20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)"

Transcript

1 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) 1

2 Γενικά βήματα για σχεδιασμό φίλτρων (1) Προσδιορισμός χαρακτηριστικών του φίλτρου: Χαρακτηριστικά σήματος (π.χ. μέγιστη συχνότητα) Χαρακτηριστικά φίλτρου (π.χ. απόκριση μεγέθους ή/και φάσης, ταχύτητα) Τρόπος υλοποίησης (π.χ. σε υπολογιστή ή εξειδικευμένο επεξεργαστή) Άλλα χαρακτηριστικά (π.χ. κόστος) Γιαφίλτραεπιλογής συχνότητας: προδιαγραφές μέσω σχημάτων ανοχής (tolerance schemes). δ p : απόκλιση ζώνης διάβασης δ s : απόκλιση ζώνης αποκοπής f p : συχνότητα άκρου ζώνης διάβασης f s : συχνότητα άκρου ζώνης αποκοπής 2

3 (2) Υπολογισμός κατάλληλων συντελεστών φίλτρου: IIR: βασίζονται σε μετασχηματισμό χαρακτηριστικών αναλογικών φίλτρων σε ψηφιακά. 3 βασικές μέθοδοι: (ι) impulse invariant, (ιι) bilinear transformation, και (iii) pole-zero placement. FIR: (ι) window, (ιι)frequency sampling, και (ιιι) optimal (Parks- McClellan algorithm) (3) Απεικόνιση φίλτρου με κατάλληλη δομή: μετατροπή μίας συνάρτησης μεταφοράς H(z) σε κατάλληλη μορφή φίλτρου. IIR: direct, cascade και parallel μορφές FIR: direct, frequency sampling και fast convolution technique μορφές (4) Ανάλυση επίδρασης πεπερασμένης ακρίβειας του αριθμού bits: επιλογή κατάλληλου αριθμού bits για αποφυγή υποβάθμισης της απόδοσης του φίλτρου. Παράγοντες που επηρεάζουν απόδοση: κβαντοποίηση (εισόδου/εξόδου, συντελεστών φίλτρου), στρογγυλοποίηση, υπερροή. (5) Υλοποίηση φίλτρου: λογισμικό ή υλισμικό. Χρειάζονται: μνήμες ROM και RAM, πολλαπλασιαστές και αθροιστές ή αριθμητική λογική. 3

4 Χαρακτηριστικά FIR (1) Βασικό FIR φίλτρο χαρακτηρίζεται από: y( n) H ( z) N 1 k 0 N 1 k 0 h( k) x( n k) h( k) z όπου h(k): συντελεστές κρουστικής απόκρισης του φίλτρου k Η(z): συνάρτηση μεταφοράς φίλτρου (1) (2) Ν: μέγεθος φίλτρου, δηλ. αριθμός συντελεστών φίλτρου k0,1,,ν-1 (1): στο πεδίο χρόνου. Μη-αναδρομική μορφή (υπάρχουν και αναδρομικά φίλτρα FIR). Μη-αναδρομικά φίλτρα FIR είναι πάντοτε σταθερά. (2): μέθοδος ανάλυσης φίλτρου, π.χ. υπολογισμός συχνοτικής απόκρισης 4

5 (2) Υλοποιούνται πολύ εύκολα. Όλοι οι επεξεργαστές ΨΕΣ έχουν αρχιτεκτονική κατάλληλη για FIR φίλτρα. (3) FIR φίλτρα μπορούν να έχουν εντελώς γραμμική φάση. Απόκριση φάσης, θ(ω), ικανοποιεί: θ ( ω) αω (1) ή θ ( ω) β αω όπου α και β: σταθερές. Αν ισχύει η (1): κρουστική απόκριση φίλτρου πρέπει να έχει θετική συμμετρία h( n) h( N α (Ν 1)/ 2 n 1), n 0,1,...,( N 1) / 2, n 0,1,...,( N / 2) 1, (2) N μονός αριθμός Ν ζυγός αριθμός 5

6 Αν ισχύει η (2): κρουστική απόκριση φίλτρου έχει αρνητική συμμετρία h( n) h( N α ( N β π / 2 1) / 2 n 1) Καθυστέρηση φάσης: η καθυστέρηση που υπόκειται η κάθε συχνότητα κατά την εφαρμογή του φίλτρου στο σήμα T p θ ( ω) / ω Ομαδική καθυστέρηση: ο μέσος όρος της καθυστέρησης του σήματος στην κάθε συχνότητα Τ dθ ( ω) dω g / Για τη σχέση (1) σταθερή καθυστέρηση φάσης & ομαδική καθυστέρηση Για τη σχέση (2) σταθερή ομαδική καθυστέρηση 6

7 FIR φίλτρα: προσδιορισμός προδιαγραφών Απόκριση φάσης: αρνητική ή θετική συμμετρία. Γραμμική. Απόκριση μεγέθους συχνότητας: σχήματα ανοχής Άλλοι προσδιορισμοί: μέγιστος αριθμός συντελεστών φίλτρου 7

8 FIR φίλτρα: υπολογισμός συντελεστών FIR φίλτρο χαρακτηρίζεται από τις εξισώσεις: y( m) H ( z) N 1 n 0 N 1 n 0 h( n) x( m n) h( n) z n (1) (2) Στόχος μεθόδων υπολογισμού συντελεστών: υπολογισμός h(n) έτσι ώστε το φίλτρο να τηρεί τους προσδιορισμούς. Μέθοδοι υπολογισμού h(n): Μέσω παραθύρου (window) Optimal Δειγματοληψία συχνότητας (frequency sampling) 8

9 FIR φίλτρα - Υπολογισμός Συντελεστών: Μέθοδος παραθύρου Ιδανική απόκριση συχνότητας, Η D (ω), και κρουστική απόκριση, h D (ω), φίλτρου: h 1 2π π kωn ( n) D H D ( ω) e dω - Αντίστροφος ΜΦ π Π.χ. Χαμηλοπερατό φίλτρο - ιδανική απόκριση: h D 1 π ( n) 1 2 e π π jωn 2 f dω 2 f c c sin( nωc ), nω, c n 0, n n 0 (κκανόνα L'Hopital) 9

10 Πίνακας 1: Ιδανική κρουστική απόκριση για συγκεκριμένα φίλτρα: 10

11 Φίλτρα που σχεδιάζονται με τη μέθοδο παραθύρου έχουν ίση απόκλιση ζωνών διάβασης και αποκοπής, δηλ. δ p δ s h D (n)h D (-n) γραμμική και μηδενική φάση Παρατηρούμε ότι υπάρχει κρουστική απόκριση θεωρητικά και για n±, άρα δεν είναι FIR φίλτρο πολλαπλασιασμός της ιδανικής κρουστικής απόκρισης με κατάλληλο πεπερασμένο παράθυρο, w(n), για υπολογισμό συντελεστών φίλτρου. Στο πεδίο χρόνου: h(n)h D (n)w(n) Στο πεδίο συχνότητας: H(ω)H D (ω)*w(ω) 11

12 Χαρακτηριστικά γνωστών παραθύρων στα πεδία χρόνου και συχνότητας Rectangular Hamming 12

13 Blackman Για το παράθυρο Hamming το πλάτος ζώνης μετάβασης: Δf3.3/Ν, όπου Ν: μέγεθος φίλτρου, Δf: κανονικοποιημένο πλάτος ζώνης μετάβασης Μέγιστη εξασθένιση (attenuation) ζώνης αποκοπής: 53dΒ Ελάχιστη κορυφή κυματισμού ζώνης διάβασης: dB 13

14 Παράθυρο Kaiser: I 0 α 1 I 0 2n N 1 [ α ] 2, ( N 1) / 2 n < ( N 1) / 2 όπου I 0 : τροποποιημένη συνάρτηση Bessel 1 ου είδους & L k 2 μηδενικής τάξης: x I 0 ( x) 1+ k k 1 2 k! με L<25 συνήθως, α: τρόπος που το παράθυρο tapers στις άκριες στο πεδίο χρόνου (α0 rectangular) Υπολογισμός α ανάλογα με τις προδιαγραφές εξασθένισης ζώνης αποκοπής: α 0, αν A 21dB α α A log ( A 21) ( A 8.7), 10 δ, 0.4 δ ( A 21), min( δ, δ ) p s αν 21dB < αν A 50dB A < 50dB 14

15 Αριθμός συντελεστών φίλτρου: N A Δf Οι τιμές των α και Ν χρησιμοποιούνται για υπολογισμό των συντελεστών του παραθύρου Kaiser, w(n). 15

16 Πίνακας 2: Χαρακτηριστικά συνήθεις παραθύρων 16

17 Παράδειγμα: Υπολογίστε τους συντελεστές ενός χαμηλοπερατού FIR φίλτρου που να πληρεί τις πιο κάτω προδιαγραφές: συχνότητα διάβασης, f c πλάτος ζώνης μετάβασης εξασθένιση ζώνης αποκοπής συχνότητα δειγματοληψίας 1.5 khz 0.5 khz >50 db 8 khz Κρουστική απόκριση χαμηλοπερατού φίλτρου: h h D D ( n) ( n) 2 f 2 f c c sin( nω ) nω c c, n 0, n 0 17

18 Σύμφωνα με τον πίνακα 2, τα παράθυρα Hamming, Blackman ή Kaiser πληρούν τις προδιαγραφές εξασθένισης ΖΑ. Hamming (απλό): w(n) cos(2πn/53), -26 n 26 Κανονικοποίηση πλάτους ΖΜ: Δf 0.5 / Μέγεθος φίλτρου: Ν 3.3 / Δf 3.3 / Ν53 Συντελεστές φίλτρου υπολογίζονται από: h(n)h D (n)w(n) f c f c + Δf/2 ( )kHz 1.75/ (αναπροσαρμογή f c στο κέντρο ΖΜ) 18

19 FIR Φίλτρα ) ( (26) ) 26 / 0.46 cos( (26) ) 2 sin( (26) 26 : (1) (1) 1) ( (1) ) / 0.46 cos( ) / 0.46 cos( (1) ) sin( ) sin( (1) 1: (0) (0) (0) cos(0) 0.54 (0) (0) 0 : h h w h n w h h h w h n w h h w f h n D D D D c D π π π π π π π M M M o o

20 Βήματα μεθόδου παραθύρου: (1) Προσδιορισμός ιδανικής ή επιθυμητήςαπόκρισης συχνότητας, Η D (ω). (2) Υπολογισμός κρουστικής απόκρισης h D (n) του φίλτρου μέσω Αντίστροφου ΜΦ. (3) Επιλογή παραθύρου που ικανοποιεί τους προσδιορισμούς για τις ζώνες διάβασης και υπολογισμός του αριθμού συντελεστών του φίλτρου χρησιμοποιώντας τη σωστή σχέση μεταξύ του μεγέθους του φίλτρου και το μέγεθος της ζώνης μετάβασης, Δf. (4) Υπολογισμός τιμών w(n) για το επιλεγμένο παράθυρο και τις τιμές των συντελεστών φίλτρου, h(n), μέσω: h( n) h ( n) w( n) D 20

21 μεθόδου παραθύρου: Απλή κατανοητή και εύκολη, ελάχιστή υπολογιστική προσπάθεια ακόμα και για περίπλοκα παράθυρα όπως το Kaiser μεθόδου παραθύρου: Έλλειψη flexibility απόκλιση ζωνών διάβασης και αποκοπής περίπου ίση Λόγω συνέλιξης του συχνοτικού περιεχομένου του παραθύρου και της επιθυμητής απόκρισης, οι συχνότητες αποκοπής και διάβασης δεν μπορούν να προσδιοριστούν ακριβώς Για συγκεκριμένο παράθυρο (εκτός Kaiser) το μέγιστο πλάτος των κυματισμών είναι σταθερό, ανεξάρτητα από το Ν συγκεκριμένη εξασθένιση ΖΑ Για μερικές εφαρμογές HD(ω) είναι πολύ πολύπλοκο για υπολογισμό του hd(n) μέθοδος frequency sampling πριν τη μέθοδο παραθύρου 21

22 FIR φίλτρα - Υπολογισμός Συντελεστών: Μέθοδος optimal : ισχυρή, ευέλικτη, εύκολη (λόγω ύπαρξης συγκεκριμένου αλγόριθμου) πρώτη επιλογή στις πλείστες εφαρμογές FIR Μέθοδος παραθύρου κυματισμοί της απόκρισης συχνότητας φίλτρου είναι μέγιστοι στις άκριες των ζωνών. Όμως, ομοιογενής κυματισμός στις ζώνες καλύτερη προσέγγιση της ιδανικής απόκρισης συχνότητας φίλτρου. Γιατί; Διαφορά μεταξύ ιδανικής απόκρισης συχνότητας και προσέγγισης: Ε(ω)W(ω) Η D (ω)-η(ω), όπου W(ω): συντελεστής βαρύτητας. Στόχος: min E(ω), το οποίο συμβαίνει όταν ο κυματισμός είναι ομοιογενής. Η μέθοδος optimal βασίζεται σε αυτήν την έννοια. 22

23 Συχνότητες στις οποίες παρατηρούνται τα άκρα των κυματισμών δεν είναι γνωστές εκ των προτέρων υπολογισμός τους είναι το κυρίως θέμα της μεθόδου απλό να υπολογιστεί η απόκριση συχνότητας και η κρουστική απόκριση του φίλτρου! Μέθοδος υπολογισμού χρησιμοποιεί Remez exchange algorithm. 23

24 Βήματα μεθόδου optimal: (1) Προσδιορισμός άκρων ζωνών, κυματισμός ζώνης διάβασης (δ p ) & εξασθένιση ζώνης αποκοπής (δ s ) (σε db ή αριθμοί), και συχνότητα δειγματοληψίας (f s ). (2) Κανονικοποίηση συχνοτήτων ζωνών και μεγέθους ζώνης διάβασης (Δ f ), δηλ. διαίρεση με f s (3) Υπολογισμός μεγέθους φίλτρου, Ν, χρησιμοποιώντας δ p, δ s και Δ f. (4) Υπολογισμός συντελεστών βαρύτητας για κάθε ζώνη ως το λόγο δ p /δ s. (5) Χρησιμοποίηση αλγορίθμου για υπολογισμό των συντελεστών φίλτρου. (6) Έλεγχος αν δ s και δ p πληρούν τις προδιαγραφές (7) Αν όχι αύξηση Ν και επανάληψη (5) & (6) μέχρι ικανοποίησης του (6). Έλεγχος απόκρισης συχνότητας για πληρότητα προδιαγραφών. 24

25 FIR φίλτρα - Υπολογισμός Συντελεστών: Μέθοδος frequency sampling : σχεδιασμός μη-αναδρομικών FIR φίλτρων για κλασικές και μη αποκρίσεις συχνότητας. Αναδρομικός σχεδιασμός υπολογιστική αποδοτικότητα. Μη-αναδρομικά φίλτρα: Υπολογισμός συντελεστών φίλτρου: δειγματοληψία της ιδανικής απόκρισης συχνότητας (Ν δείγματα) σε διαστήματα f k kf s /N, k0,.1,,n-1 (φίλτρο τύπου 1), και ΑΜΦ των δειγμάτων. Για FIR με γραμμική φάση και θετική συμμετρική κρουστική απόκριση: B 1 h( n) 2 H ( k) cos[ 2πk ( n α) / N ] + H (0) N k 1 όπου α(ν-1)/2 και ΒΝ/2-1 (Ν: ζυγός) ή Β(Ν-1)/2 (Ν: μονός) 25

26 26

27 Η απόκριση συχνότητας στα δείγματα είναι όμοια με την αρχική. Όμως, στα ενδιάμεσα δείγματα μπορεί να είναι εντελώς διαφορετική επαρκή αριθμό δειγμάτων. Εναλλακτικό φίλτρο (τύπος 2): f k (k+1/2)f s /N, k0,1,,n-1 Οι δύο τύποι φίλτρου καταλήγουν σε μερικώς διαφορετικές αποκρίσεις συχνότητας. Ο σχεδιαστής επιλέγει ποιον τύπο θέλει. Φίλτρο έχει κακή απόκριση μεγέθους πιο ευρεία ζώνη μετάβασης για καλύτερη απόκριση μεγέθους. Επιτυγχάνεται με εισαγωγή δειγμάτων στη ζώνη μετάβασης (τιμές των δειγμάτων συχνότητας υπολογίζονται μέσω βελτιστοποίησης). Για χαμηλοπερατό φίλτρο: αύξηση εξασθένισης 20dB για κάθε δείγμα συχνότητας στη ζώνη μετάβασης. εξασθένιση ζώνης αποκοπής (25+20Μ) db πλάτος ζώνης μετάβασης (Μ+1)f s /Ν Μ: αριθμός δειγμάτων στη ζώνη μετάβασης, Ν: μέγεθος φίλτρου 27

28 Πλείστες περιπτώσεις: Μ1: 0.250<Τ 1 <0.450 M2: 0.040<Τ 1 < <Τ 2 <0.650 M3: 0.003<Τ 1 < <Τ 2 < <Τ 3 <

29 Αναδρομικά φίλτρα: Αναδρομική μορφή ενός FIR: H N N 1 z z) N k H ( k) H1( z) H ( z) j2πk / N 1 1 e z 1 ( 2 0 Άρα περιγραφή FIR ως δύο φίλτρων σε διαδοχική σύνδεση: Η1(z) με Ν ρίζες ισοκατανεμημένες στον μοναδιαίο κύκλο, και Η2(z) με άθροισμα Ν φίλτρων με Ν πόλους. 29

30 Βήματα μεθόδου frequency sampling: (1) Προσδιορισμός ιδανικής ή επιθυμητής απόκρισης συχνότητας, εξασθένισης ζώνης αποκοπής και συχνότητες άκρων ζωνών. (2) Επιλογή φίλτρου τύπου 1 ή 2 ανάλογα με προδιαγραφές. (3) Καθορισμός Ν (αριθμός δειγμάτων ιδανικής απόκρισης), Μ (αριθμός δειγμάτων στη ζώνη μετάβασης), ΒW (αριθμός δειγμάτων στη ζώνη διάβασης) και Τ i (τιμές συχνότητας δειγμάτων στη ζώνη μετάβασης, i1,2,,μ). (4) Χρησιμοποίηση κατάλληλης συνάρτησης για υπολογισμό συντελεστών φίλτρου. 30

31 Σύγκριση μεθόδων σχεδιασμού FIR Παράθυρο Optimal Freq. Sampling Κατάλληλη όταν δεν υπάρχει το πρόγραμμα για optimal & όταν οι κυματισμοί στις ζώνες είναι ίδιοι Απλή, κατανοητή Δεν επιτρέπει απόλυτο έλεγχο στις τιμές των άκρων ζωνών Έυκολη, ευέλικτη, απόλυτος έλεγχος προδιαγραφών φίλτρου Απαραίτητη η χρησιμοποίηση αλγόριθμου Ιδιαίτερα κατάλληλη για μετασχηματιστές Hilbert Αναδρομικά και μηαναδ. φίλτρα Σχεδιασμός φίλτρων με οποιεσδήποτε αποκρίσεις πλάτουςφάσης. Έλλειψη ελέγχου προσδιορισμού συχνοτήτων στα άκρα και ύπαρξη πίνακα σχεδιασμού 31

32 Επόμενη διάλεξη: 11. Φίλτρα απόκρισης άπειρου παλμού (IIR) 32

24-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)

24-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) 4-Μαρ-009 ΗΜΥ 49 5. Φίλτρα απόκρισης πεπερασμένου παλμού FIR 5. FIR Φίλτρα Ειδικά θέματα σχεδιασμού FIR: Half-bad FIR 4-Μαρ-009 Σχεδόν οι μισοί συντελεστές 0 μείωση υπολογιστικού κόστους κατά. Ιδιαίτερα

Διαβάστε περισσότερα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα -Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

3-Απρ-2009 ΗΜΥ Φίλτρα απόκρισης άπειρου παλμού (IIR)

3-Απρ-2009 ΗΜΥ Φίλτρα απόκρισης άπειρου παλμού (IIR) 3-Απρ-009 ΗΜΥ 49. Φίλτρα απόκρισης άπειρου παλμού IIR 3-Απρ-009 5. IIR φίλτρα Βασικά χαρακτηριστικά Βασικό IIR φίλτρο χαρακτηρίζεται ς: όπου h: κρουστική απόκριση φίλτρου θερητικά άπειρη, b & a : συντελεστές

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 8 παράδειγμα (εισαγωγικό) y(n) = 9 k = x(n k ) 2 / 8 Βασικές κατηγορίες

Διαβάστε περισσότερα

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ

Διαβάστε περισσότερα

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist

Διαβάστε περισσότερα

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. 1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην

Διαβάστε περισσότερα

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1

13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1 1 13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ ΜΟΛΥΝΣΗ ΗΕΓ eye blinks muscle movements eye blinks Time, s eye movements line (mains) noise 2 ΠΑΡΑΜΟΡΦΩΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΗΕΓ ΛΟΓΟΥ ΘΟΡΥΒΟΥ Αλλαγή στην αντίσταση των ηλεκτροδίων, τάση

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων

Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων (ή µέθοδο Μετ/σµού. Fourier) Νοέµβριος 25 ΨΕΣ Βασίζεται στον αντίστροφο µετ/σµό Fourier (IDTFT). ηλ. δίνεται η µορφή της απόκρισης συχνότητας Η(ω) και ζητείται

Διαβάστε περισσότερα

Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων

Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Υλοποίηση συστημάτων Διακριτού Χρόνου Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Αντίστροφος ΜΖ (inverse-zt) Προσεγγίσεις εύρεσης του αντίστροφου ΜΖ Τυπικά ο i-zt γίνεται

Διαβάστε περισσότερα

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z 6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή

Διαβάστε περισσότερα

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/

Διαβάστε περισσότερα

27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής.

27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής. Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Διάλεξη 6 η : «Επεξεργαστές με Μνήμη (Mέρος ΙI)» Φλώρος Ανδρέας Επίκ. Καθηγητής Από προηγούμενο μάθημα... Αναπαράσταση καθυστέρησης ενός δείγματος η περίοδος δειγματοληψίας

Διαβάστε περισσότερα

Σχεδιασµός FIR φίλτρων

Σχεδιασµός FIR φίλτρων Σ. Φωτόπουλος ΨΕΣ- ΚΕΦ 6 ο FIR φιλτρα 88 Σχεδιασµός FIR φίλτρων 6. Εισαγωγή FIR φίλτρα είναι ψηφιακά φίλτρα πεπερασµένης κρουστικής απόκρισης (Finite Impulse Response). ηλ εφαρµογή της κρουστικής συνάρτησης

Διαβάστε περισσότερα

20-Μαρ-2009 ΗΜΥ 429. Προηγμένες τεχνικές DSP

20-Μαρ-2009 ΗΜΥ 429. Προηγμένες τεχνικές DSP 20-Μαρ-2009 ΗΜΥ 429 Προηγμένες τεχνικές DSP 1 Μετατροπή συχνότητας δειγματοληψίας: Πολυρυθμική επεξεργασία (multirate processing) 20-Μαρ-2009 Τεχνική για αποδοτική αλλαγή της συχνότητας δειγματοληψίας,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Ανάλυση ΓΧΑ Συστημάτων

Ανάλυση ΓΧΑ Συστημάτων University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)

Διαβάστε περισσότερα

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 5 και Ανάλυση με (Κεφ. 9.0-9.5, 10.0-10.2) ΟΔΜΦ Ο αντίστροφος ΔΜΦ Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον αντίστροφο ΔΜΦ

Διαβάστε περισσότερα

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab

ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab Σ. Φωτόπουλος Ασκήσεις ΨΕΣ 1 ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab Στην άσκηση αυτή γίνεται σχεδιασµός FIR και ΙΙR ψηφιακών φίλτρων. (Σε επόµενη άσκηση θα γίνει και η υλοποίηση µε τον επεξεργαστή

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών»

Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών» Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών» Άσκηση 1 Τα φίλτρα Butterworth χαρακτηρίζονται από την ιδιότητα, η συνάρτηση απόκρισής τους να είναι ιδιαίτερα επίπεδη στην περιοχή διέλευσης.

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού

Διαβάστε περισσότερα

Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής

Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Σχεδίαση Φίλτρων IIR ( Infinite Impulse Response Filters ) Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Τα φίλτρα άπειρης κρουστικής απόκρισης ( Infinite Duration Impulse

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline

Διαβάστε περισσότερα

20-Ιαν-2009 ΗΜΥ Εισαγωγή στην Ψηφιακή Επεξεργασία Σημάτων

20-Ιαν-2009 ΗΜΥ Εισαγωγή στην Ψηφιακή Επεξεργασία Σημάτων ΗΜΥ 429 1. Εισαγωγή στην Ψηφιακή Επεξεργασία Σημάτων 1 Τι είναι η Ψηφιακή Επεξεργασία Σημάτων (ΨΕΣ); Σήματα σχήματα που κωδικοποιούν ή αντιπροσωπεύουν πληροφορίες Τα σήματα που συναντούμε στη φύση δε βρίσκονται

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων

ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων Άσκηση Ποια είναι η αόκριση συχνότητας σε ένα φίλτρο µέσης τιµής (averager) (α) -σηµείων (β) σηµείων (α) -σηµεία Ένα φίλτρο µέσης τιµής (averager) -σηµείων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ. Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRASFORM / x X x X x X x 3 x DFT X 3 X x 5 X 5 x 6 X 6 x 7 X 7 / DFT - Ορισμοί αναφέρεται σε μία πεπερασμένου μήκους ακολουθία σημείων

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 3: Δειγματοληψία και Ανακατασκευή Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα κυκλώματα που θεωρούμε εδώ είναι γραμμικά

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ στις τηλεπικοινωνίες Διάταξη συστήματος ψηφιακής επικοινωνίας Γεννήτρια σήματος RF, (up-coverter Ενισχυτής Προενισχυτής- dow-coverter- Ψηφιοποιητής σήματος RF Μονάδα ψηφ.

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2013-2014 Κωδικοποίηση ζωνών συχνοτήτων Δρ. Ν. Π. Σγούρος 2 Φαινόμενο Μπλόκ (Blocking Artifact) Η χρήση παραθύρων για την εφαρμογή των μετασχηματισμών δημιουργεί το φαινόμενο μπλόκ Μειώνεται

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 5: Μετασχηματισμός Ζ Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1

Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 ΑΝΑΛΟΓΙΚΑ ΦΙΛΤΡΑ ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 2 ΦΙΛΤΡΑ BUTTERWORTH: Τα βαθυπερατά φίλτρα έχουν

Διαβάστε περισσότερα

Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων

Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Recurive filter / 77 / 78 Περιεχόμενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασμός στο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χώρος Κατάστασης Παραστάσεις στο Πεδίο του

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 2 1 η ΕΝΟΤΗΤΑ Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 3 ο Εργαστήριο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 Άσκηση 3 η. 3.1 Φίλτρο διελεύσεως χαμηλών συχνοτήτων ή Χαμηλοπερατό φίλτρο με μία σταθερά χρόνου.

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Τα IIR φίλτρα μπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και

Αναλογικά φίλτρα. Τα IIR φίλτρα μπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και Τα IIR φίλτρα είναι επαναληπτικά ή αναδρομικά, με την έννοια ότι δείγματα της εξόδου χρησιμοποιούνται από το σύστημα για τον υπολογισμό των νέων τιμών της εξόδου σε επόμενες χρονικές στιγμές. Για να επιτύχουμε

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Εργαστήριο 7 ο : Δειγματοληψία και Ανασύσταση Βασική

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.

Διαβάστε περισσότερα

13-Φεβ-2009 ΗΜΥ Γραμμικά συστήματα και Συνέλιξη

13-Φεβ-2009 ΗΜΥ Γραμμικά συστήματα και Συνέλιξη ΗΜΥ 429 6. Γραμμικά συστήματα και Συνέλιξη 1 Γραμμικά συστήματα Ένα σύστημα είναι γραμμικό αν έχει τις ιδιότητες: Ομοιογένεια Προσθετικότητα Χρονική αμεταβλητότητα (δεν είναι απαραίτητη για γραμμικότητα,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,

Διαβάστε περισσότερα

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων

Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων. Ένα βαθυπερατό αναλογικό φίλτρο περιγράφεται από την σχέση Η(). Να βρεθεί ( ιγραµ. Μετασχ.) το αντίστοιχο ψηφιακό µε συχνότητα αποκοπής (-3dB) f 600H όταν

Διαβάστε περισσότερα

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011

Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011 Σχεδιασμός Φίλτρων Κυριακίδης Ιωάννης 2011 Εισαγωγή Τα φίλτρα IIR (Infinite Impulse Response) είναι φίλτρα των οποίων η κρουστική απόκριση δεν είναι πεπερασμένη. Συνήθως χρησιμοποιούνται οι παρακάτω τρείς

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform Νοέµβριος 5 ΨΕΣ Ορισµοί O διακριτός µετασχηµατισµός Fourier DFT, αναφέρεται σε µία πεπερασµένου µήκους ακολουθία σηµείων και ορίζεται ως εξής: X(

Διαβάστε περισσότερα

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ Συνέδριο Μαρτίου Απριλίου 00 Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings f( x) = sin( x )+sin( x) 8 nzc * SR f = N + i t F( ω) = f () t e ω dt -10-5 5 10 - - - f X = klog (

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα