Αλγεβρικές Υπερομάδες και Διαδρομές Ελαχίστου Μήκους σε Γραφήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικές Υπερομάδες και Διαδρομές Ελαχίστου Μήκους σε Γραφήματα"

Transcript

1 Αλγεβρικές Υπερομάδες και Διαδρομές Ελαχίστου Μήκους σε Γραφήματα Κ. Σεραφειμίδης, Αθ. Κεχαγιάς και Μ. Κωνσταντινίδου Τομέας Μαθηματικών, Γενικό Τμήμα Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Περίληψη Χρησιμοποιούμε αλγεβρικές μεθόδους για την μελέτη των διαδρομών ελαχίστου μήκους σε ένα γράφημα. Θεωρούμε ένα θεμελιώδες γράφημα G και συμβολίζουμε με Α(G) το σύνολο όλων των υπογραφημάτων του G και με C(G) το σύνολο των συνεκτικών υπογραφημάτων του G. Η σχέση «Α είναι υπογράφημα του Β» συμβολίζεται ως «Α Β». Η δομή (Α(G), ) είναι δικτυωτό, η δομή (C(G), ) είναι μερικά διατεταγμένο σύνολο. Ορίζουμε μια διαδρομή από τον κόμβο a στον κόμβο b έτσι ώστε αυτή να είναι ένα στοιχείο του C(G). Ενα «ευθύγραμμο τμήμα» μεταξύ των κόμβων a και b είναι μια διαδρομή ελαχίστου μήκους από τον a στον b. Ενα ευθύγραμμο τμήμα μεταξύ των γραφημάτων Α και Β είναι μια διαδρομή ελαχίστου μήκους από ένα κόμβο του Α σε ένα κόμβο του Β. Εισάγουμε την υπερπράξη σύνδεσης A+B μεταξύ στοιχείων του C(G). Μελετούμε την υπερπράξη Α+Β και αποδεικνύουμε διάφορες ιδιότητες αυτής. 1. Εισαγωγή Στην παρούσα εργασία χρησιμοποιούμε αλγεβρικές μεθόδους για την μελέτη των διαδρομών ελαχίστου μήκους σε ένα γράφημα και, γενικότερα, για την μελέτη ελασσόνων διαδρομών σε ένα γράφημα. Το κίνητρο για αυτή την μελέτη μας δόθηκε από ορισμένα προβλήματα συνδεσμολογίας ιστοσελίδων στο Διαδίκτυο. Ενα σύνολο ιστοσελίδων και των μεταξύ τους δεσμών μπορεί να θεωρηθεί ως γράφημα αναφοράς ή θεμελιώδες γράφημα. Ενας σχεδιαστής μιας διακτυακής περιοχής (web site) συχνά αντιμετωπίζει το πρόβλημα σύνδεσης υποπεριοχών μιας δικτυακής περιοχής με δρόμους οι οποίοι έχουν ελάχιστη αλληλοεπικάλυψη. Υπάρχει μια σειρά προβλημάτων διαδικτυακής σχεδίασης και ανάλυσης τα οποία μπορύν να τεθούν ως προβλήματα της θεωρίας γραφημάτων [1,5,7]. Στην παρούσα εργασία δεν αναπτύσσουμε συγκεκριμένους αλγόριθμους σχεδίασης, αλλά μια γενική αλγεβρική θεμελίωση η οποία μπορεί να χρησιμοποιηθεί και για την ανάπτυξη αλγορίθμων. Στο Κεφάλαιο 2 υπενθυμίζουμε μερικές βασικές έννοιες της θεωρίας γραφημάτων (για μια εκτεταμένη ανάπτυξη της θεωρίας γραφημάτων ο αναγνώστης μπορεί να ανατρέξει στο [6]). Θεωρούμε ένα θεμελιώδες γράφημα G, το οποίο υποθέτουμε συνεκτικό, και συμβολίζουμε με Α(G) το σύνολο όλων των υπογραφημάτων του G και με C(G) το σύνολο των συνεκτικών υπογραφημάτων του G. Ορίζουμε μια σχέση διάταξης στο σύνολο Α(G), έτσι ώστε «Α είναι υπογράφημα του Β» μπορεί να συμβολίζεται ως «Α Β». Η δομή (Α(G), ) είναι δικτυωτό (lattice, [4]), δηλαδή για κάθε ζεύγος γραφημάτων Α,Β υπάρχουν τα γραφήματα inf(a,b) και sup(a,b). Αυτά όμως δεν είναι υποχρεωτικά συνεκτικά γραφήματα, οπότε η δομή (C(G), ) είναι μερικά διατεταγμένο σύνολο αλλά όχι δικτυωτό. Στο Κεφάλαιο 3 υπενθυμίζουμε τις έννοιες της διαδρομής μεταξύ των κόμβων a και b, και του ευθυγράμμου τμήματος (διαδρομή ελαχίστου μήκους) μεταξύ των a και b. Γενικεύουμε τις έννοιες αυτές για γραφήματα Α και B.

2 Στο Κεφάλαιο 4 εισάγουμε την υπερπράξη A+B μεταξύ στοιχείων του C(G). Μία πράξη παράγει από δύο στοιχεία ένα τρίτο. Μία υπερπράξη παράγει από δύο στοιχεία ένα σύνολο στοιχείων. Η θεωρία των υπερπράξεων και των αντίστοιχων αλγεβρικών υπερδομών είναι μια γενίκευση της θεωρίας των αλγεβρικών δομών και έχει μελετηθεί σε μεγάλη έκταση [3]. Στην παρούσα εργασία εισάγουμε την υπερπράξη σύνδεσης +, η οποία από δύο συνεκτικά γραφήματα Α και Β παράγει ένα σύνολο Α+Β συνεκτικών γραφημάτων τα οποία περιέχουν τα Α και Β. Αποδεικνύουμε διάφορες ιδιότητες της Θεμελιώδεις Εννοιες Αρχίζουμε υπενθυμίζοντας μερικές βασικές ένννοιες από την θεωρία των γραφημάτων. Ορισμός 2.1: Ενα γράφημα είναι ένα ζεύγος συνόλων A=(V A,E A ) οπου Ε Α V A V A. Τα στοιχεία του V A λέγονται κόμβοι και τα στοιχεία του E A λέγονται ακμές. Το ζεύγος 0=(, ) είναι το κενό γράφημα. Δηλαδή V A ={x 1,x 2,,x N }, E A ={{x i1,x j1 }, {x i2,x j2 },, {x ik,x jk } }. Για συντομία θα γράφουμε τις ακμές ως E A ={x i1 x j1, x i2 x j2,, x ik,x jk } αναγνωρίζοντας ότι x i1 x j1 = x j1 x i1 κτλ. Ορισμός 2.2: Ενα γράφημα λέγεται συνεκτικό ανν για κάθε ζεύγος κόμβων x, y V A, υπάρχει ένα σύνολο ακμών {z 1 z 2,z 2 z 3,,z M-1 z M } E A, με z 1 =x, z M =y. Σύμφωνα με τον ορισμό, το κενό γράφημα 0 είναι συνεκτικό. Στα παρακάτω το σύμβολο G θα συμβολίζει ένα συνεκτικό γράφημα (V G,E G ) το οποίο θα θεωρηθεί σταθερό. Το G θα αποκαλείται θεμελιώδες γράφημα. Θέτουμε Ν= V G (το πλήθος των κόμβων του G). Ορισμός 2.3: A(G)={A: A=(V A,E A ) είναι γράφημα και V Α V G, E Α E G }. Ορισμός 2.4: C(G)={A: A=(V A,E A ) είναι συνεκτικό γράφημα και V Α V G, E Α E G }. Ορισμός 2.5: Στο σύνολο Α(G) ορίζουμε την σχέση ως εξής: για A,B Α(G) λέμε ότι A B ανν V Α V Β και E Α E Β. Πρόταση 2.6: Η σχέση είναι σχέση διατάξεως στο A(G), όπως και στο C(G). Αν ορίσουμε όπου Α Β=(V A V B, E A E B ), Α Β=(V A V B, E A E B ), τότε η δομή (A(G),,, ) είναι δικτυωτό. Αφού η δομή (Α(G), ) είναι δικτυωτό, για κάθε ζεύγος γραφημάτων Α,Β υπάρχουν τα γραφήματα inf(a,b)= Α Β και sup(a,b)= Α Β. Αυτά όμως δεν είναι υποχρεωτικά συνεκτικά γραφήματα, οπότε η δομή (C(G), ) είναι μερικά διατεταγμένο σύνολο αλλά όχι δικτυωτό. Κάθε υποσύνολο Χ του A(G) περιέχει (γενικά περισσότερα του ενός) ελάσσονα (minimal) και μείζονα (maximal) στοιχεία. Ορισμός 2.7: Εστω Χ A(G). Ενα A Χ λέγεται ελάσσον στοιχείο του Χ ανν Β Χ, Β A B=A. Ενα C Χ λέγεται μείζον στοιχείο του Χ ανν D Χ, C D C=D.

3 3. Διαδρομές και Ευθύγραμμα Τμήματα Εδώ υπενθυμίζουμε τις έννοιες της διαδρομής μεταξύ των κόμβων a και b, και του ευθυγράμμου τμήματος (διαδρομή ελαχίστου μήκους) μεταξύ των a και b. Προσέξτε ότι σύμφωνα με τους ορισμούς μια διαδρομή, όπως και ένα ευθύγραμμο τμήμα, είναι υπογράφημα του G. Ορισμός 3.1: Ενα γράφημα Α A(G) λέγεται διαδρομή ανν i. A=({x 1,x 2,,x M }, {x 1 x 2, x 2 x 3,, x M-1 x M } ). ii. Για κάθε m, n {1,2,,M} έχουμε: m n x m x n. To μήκος της διαδρομής Α είναι Μ (γράφουμε length(a)=m). Επίσης θεωρούμε το γράφημα ({x}, ) ως διαδρομή με μήκος μηδέν. Μια διαδρομή Α=({x 1,x 2,,x M }, {x 1 x 2, x 2 x 3,, x M-1 x M } ) θα γράφεται για συντομία και Α= x 1 x 2 x 3 x M-1 x M. Ορισμός 3.2: Το σύνολο των διαδρομών εντός ενός γραφήματος Α συμβολίζεται με P(Α), δηλ. P(Α)={Β: Β διαδρομή, Β Α}. Πρόταση 3.3: P(G) C(G). Ορισμός 3.4: Για κάθε a,b V G, το σύνολο των διαδρομών μεταξύ των a και b συμβολίζεται με path(a,b), δηλ. path(a,b)={a: A P(G), M: Α= x 1 x 2 x M-1 x M, x 1 =a, x 2 =b}. Επίσης για κάθε m {1,2,,N} ορίζουμε path m (a,b)={a: A P(G), Α= x 1 x 2 x m-1 x m, x 1 =a, x 2 =b}. Πρόταση 3.5: Για κάθε a, b V G : path(a,b)= m path m (a,b). Ορισμός 3.6: Ορίζουμε την συνάρτηση d: V G V G {0,1,2,,Ν} ως εξής: Για κάθε a, b V G : d(a,b) =min{m: path m (a,b) }. Πρόταση 3.7: Η συνάρτηση d(a,b) είναι μετρική συνάρτηση, δηλ. για κάθε a,b,c V G έχουμε i. d(a,b)=0 a=b. ii. d(a,b) = d(b,a). iii. d(a,c) d(a,b) + d(b,c). Απόδειξη: Δες [2]. Στην Ευκλείδεια Γεωμετρία, το ευθύγραμμο τμήμα μεταξύ δύο τμημάτων είναι η ελαχίστου μήκους διαδρομή μεταξύ αυτών. Κατ' αναλογία έχουμε τον παρακάτω ορισμό.

4 Ορισμός 3.8: Για κάθε a,b V G, το σύνολο των "ευθυγράμμων τμημάτων μεταξύ των a και b" συμβολίζεται με lin(a,b), δηλ., με m 0 =d(a,b) θέτουμε lin(a,b)= path m0 (a,b). Πρόταση 3.9: Για κάθε a,b V G, για κάθε A,B lin(a,b) έχουμε length(a) = length(b). Τώρα γενικεύουμε τις έννοιες της διαδρομής και του ευθύγραμμου τμήματος μεταξύ δύο γραφημάτων. Ορισμός 3.10: Για κάθε Α,Β C(G), με Α 0, Β 0, ορίζουμε path(a,b) = a VA,b VB path(a,b), lin(a,b) = a VA,b VB lin(a,b), Από όλες τις διαδρομές μεταξύ των A και B ιδιαίτερο ενδιαφέρον παρουσιάζουν οι ελάσσονες -- το ίδιο και για τα ευθύγραμμα τμήματα. Παρακάτω ορίζουμε τα αντίστοιχα σύνολα και μελετούμε κάποιες ιδιότητες αυτών. Ορισμός 3.11: Για κάθε Α,Β C(G), με Α, Β 0, ορίζουμε path(a,b) = {ελάσσονα (ως προς ) στοιχεία του path(a,b)} lin(a,b) = {ελάσσονα (ως προς ) στοιχεία του lin(a,b)} Πρόταση 3.12: Εστω Α,Β C(G) με Α 0, Β 0, και C=c 1 c 2 c M path(a,b). Τότε: C path(a,b) (c 1 V A, c M V B και για m {2,3,,M 1} c m V A V B ). Απόδειξη: (1) Εστω C=c 1 c 2 c M path(a,b). Τότε c 1 V A, c M V B, Ορίζω m=max{i: c i V A }, n=min{i: c i V B }. Θα είναι m n. Γιατί αν είναι m>n 1, τότε θέτοντας j= max{i: i n, c i V A } θα έχω c j V A, c n V B και c j c j+1 c n path(a,b), c j c j+1 c n < c 1 c n c m c M =C, αλλά υποθέσαμε ότι το C είναι ελάσσον. Αν m>1, τότε c m c M < c 1 c M =C, αλλά υποθέσαμε ότι το C είναι ελάσσον. Οπότε m=1. Αντίστοιχα προκύπτει ότι n=m. Οπότε για m {2,3,,M 1} c m V A V B. (2) Εστω c 1 V A, c M V B, και για m {2,3,,M 1} c m V A V B. Σαφώς C=c 1 c 2 c M path(a,b). Αν υπάρχει D path(a,b) με D C, τότε D=c m c m+1 c n, 1 m n M. Αλλά θα έχω c m V A m=1, c n V B n=m. Οπότε D=C, δηλαδή το C path(a,b). Πρόταση 3.13: Εστω Α,Β C(G) με Α 0, Β 0, και C=c 1 c 2 c M lin(a,b). Τότε: C lin(a,b) (c 1 V A, c M V B και για m {2,3,,M 1} c m V A V B ). Απόδειξη: Παρόμοια με της Πρότασης Πρόταση 3.14: Εστω Α,Β C(G). Τότε path(a,b)={c} lin(a,b)={c}. Απόδειξη: Για κάθε D path(a,b), D C, έχουμε C<D. Οπότε, αν D lin(a,b) path(a,b) και D C, θα έχουμε C<D

5 Επίσης C lin(a,b). Διότι C=c 1 c 2 c M C path(c 1,c M ) path(a,b). Τώρα, αν D path(c 1,c M ) path(a,b) και D C, τότε C < D length(c) < length(d). Αρα length(c) είναι ελάχιστο στο σύνολο path(c 1,c M ) οπότε length(c) είναι ελάχιστο στο σύνολο lin(c 1,c M ) path(c 1,c M ), και αρα length(c) είναι ελάχιστο στο σύνολο path(c 1,c M ). Δηλαδή C lin(c 1,c M ) lin(a,b). Εχουμε λοιπόν δείξει ότι C lin(a,b). Τώρα, για κάθε D lin(a,b) lin(a,b) path(a,b) θα είναι C D, δηλαδή το C=D, αφού το lin(a,b) περιέχει τα ελάσσονα στοιχεία του lin(a,b). Πρόταση 3.15: Εστω C= c 1 c 2 c M lin(c 1,c M ). Τότε για κάθε m,n {1,2,,M} c m c m+1 c n lin(c m,c n ). Απόδειξη: Εστω c m c m+1 c n lin(c m,c n ). Δηλαδή υπάρχει διαδρομή c m b 1 b K c n τέτοια ώστε length(c m b 1 b K c n ) < length(c m c m+1 c n ). Τότε θα είναι length(c 1 c m b 1 b K c n c M ) < length(c 1 c m c m+1 c n-1 c n c M ), που είναι άτοπο, γιατί υποθέσαμε c 1 c m c m+1 c n-1 c n c M lin(c 1,c M ). Πρόταση 3.16: Για κάθε Α,Β C(G): V A V B A B C(G). Απόδειξη: Αν V A V B, τότε υπάρχει x V A V B. Τώρα παίρνω y, z V A V B = V A B και εξετάζω τις παρακάτω περιπτώσεις. 1. y,z V A. Τότε (αφού το Α είναι συνεκτικό) υπάρχει D P(G) τέτοιο ώστε D A A B και y,z V D V A V B = V A B. 2. y,z V B, ισχύουν αντίστοιχα με την περίπτωση (1). 3. y V A, z V Β. Tότε υπάρχει D P(G) τέτοιο ώστε D A A B και x,y V D. Επίσης υπάρχει F P(G) τέτοιο ώστε F B A B και x,z V F. Οπότε D F P(G), y, z V D V F = V D F V A V B = V A B, και D F A B Οπότε, για κάθε y,z V A B, υπάρχει διαδρομή P τέτοια ώστε y,z V P και P A B, δηλ. A B C(G). 4. Η Υπερπράξη Σύνδεσης Τώρα εισάγουμε την υπερπράξη + μεταξύ συνεκτικών γραφημάτων. Το σύνολο A+B αποτελείται από τα συνεκτικά γραφήματα τα οποία "συνδέουν" τα Α και Β με μια ελάσσονα διαδρομή. Ορισμός 4.1: Για κάθε Α,Β C(G), ορίζουμε A+B ως εξής i. Για A=0: Α+Β=Β. ii. Για Β=0: Α+Β=Α. iii. Για A 0, Β A 0: Α+B={A B C} C path(a,b) Πρόταση 4.2: Για κάθε Α,Β,C C(G) ισχύουν τα εξής. i. C A+B A C και B C. ii. C A+B C C(G) iii. Α+0=A, A+G=G. iv. A+B=B+A.

6 Τώρα εξετάζουμε την περίπτωση όπου το G είναι δένδρο. Προηγουμένως αποδεικνύουμε ορισμένες βοηθητικές προτάσεις. Πρόταση 4.3: Εστω διαδρομές C 1 =x 1 x 2...x K, C 2 =y 1 y 2...y M, με K M και C 1 C 2. Τότε υπάρχει k {1,2,...,K} τέτοιο ώστε x k y k. Απόδειξη: Αν είχαμε για κάθε k {1,2,...,K} x k =y k, τότε θα ήταν C 1 =x 1 x 2...x K C 2 =y 1 y 2...y M, αλλά υποθέσαμε C 1 C 2. Αρα υπάρχει k {1,2,...,K} τέτοιο ώστε x k y k. Πρόταση 4.4: Εστω διαδρομές C 1 =x 1 x 2...x K, C 2 =y 1 y 2...y M, με C 1 C 2, K M και x 1 =y 1, x K =y M. Τότε υπάρχει k {1,2,...,K} τέτοιο ώστε x k y k. Απόδειξη: Εστω Κ=Μ. Αν είχαμε για κάθε k {1,2,...,K} x k =y k, τότε θα ήταν C 1 =x 1 x- 2...x K =C 2 =y 1 y 2...y M, αλλά υποθέσαμε C 1 C 2. Αν πάλι Κ<Μ τότε x Κ y Μ. Διότι αν x Κ =y Κ και x Κ =y Μ, τότε y Κ =y Μ. Αλλά σε μια διαδρομή δεν υπάρχει επανάληψη κόμβων. Πρόταση 4.5: To G είναι δένδρο αν και μόνο αν: για κάθε Α, Β C(G) το A+B είναι μονοστοιχειακό σύνολο. Απόδειξη: (1) Εστω ότι τo G είναι δένδρο. Παίρνουμε τυχόντα Α,Β C(G). Εχουμε Α+Β={Α B C} C path(a,b). Εστω ότι υπάρχουν C 1, C 2 path(a,b), C 1 C 2. Aφού το path(a,b) περιέχει ελάσσονα στοιχεία, θα είναι C 1 C 2. Εστω (χωρίς βλάβη της γενικότητας) C 1 =x 1 x 2...x K, C 2 =y 1 y 2...y M, με K M. Τότε, από την Πρόταση 4.3 το σύνολο Q={k: 1 k K, x k y k } δεν είναι κενό. Θέτουμε i=min Q, δηλ. x i-1 =y i-1, x i y i. Επειδή x 1 x 2...x K path(a,b) (από την Πρόταση 3.12) θα έχουμε x k V B, x k-j V B για j>0. Αρα x ι-1 V B. Θέτουμε D 1 =x i x i+1...x K, D 2 =y i y i+1...y M, D=D 1 D 2 B. Το D είναι συνεκτικό και x i- 1 V B, x i-1 V D1, x i-1 V D2 (τα C 1, C 1 είναι διαδρομές και δεν έχουν επαναλήψεις κόμβων). Αφού το D είναι συνεκτικό υπάρχει μια διαδρομή P=z 1 z 2...z J D με z 1 =x i, z J =y i. Επίσης x i- 1 V B V D1 V D2 = V B D1 D2 οπότε x i-1 V P. Αρα R= x i-1 x i z 2...z J-1 y i x i-1 είναι κύκλος. Αλλά το G ως δένδρο δεν μπορεί να έχει κύκλους. Οπότε έχουμε φτάσει σε άτοπο. Αρα C 1 =C 2, το path(a,b) είναι μονοστοιχειακό και το Α+Β είναι επίσης μονοστοιχειακό. (2) Εστω ότι για κάθε Α, Β C(G) το A+B είναι μονοστοιχειακό σύνολο. Παίρνουμε τυχόντα a,b V G και τυχόντα C 1, C 2 path(a,b). Ας υποθέσουμε ότι C 1 C 2. Θα έχουμε C 1 =x 1 x- 2...x K, C 2 =y 1 y 2...y M, και έστω K M. Τότε από την πρόταση 4.4 το σύνολο Q={k: 1 k K, x k y k } δεν είναι κενό. Θέτουμε i=min Q, δηλ. x i-1 =y i-1, x i y i. Θέτουμε D 1 =x i x i+1...x K, D 2 =y i y i+1...y M. Επειδή x K =b=y M, το D 1 D 2 είναι συνεκτικό. Θέτουμε P=({x i-1 }, ). Εχουμε x i-1 V D1, x i-1 V D2 (τα C 1, C 1 είναι διαδρομές και δεν έχουν επαναλήψεις κόμβων). Οπότε x i-1 V D1 V D2 = V D1 D2. Τώρα θέτουμε S 1 =x i-1 x i path(p, D 1 D 2 ) και x i-1 x i E S1. Ακόμη, x i-1 x i E D1 E D2 E P E S2. Οπότε x i-1 x i E P D1 D2 S1, x i-1 x i E P D1 D2 S2. Θέτουμε S 2 =x i-1 y i path(p, D 1 D 2 ) και x i-1 y i E S2. Ακόμη, x i-1 y i E D1 E D2 E P E S1. Οπότε x i-1 y i E P D1 D2 S2, x i-1 x i E P D1 D2 S1. Αρα P D 1 D 2 S 1 P+(D 1 D 2 ), P D 1 D 2 S 2 P+(D 1 D 2 ) και P D 1 D 2 S 1 P D 1 D 2 S 2. Αρα το P+(D 1 D 2 ) δεν είναι μονοστοιχειακό αλλά αυτό αντίκειται στην αρχική υπόθεση. Κατά συνέπεια, C 1 =C 2, δηλαδή για τυχόντα a,b το path(a,b) είναι μονοστοιχειακό και άρα το G είναι δένδρο.

7 Βιβλιογραφία 1. R. Botafogo, E. Rivlin, B. Schneiderman, "Structural analysis of hypertext: identifying hierarchies and useful metrics", ACM Trans. On Inf. Sys., vol. 10, pp , F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, P. Corsini, Prolegomena of Hypergroup Theory, Udine: Aviani, B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, D. Gibson, J. Kleinberg, P. Raghavan, "Inferring WEB communities from link topology", Proc. Of the 9 th ACM conference on hypertext and hypermedia, F. Harary, Graph Theory, Addison-Wesley, J. Kleinberg, "Authoritative sources in a hyperlinked environment", Proc. ACM/SIAM Symposium on Discrete Algorithms, 1998.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3 Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Λίβανος & Σ. Κ. 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (edge-separator) ενός γραφήματος =

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2 Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (3)

Στοχαστικές Στρατηγικές. διαδρομής (3) Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις». Α 1 Έστω η παρακάτω σχέση Q(k) πάνω στο σύνολο {1, 2} όπου k τυχαίος

Διαβάστε περισσότερα

ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΔΙΑΔΡΟΜΕΣ

ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΔΙΑΔΡΟΜΕΣ Αποστάσεις και Διαδρομές 153 ΚΕΦΑΛΑΙΟ 5 ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΔΙΑΔΡΟΜΕΣ ΣΕ ΓΡΑΦΗΜΑΤΑ 5.1 Αποστάσεις σε Γραφήματα 5.2 Αποστάσεις σε Έμβαρα Γραφήματα 5.3 Το Κέντρο και το Μέσο ενός Γραφήματος 5.4 Κώδικες Ανθεκτικοί

Διαβάστε περισσότερα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης & Σ. Κ. 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Δίνεται διμερές

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Εισαγωγή στην ανάλυση

Εισαγωγή στην ανάλυση Εισαγωγή στην ανάλυση Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ. Έστω Α ένα υποσύνολο του και Α. Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση Πραγματική συνάρτηση με πεδίο ορισμού το Α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Κεφάλαιο 11 Ένωση Ξένων Συνόλων

Κεφάλαιο 11 Ένωση Ξένων Συνόλων Κεφάλαιο 11 Ένωση Ξένων Συνόλων Περιεχόμενα 11.1 Εισαγωγή... 227 11.2 Εφαρμογή στο Πρόβλημα της Συνεκτικότητας... 228 11.3 Δομή Ξένων Συνόλων με Συνδεδεμένες Λίστες... 229 11.4 Δομή Ξένων Συνόλων με Ανοδικά

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ Ενότητα: Όρια και συνέχεια συναρτήσεων Διδάσκων: Ιωάννης Γιαννούλης Τμήμα: Μαθηματικών Κεφάλαιο 2 Ορια και συνέχεια συναρτήσεων 2.1 Πραγµατικές συναρτήσεις

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Thanasis Kehagias, 2009

Thanasis Kehagias, 2009 Μέρος II Αναλυτικη Γεωµετρια 33 34 Το παρον τευχος περιεχει συντοµη ϑεωρια, λυµενες και αλυτες ασκησεις Αναλυτικης Γεωµετριας. Κατα τη γνωµη µου, για τους περισσοτερους ανθρωπους, ο µονος τροπος εξοικειωσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()].

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7β Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

S A : N G (S) N G (S) + d S d + d = S

S A : N G (S) N G (S) + d S d + d = S Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

q(g \ S ) = q(g \ S) S + d = S.

q(g \ S ) = q(g \ S) S + d = S. Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος & Σ. Κ. Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους.

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ιάκωβος Ανδρουλιδάκης users.uoa.gr/ iandroul iandroul@math.uoa.gr Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών, Τομέας Άλγεβρας-Γεωμετρίας Περίληψη Στη διάλεξη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

Σχέσεις Μερικής ιάταξης

Σχέσεις Μερικής ιάταξης Σχέσεις Μερικής ιάταξης ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης Σχέση Μερικής

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (1)

Στοχαστικές Στρατηγικές. διαδρομής (1) Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα