει 30%; Αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ Η ΜΕΘΟΔΟΣ ΤΟΥ «ΑΝΟΙΓΜΑΤΟΣ» (Gap Analysis)

ΚΕΦΑΛΑΙΟ 9. ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ Η ΜΕΘΟΔΟΣ ΤΟΥ «ΑΝΟΙΓΜΑΤΟΣ» (Gap Analysis) ΚΕΦΑΛΑΙΟ 9 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ Η ΜΕΘΟΔΟΣ ΤΟΥ «ΑΝΟΙΓΜΑΤΟΣ» (Gap Analysis) Ορισμός του ανοίγματος Η κύρια πηγή εσόδων για τις τράπεζες είναι οι τόκοι από τα διάφορα στοιχεία που ενεργητικού, ενώ η κύρια

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Σηµειώσεις Γραµµικού Προγραµµατισµού

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Σηµειώσεις Γραµµικού Προγραµµατισµού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ- Ποσοτικές Μέθοδοι Σηµειώσεις Γραµµικού Προγραµµατισµού Ακαδηµαϊκό Έτος: 005-006 Πρόλογος Οι σηµειώσεις

Διαβάστε περισσότερα

Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ

Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΠΡΟΒΛΗΜΑ 1 Ένα εργοστάσιο παραγωγής αλουμινίου προμηθεύεται βωξίτη από τρία ορυχεία (01, 02

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 1 ο : Βασικές Οικονομικές Έννοιες Επαναληπτική άσκηση στο Κεφάλαιο 1 Δίνεται ο παρακάτω πίνακας

Διαβάστε περισσότερα

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες.

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες. Οικονομικό Πανεπιστήμιο Αθηνών ΜΠΣ Χρηματοοικονομικής και Τραπεζικής για Στελέχη Μάθημα: Οικονομική για Στελέχη Επιχειρήσεων Εξέταση Δεκεμβρίου 2007 Ονοματεπώνυμο: Να απαντήσετε τα παρακάτω θέματα σύμφωνα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ ΠΑΝΤΕΛΗΣ ΝΙΚΟΣ 1 ΜAΚΡΟΟΙΚΟΝΟΜΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΕΠ ΑΠΟ ΤΗΝ ΠΛΕΥΡΑ ΤΗΣ ΤΕΛΙΚΗΣ ΔΑΠΑΝΗΣ Y = C + I + G + ( X M) Y

Διαβάστε περισσότερα

Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση. 4.1 Κατανάλωση και αποταμίευση

Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση. 4.1 Κατανάλωση και αποταμίευση Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση 4.1 Κατανάλωση και αποταμίευση 1) Χωρίς πληθωρισμό και με ονομαστικό επιτόκιο (i).03, κάποιος μπορεί να ανταλλάξει μια μονάδα σημερινής κατανάλωσης

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας 1 3 ο κεφάλαιο : Απαντήσεις των ασκήσεων Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες: 1. Συμπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείμενο, έτσι ώστε οι προτάσεις που προκύπτουν να είναι

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16//201)-ΣΕΙΡΑ Α ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό Α2. (β) Α. (γ) ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.Η μεταβολή στην προσφερόμενη ποσότητα ενός αγαθού

Διαβάστε περισσότερα

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης Γενικές αρχές διοίκησης μιας μικρής επιχείρησης Η επιχείρηση αποτελεί μια παραγωγική - οικονομική μονάδα, με την έννοια ότι συνδυάζει και αξιοποιεί τους συντελεστές παραγωγής (εργασία, κεφάλαιο, γνώση,

Διαβάστε περισσότερα

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου)

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου) ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου Ορισμός: είναι το κόστος ευκαιρίας των κεφαλαίων που έχουν όλοι οι επενδυτές της εταιρείας (μέτοχοι και δανειστές) Κόστος ευκαιρίας: είναι η απόδοση της καλύτερης εναλλακτικής

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ

ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ 1. ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΑΡΧΙΚΟΥ ΚΟΣΤΟΥΣ Άσκηση 1 Η εταιρεία Αλεξάνδρου Α.Ε. σχεδιάζει να αντικαταστήσει παλαιά µηχανήµατα µε νέα. Τα νέα µηχανήµατα κοστίζουν 100.000. Τα µηχανήµατα αυτά

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 1 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το µάθηµα αυτό έχει σκοπό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Τι ενδιαφέρει τον ιδιώτη

Τι ενδιαφέρει τον ιδιώτη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΠΜΣ «Επιστήµη και Τεχνολογία Υδατικών Πόρων» Οικονοµικά του Περιβάλλοντος και των Υδατικών Πόρων Αξιολόγηση επενδύσεων Τι ενδιαφέρει τον ιδιώτη Πόσα χρήµατα θα επενδύσω; Πότε

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση. Γενικές οδηγίες

Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 31 Χρηματοοικονομική Διοίκηση Ακαδημαϊκό Έτος: 2009-10 Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

Συμπαράγωγα προϊόντα ή υποπροϊόντα είναι τα προϊόντα που παράγονται από την ίδια παραγωγική διαδικασία.

Συμπαράγωγα προϊόντα ή υποπροϊόντα είναι τα προϊόντα που παράγονται από την ίδια παραγωγική διαδικασία. Διοικητική Λογιστική Κοστολόγηση ων προϊόντων και υπο-προϊόντων προϊόντων Ορισμοί Συμπαράγωγα προϊόντα ή υποπροϊόντα είναι τα προϊόντα που παράγονται από την ίδια παραγωγική διαδικασία. Εάν τα προϊόντα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα