ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής"

Transcript

1 Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Mechanism design Σχεδίαση μηχανισμών 4

5 Εισαγωγή Η σχεδίαση μηχανισμών αφορά τη δημιουργία παιχνιδιών για να παίξουν κάποιοι παίκτες με τέτοιο τρόπο, ώστε να μεγιστοποιηθεί το όφελος αυτού που σχεδιάζει/διοργανώνει το παιχνίδι. Οι παίκτες και οι προτιμήσεις τους είναι δεδομένες. Ο σχεδιαστής καθορίζει τις διαθέσιμες ενέργειες στους παίκτες και το αποτέλεσμα τους για κάθε συνδυασμό τους. ΠΡΟΣΟΧΗ: Οι παίκτες δεν είναι υποχρεωμένοι να παίξουν! Στο παιχνίδι οι παίκτες θα επιλέξουν ένα σημείο ισορροπίας. 5

6 Παράδειγμα: Το πρόβλημα Η κυβέρνηση θα μπορούσε να θέσει τους κανόνες χρήσης των κοινών πόρων ως εξής: Εκδοχή 1: Στην αρχή κάθε χρόνου η κυβέρνηση εκχωρεί το αποκλειστικό δικαίωμα χρήσης του πόρου για έναν χρόνο, στον ενδιαφερόμενο που θα κάνει την καλύτερη προσφορά. Εκδοχή 2: Η κυβέρνηση, κατόπιν πλειοδοτικού διαγωνισμού, εκχωρεί το δικαίωμα χρήσης του κοινόχρηστου πόρου για πάντα στον ενδιαφερόμενο που θα πλειοδοτήσει. Ιδιωτικοποίηση των κοινών Εκδοχή 3: Η κυβέρνηση επιτρέπει σε κάθε ενδιαφερόμενο να χρησιμοποιεί τον πόρο, θέτει όμως ένα τέλος χρήσης ανάλογο με τον βαθμό χρήσης. Κάθε μία από τις παραπάνω εκδοχές θα έχει ένα διαφορετικό όφελος για την κυβέρνηση, και άρα πρέπει να βρει αυτή που τη συμφέρει περισσότερο. 6

7 Παράδειγμα: Δημοπρασία με έναν παίκτη (1/2) Έστω ότι ένας οίκος ενδιαφέρεται να πουλήσει ένα πανάκριβο έργο τέχνης και υπάρχει μόνο ένας που θα μπορούσε να το αγοράσει. Το πρόβλημα είναι ότι ο οίκος δεν γνωρίζει πόσα χρήματα θα ήταν διατεθειμένος ο αγοραστής να πληρώσει. Έστω ότι υπάρχουν δύο ενδεχόμενα: Ο αγοραστής να είναι φανατικός λάτρης της τέχνης και άρα είναι διατεθειμένος να πληρώσει ένα μεγάλο ποσό. Ο αγοραστής είναι απλός θαυμαστής και άρα είναι διατεθειμένος να πληρώσει ένα σημαντικά μικρότερο ποσό. 7

8 Παράδειγμα: Δημοπρασία με έναν παίκτη (2/2) Μερικές εκδοχές για το πώς θα μπορούσε να διοργανωθεί η δημοπρασία είναι οι εξής: Εκδοχή 1: Ο οίκος θέτει μια μεγάλη τιμή, που μόνο ένας φανατικός λάτρης θα ήταν διατεθειμένος να τη δεχτεί. Εκδοχή 2: Ο οίκος θέτει μια μικρότερη τιμή, που θα μπορούσε να τη δεχτεί και ένας απλός θαυμαστής. Όχι όμως και ένας κοινός άνθρωπος... Εκδοχή 3: Ο οίκος θέτει δύο τιμές, μια μεγάλη και μια μικρή. Η μεγάλη τιμή εγγυάται ότι ο ενδιαφερόμενος θα πάρει το έργο σίγουρα, ενώ η μικρή επιτρέπει στον οίκο, με κάποια γνωστή πιθανότητα, να αποσύρει το έργο από τη δημοπρασία. 8

9 Παράδειγμα: Δημοπρασία με πολλούς παίκτες Έστω ότι ο οίκος θέτει το έργο σε ανοικτή δημοπρασία. Προφανώς ο οίκος θέλει να πουλήσει το έργο στον ενδιαφερόμενο που είναι διατεθειμένος να δώσει το μεγαλύτερο ποσό και για όλο το ποσό αυτό. Από την άλλη όμως, κανείς υποψήφιος αγοραστής δεν θέλει να αποκαλύψει το ποσό που είναι διατεθειμένος να πληρώσει, ελπίζοντας να αγοράσει το έργο σε χαμηλότερη τιμή. Μερικές από τις δυνατές εκδοχές είναι οι εξής: Εκδοχή 1: Οι ενδιαφερόμενοι κάνουν τις προσφορές τους και το έργο κατοχυρώνεται σε αυτόν που θα υποβάλλει την μεγαλύτερη προσφορά και για την τιμή αυτή (first-price auction). Εκδοχή 2: Οι ενδιαφερόμενοι κάνουν τις προσφορές τους και το έργο κατοχυρώνεται σε αυτόν που θα κάνει την μεγαλύτερη προσφορά, για την τιμή όμως της αμέσως επόμενης προσφοράς (second-price auction). 9

10 Δημοπρασία με έναν αγοραστή 10

11 Περιγραφή Θα εξετάσουμε αναλυτικά το παράδειγμα της δημοπρασίας με έναν παίκτη, για τον οποίο δεν είναι γνωστή η αξία που δίνει στο έργο. Έστω θ η αξία για έναν φανατικό λάτρη και μ η αξία για έναν απλό θαυμαστή. θ>μ>0 ΠΡΟΣΟΧΗ: Για απλοποίηση εκφράζουμε την ωφέλεια κάθε παίκτη σε χρηματικά ποσά. Έστω ρ η πιθανότητα ο αγοραστής να είναι φανατικός λάτρης. Θα εξετάσουμε πώς θα έπρεπε ο οίκος να πουλήσει το έργο στον υποψήφιο αγοραστή. 11

12 Περίπτωση γνωστού Εάν ο οίκος γνώριζε ότι ο αγοραστής είναι φανατικός λάτρης, θα έθετε την τιμή πώλησης σε θ. Παρόμοια, εάν ο οίκος γνώριζε ότι ο αγοραστής είναι απλός θαυμαστής, θα έθετε την τιμή πώλησης σε μ. Για να είναι σίγουρος ότι ο αγοραστής θα δεχθεί την προσφορά, κανονικά θα έπρεπε να θέσει την τιμή πώλησης ελαφρώς κάτω από τις τιμές θ και μ. Εάν λοιπόν ο οίκος έχει τρόπο να «μαντέψει» τον τύπο του αγοραστή, το αναμενόμενο κέρδος του (πριν μαντέψει...) είναι: π max =ρ θ+(1-ρ) μ αγοραστή Το παραπάνω αναμενόμενο κέρδος είναι το μέγιστο που μπορεί να πετύχει ο οίκος. 12

13 Ερώτηση στον αγοραστή Μια «θεωρητική» εκδοχή θα ήταν να ρωτηθεί ο αγοραστής εάν είναι φανατικός λάτρης ή απλός θαυμαστής. Ανάλογα με την απάντησή του η τιμή πώλησης θα τεθεί σε θ ή μ αντίστοιχα. Ο αγοραστής γνωρίζοντας αυτή τη συνέπεια δεν έχει κανέναν λόγο να ομολογήσει ότι είναι φανατικός λάτρης (εάν είναι), ώστε σε κάθε περίπτωση να πληρώσει μόνο μ. μ<π max 13

14 Μία τιμή Μια άλλη εκδοχή θα ήταν να τεθεί μία μόνο τιμή. Η μόνη «λογική» τιμή που θα μπορούσε να ελκύσει και τους δύο παίκτες είναι η μ. Σε αυτή την περίπτωση, τα έσοδα του οίκου είναι μ, ενώ το κέρδος του αγοραστή είναι θ-μ ή 0, ανάλογα με τον τύπο του. Εάν ο οίκος θέσει σταθερή τιμή μεγαλύτερη από μ, τότε αυτή θα πρέπει να είναι θ. Σε αυτή την περίπτωση, μόνο ο φανατικός λάτρης θα αγοράσει το έργο, με αναμενόμενα έσοδα για τον οίκο ρ θ ( <π max ). 14

15 Συνδυασμός τιμών (1/2) Ο οίκος μπορεί να προτείνει δύο τιμές, μια υψηλή p (p θ) στην οποία η συναλλαγή είναι εξασφαλισμένη, και μια χαμηλή q (q<p, q μ), στην οποία η πιθανότητα να πραγματοποιηθεί η συναλλαγή είναι Q. Ένας φανατικός λάτρης θα επιλέξει τη βέβαιη επιλογή, εάν ισχύει: (θ-p) Q(θ-q) ή ισοδύναμα: Παρόμοια, ένας απλός θαυμαστής θα επέλεγε την αβέβαιη περίπτωση εάν: Q(μ-q) μ-p ή ισοδύναμα: Τελικά, για να επιλέγει ένας φανατικός λάτρης την βέβαιη περίπτωση και ένας απλός θαυμαστής την αβέβαιη, πρέπει: p Qq θ 1 Q p Qq µ 1 Q p Qq θ µ 1 Q 15

16 Συνδυασμός τιμών (2/2) Η τελευταία ανισότητα ονομάζεται περιορισμός συμβατότητας κινήτρων (incentive-compatibility constraint). Κάθε παίκτης επιλέγει την επιλογή που «σχεδιάστηκε» για αυτόν. Φυσικά πρέπει να ισχύουν και οι ανισότητες: θ p, μ q Οι παραπάνω ανισότητες ονομάζονται περιορισμοί ατομικής ορθολογικότητας (individual-rationality constraint). Εάν ισχύουν όλοι οι παραπάνω περιορισμοί, τότε τα αναμενόμενα έσοδα του οίκου είναι: Επ=ρ p+(1-ρ) Q q Το πρόβλημα σχεδίασης μηχανισμού αναδιατυπώνεται πλέον ως εξής: Βρείτε τα p, q και Q τα οποία πληρούν τους παραπάνω περιορισμούς και μεγιστοποιούν τα αναμενόμενα έσοδα του οίκου. 16

17 Ανάλυση (1/3) Από τον περιορισμό p Qq θ και μετά από λίγες πράξεις προκύπτει ότι θ>p. 1 Q Πράγματι: θ p 1 Qq Q θ θ Q p Q q οπότε με δεδομένο ότι θ>q, άρα θq<-qq προκύπτει ότι θ>p. Άρα ο περιορισμός αυτός αρκεί για να ικανοποιήσουμε και τον περιορισμό της ατομικής ορθολογικότητας για την περίπτωση του φανατικού λάτρη. Με δεδομένο ότι όσο αυξάνει το p αυξάνει και η ποσότητα μπορούμε να αυξήσουμε το p έως ότου συμβεί: p Qq 1 Q p Qq θ = 1 Q Έτσι μεγιστοποιούμε τα κέρδη, χωρίς να διακινδυνεύουμε να αποσυρθεί ο φανατικός λάτρης της τέχνης! 17

18 Ανάλυση (2/3) Από την άλλη, είναι εύκολο να δούμε ότι η χαμηλή τιμή q μπορεί να αυξηθεί μέχρι την τιμή μ, χωρίς να παραβιάζει κανέναν περιορισμό. Πράγματι, αν μ=q τότε ο περιορισμός p Qq 1 Q µ εκφυλίζεται στον p>μ που προφανώς ισχύει. p Qq θ = 1 Q Τέλος από τις σχέσεις q=μ και προκύπτει: p = Qµ + ( 1 Q)θ 18

19 Ανάλυση (3/3) Αντικαθιστώντας στην σχέση που μας δίνει το αναμενόμενο κέρδος του οίκου: Επ=ρ p+(1-ρ) Q q βρίσκουμε: Επ=Qμ+(1-Q)ρθ Στην παραπάνω σχέση η μόνη παράμετρος είναι η Q, ενώ όλοι οι περιορισμοί ικανοποιούνται. Η παραπάνω σχέση είναι γραμμική, άρα δεν έχει ακρότατο! Ωστόσο, με δεδομένο ότι 0 Q 1, μπορούμε να βρούμε ακρότατα για Q=0 και για Q=1 : Εάν μ<ρθ, τότε το μέγιστο είναι για Q=0. Σε αυτή την περίπτωση ουσιαστικά ο οίκος αρνείται να πουλήσει στον απλό θαυμαστή (και άρα p=θ). Εάν μ>ρθ, τότε το μέγιστο είναι για Q=1. Σε αυτή την περίπτωση ο οίκος πουλά και στους δύο, στην τιμή p=q=μ. 19

20 Συμπεράσματα Είδαμε τελικά ότι τα κέρδη του οίκου μεγιστοποιούνται όταν δεν υπάρχει αβεβαιότητα (Q=0 ή Q=1). Άρα ο μηχανισμός που σχεδιάσαμε αποδείχθηκε ισοδύναμος ενός μηχανισμού με σταθερή τιμή, είτε θ ή μ, ανάλογα με τη σχέση των ποσοτήτων μ και ρθ. Ο μηχανισμός συνδυασμού δύο τιμών, εφόσον αυτές πληρούν τους δύο περιορισμούς, έχει και μια ακόμη ιδιότητα: Οι παίκτες δεν έχουν πλέον λόγο να κρύβουν τον τύπο τους. Μπορούν να τον ανακοινώσουν στον οίκο και βάσει του τύπου τους να επιλέξουν μια από τις δύο επιλογές. Ένας τέτοιες μηχανισμός, που έχει ξεχωριστές επιλογές ειδικά σχεδιασμένες για διαφορετικούς τύπους παικτών, ονομάζεται μηχανισμός άμεσης αποκάλυψης. direct revelation mechanism 20

21 Revelation principle Αρχή της αποκάλυψης 21

22 Παιχνίδια ενός παίκτη (1/3) Έστω ότι έχουμε έναν μόνο παίκτη με δύο τύπους, θ και μ. Έστω ρ η πιθανότητα να είναι τύπου θ. Ένας μηχανισμός είναι ένα σύνολο κανόνων (το παιχνίδι) που καθορίζει ποιες ενέργειες μπορεί να εκτελέσει ο παίκτης. Αυτό το οποίο είναι δεδομένο εξαρχής είναι η συνάρτηση απολαβής του παίκτη, η οποία καθορίζει το όφελός του ανάλογα με τον τύπο του και τη στρατηγική που επιλέγει. Για παράδειγμα, με π(s,θ) συμβολίζουμε το όφελος του παίκτη εάν ο τύπος του είναι θ και επιλέξει τη στρατηγική s. Έστω ότι για ένα συγκεκριμένο μηχανισμό υπάρχουν μια στρατηγική s θ για τον τύπο θ του παίκτη και μια στρατηγική s μ για τον τύπο μ του παίκτη, έτσι ώστε: π(s θ,θ) π(s,θ) για κάθε s π(s μ,μ) π(s,μ) για κάθε s Το σύνολο στρατηγικών s θ, s μ ονομάζεται συμβατό με τα κίνητρα (incentive compatible). 22

23 Παιχνίδια ενός παίκτη (2/3) Με άλλα λόγια, οι στρατηγικές s θ και s μ είναι κυρίαρχες για τους αντίστοιχους τύπους παίκτη. Επειδή ωστόσο κανείς παίκτης δεν μπορεί να εξαναγκαστεί να παίξει ένα παιχνίδι, για τις στρατηγικές αυτές θα πρέπει επίσης να ισχύει: π(s θ,θ) π 0 π(s μ,μ) π 0 όπου π 0 το όφελος από το να μην συμμετάσχει καθόλου ο παίκτης στο παιχνίδι. Οι τελευταίες ανισότητες ονομάζονται περιορισμοί ατομικής ορθολογικότητας (individual-rationality constraints). Ο σχεδιαστής μηχανισμών λοιπόν πρέπει να βρει έναν μηχανισμό που να διαθέτει συμβατό με τα κίνητρα σύνολο στρατηγικών και να πληρεί τους περιορισμούς ατομικής ορθολογικότητας, τέτοιο ώστε να μεγιστοποιείται το αναμενόμενο όφελος του σχεδιαστή. 23

24 Παιχνίδια ενός παίκτη (3/3) Στη σχεδίαση μηχανισμών για παιχνίδια ενός παίκτη αποδεικνύεται το εξής: Για οποιοδήποτε μηχανισμό και μια ανάθεση στρατηγικών για τους διάφορους τύπους του παίκτη η οποία είναι συμβατή με τα κίνητρα και ατομικά ορθολογική, μπορεί να κατασκευαστεί ένας μηχανισμός που βασίζεται απλά στην αποκάλυψη εκ μέρους του παίκτη του τύπου του και ο οποίος παράγει την ίδια ακριβώς αντιστοίχηση όταν οι παίκτες λένε την αλήθεια. Έτσι ο σχεδιαστής μηχανισμών μπορεί να ασχοληθεί μόνο με μηχανισμούς άμεσης αποκάλυψης. Η παραπάνω αρχή ονομάζεται αρχή της αποκάλυψης για παιχνίδια ενός παίκτη (revelation principle Ι). 24

25 Παιχνίδια με πολλούς παίκτες (1/2) Έστω ότι έχουμε δύο παίκτες, κάθε ένας από τους οποίους μπορεί να είναι τύπου θ ή τύπου μ. Έστω ρ η πιθανότητα για κάθε παίκτη να είναι τύπου θ. Έστω ένα σύνολο στρατηγικών (s 1θ,s 1μ,s 2θ,s 2μ ) το οποίο αποτελεί σημείο ισορροπίας Bayes-Nash, δηλαδή: Η στρατηγική s 1θ μεγιστοποιεί το αναμενόμενο όφελος του παίκτη 1 τύπου θ, εάν ο αντίπαλος επιλέγει, ανάλογα με τον τύπο του, s 2θ και s 2μ αντίστοιχα. Παρόμοια ισχύουν για τις s 1μ, s 2θ και s 2μ. Έστω λοιπόν ο παρακάτω μηχανισμός άμεσης αποκάλυψης: Κάθε παίκτης φανερώνει τον τύπο του (πριν μάθει τον τύπο του αντιπάλου) και το παιχνίδι οδηγείται στην αντίστοιχη ισορροπία. Είναι φανερό ότι στον παραπάνω μηχανισμό άμεσης αποκάλυψης, κανείς παίκτης δεν έχει λόγο να πει ψέματα! 25

26 Παιχνίδια με πολλούς Ισχύει λοιπόν το εξής: παίκτες (2/2) Για οποιοδήποτε μηχανισμό και για οποιοδήποτε σημείο ισορροπίας Bayes-Nash αυτού του μηχανισμού, μπορεί να κατασκευαστεί ένας μηχανισμός άμεσης αποκάλυψης ο οποίος παράγει την βέλτιστη αντιστοίχηση ενεργειών για τους παίκτες όταν αυτοί λένε την αλήθεια. Έτσι ο σχεδιαστής μηχανισμών μπορεί να ασχοληθεί μόνο με μηχανισμούς άμεσης αποκάλυψης. Η παραπάνω αρχή ονομάζεται αρχή της αποκάλυψης για παιχνίδια πολλών παικτών (revelation principle ΙΙ). 26

27 Παράδειγμα: Πώληση μεταβλητής ποσότητας (1/8) Έστω ότι μια εταιρεία μπορεί να πουλά μεταβλητές ποσότητες ενός προϊόντος σε υποψήφιους αγοραστές. Για παράδειγμα, δημοπρασίες ομολόγων Έστω ότι υπάρχουν δύο τύποι αγοραστών, A και B. Μια ποσότητα Q έχει αξία για τον τύπο A ίση με 2 (10 Q-Q 2 ). Η ίδια ποσότητα έχει αξία για τον τύπο B ίση με (10 Q-Q 2 ). Το κόστος παραγωγής ανά μονάδα για την εταιρεία είναι 2. Έστω ρ η πιθανότητα ένας αγοραστής να είναι τύπου A. Άρα η πιθανότητα να είναι τύπου B είναι 1-ρ. Η εταιρεία πρέπει να βρει ποια ποσότητα θα πουλήσει σε κάθε αγοραστή και σε ποια τιμή. 27

28 Παράδειγμα: Πώληση μεταβλητής ποσότητας (2/8) Έστω ότι η εταιρεία γνωρίζει τον τύπο του αγοραστή. Εάν αυτός είναι A, τότε η εταιρεία θα πουλήσει το προϊόν στην μέγιστη δυνατή τιμή, η οποία είναι 2 (10 Q-Q 2 ) Το κέρδος της εταιρείας σε αυτή την περίπτωση είναι: 2 (10 Q-Q 2 )-2Q Το κέρδος μεγιστοποιείται για Q=4.5. Για την ποσότητα αυτή η τιμή πώλησης (για το σύνολο της ποσότητας) είναι P A =49.5 και το κέρδος Εκτελώντας παρόμοιους υπολογισμούς για την περίπτωση ενός γνωστού παίκτη τύπου Β βρίσκουμε ότι: Η εταιρεία θα πουλήσει ποσότητα q=4 στην τιμή P B =24 με κέρδος για την εταιρεία

29 Παράδειγμα: Πώληση μεταβλητής ποσότητας (3/8) Η εταιρεία θα μπορούσε να αντιμετωπίσει όλους τους αγοραστές σαν να ήταν τύπου Β, θέτοντας Q=q=4 και P=P B =24. Το κέρδος της εταιρείας ανά αγοραστή θα είναι 16. Μια άλλη επιλογή είναι η εταιρεία να αγνοήσει τους αγοραστές τύπου Β και να θεωρήσει ότι όλοι οι αγοραστές είναι τύπου Α, θέτοντας ως μόνη επιλογή την Q=4.5 και P=P A =49.5. Το αναμενόμενο κέρδος της εταιρείας σε αυτή την περίπτωση είναι ρ Θα προσπαθήσουμε να βρούμε μια ενδιάμεση κατάσταση, όπου η εταιρεία να πουλά και στους δύο τύπους αγοραστών. 29

30 Παράδειγμα: Πώληση μεταβλητής ποσότητας (4/8) Με βάση την αρχή της αποκάλυψης, γνωρίζουμε ότι μπορούμε να αναζητήσουμε μόνο μηχανισμούς άμεσης αποκάλυψης όπου: Ο παίκτης θα δηλώνει τον τύπο του. Εάν ο τύπος του είναι Α, θα παίρνει ποσότητα Q στην τιμή Μ. Εάν ο τύπος του είναι Β, θα παίρνει ποσότητα q στην τιμή m. Προφανώς Q>q και M>m. Οι περιορισμοί συμβατότητας κινήτρων μας λένε ότι: 2 (10 Q-Q 2 )-M 2 (10 q-q 2 )-m (10 q-q 2 )-m (10 Q-Q 2 )-M Οι περιορισμοί ατομικής ορθολογικότητας μας λένε ότι: 2 (10 Q-Q 2 )-M 0 (10 q-q 2 )-m 0 30

31 Παράδειγμα: Πώληση μεταβλητής ποσότητας (5/8) Το αναμενόμενο κέρδος της εταιρείας είναι: ρ (Μ-2 Q)+(1-ρ) (m-2 q) Από τους δύο περιορισμούς ατομικής ορθολογικότητας: 2 (10 Q-Q 2 )-M 0 (10 q-q 2 )-m 0 τουλάχιστον σε έναν πρέπει να ισχύει η ισότητα. Πράγματι, αν και για τους δύο ισχύει το >0, τότε μπορούμε να αυξήσουμε λίγο το m και λίγο το Μ, προσέχοντας να μην παραβιάσουμε τους περιορισμούς συμβατότητας κινήτρων, αυξάνοντας έτσι τα αναμενόμενα κέρδη της εταιρείας. Με δεδομένο ότι: 2 (10 Q-Q 2 )-M 2 (10 q-q 2 )-m (10 q-q 2 )-m είναι φανερό ότι τελικά πρέπει να ισχύει: (10 q-q 2 )-m=0 31

32 Παράδειγμα: Πώληση μεταβλητής ποσότητας (6/8) Επίσης, μπορούμε να δούμε ότι ο πρώτος περιορισμός συμβατότητας κινήτρων: 2 (10 Q-Q 2 )-M 2 (10 q-q 2 )-m πρέπει να ισχύει με ισότητα. Αν δεν ισχύει η ισότητα, τότε η εταιρεία μπορεί να αυξήσει το Μ, αυξάνοντας τα κέρδη της, χωρίς να κινδυνεύει να αλλάξει ο παίκτης τύπου Α την επιλογή του. Άρα: 2 (10 Q-Q 2 )-M=2 (10 q-q 2 )-m Αντικαθιστώντας, βάσει των δύο εξισώσεων που βρήκαμε, τα Μ και m στο αναμενόμενο κέρδος της εταιρείας, αυτό γίνεται: ρ (18 Q-2 Q 2 )+(1-2 ρ) (10 q-q 2 )-(1-ρ) 2 q 32

33 Παράδειγμα: Πώληση μεταβλητής ποσότητας (7/8) Από τη μορφή που έχει η σχέση για το αναμενόμενο κέρδος, παρατηρούμε ότι αυτό μπορεί να μεγιστοποιηθεί ξεχωριστά για Q και ξεχωριστά για q. Βρίσκουμε λοιπόν ότι αυτό μεγιστοποιείται για: Q=4.5 q=(4-9ρ)/(1-2ρ) Προφανώς, επειδή πρέπει να ισχύει q 0, για τιμές του ρ>4/9 θεωρούμε ότι q=0. 33

34 Παράδειγμα: Πώληση μεταβλητής ποσότητας (8/8) Από τις εξισώσεις που βρήκαμε νωρίτερα προκύπτουν και οι τιμές πώλησης του προϊόντος. Ειδικότερα: Για ρ<=4/9, η εταιρεία πουλά και στους δύο τύπους πελάτη. Στους πελάτες τύπου Β πουλά ποσότητα q=(4-9ρ)/(1-2ρ) στην τιμή m=10q-q 2 (ακριβώς όσο είναι η αξία αυτής ποσότητας για τους πελάτες τύπου Β) Στους πελάτες τύπου Α πουλά ποσότητα Q=4.5 σε τιμή όμως μικρότερη από την αξία αυτής της ποσότητας για τους πελάτες τύπου Α. Για ρ>4/9 η εταιρεία πουλά μόνο στους πελάτες τύπου Α ποσότητα Q=4.5. Μάλιστα σε αυτή την περίπτωση η τιμή πώλησης είναι ίση με την αξία της ποσότητας για τους πελάτες τύπου Α. 34

35 Παρατηρήσεις Τα αποτελέσματα είναι λογικά. Πράγματι: Όταν υπάρχει η επιλογή Β, ο πελάτης τύπου Α δεν έχει λόγο να πληρώσει για ποσότητα Q τη μέγιστη τιμή, μιας και σε αυτή την περίπτωση το αναμενόμενο όφελός του είναι μηδέν, ενώ αν επιλέξει την μικρότερη ποσότητα με το μικρότερο όμως κόστος θα έχει κάποιο αναμενόμενο θετικό όφελος. Όταν δεν υπάρχει η επιλογή Β, ο πελάτης Α το μόνο που μπορεί να κάνει είναι να αγοράσει στη μέγιστη για αυτόν τιμή. Γενικά, όσο μικρότερη είναι η ποσότητα q, τόσο η τιμή για τον Α πλησιάζει στη μέγιστη για αυτόν. Πραγματικό παράδειγμα: Οι τιμές των επιχειρήσεων σε κανονική περίοδο και σε περίοδο εκπτώσεων. Ένας παίκτης τύπου Β πρέπει να περιμένει μέχρι τις εκπτώσεις, με κίνδυνο μάλιστα να μην βρει το προϊόν που θέλει. 35

36 Τέλος Ενότητας

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Δυοπώλιο Cournot Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή Οικονομικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΘΕΜΑ 1 ο (2.5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Δευτέρα 3 Σεπτεμβρίου 2012 Διάρκεια εξέτασης: 3 ώρες (16:30-19:30)

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 8: Τέλειος Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 4: Η τραγωδία των κοινών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 8: Πλεόνασμα καταναλωτή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Χρηματικά μέτρα των ωφελειών

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 6: Ζήτηση χρήματος Αγορά Χρήματος Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 9: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (1o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ Ενότητα 3: ΣΧΕΔΙΟ ΜΑΡΚΕΤΙΝΓΚ Βλαχοπούλου Μάρω Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 8: Αποφάσεις τιμολόγησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΑ ΣΧΕΔΙΑ Ενότητα 11η: ΣΤΡΑΤΗΓΙΚΕΣ ΤΙΜΟΛΟΓΗΣΗΣ ΑΛΕΞΑΝΔΡΙΔΗΣ ΑΝΑΣΤΑΣΙΟΣ Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

10 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

10 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 0 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα Αδειοδότησης... 0 2 Ενδεικτικές λύσεις ασκήσεων 0 ης

Διαβάστε περισσότερα

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις . Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις Α. Ενημερωτική Διαφήμιση στη Μονοπωλιακά Ανταγωνιστική Αγορά (Butters, Gerard 977, Equilibrium Distribution of Prices and Advertising) -To υπόδειγμα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 5: ΤΑΛΑΝΤΩΣΗ ΣΕ ΔΙΕΓΕΡΣΗ ΠΛΗΓΜΑΤΟΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Εξεταστική περίοδος Ιουνίου 2015 16 Ιουνίου 2015 Διάρκεια εξέτασης: 2,5 ώρες

Διαβάστε περισσότερα

Λογιστικές Εφαρμογές Εργαστήριο

Λογιστικές Εφαρμογές Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #7: Αναλυτικό Ημερολόγιο Διαφόρων Πράξεων Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #6: Σχεδιασμός Ελεγκτών με Χρήση Αναλυτικής Μεθόδου Υπολογισμού Παραμέτρων Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής

Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διοίκηση Λιανικού Εμπορίου & Δικτύου Διανομής Ενότητα 8 : Τιμολόγηση Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Ενότητα 1: Νικόλαος Χαριτάκης Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Περιεχόμενα Ορισμοί Ισορροπία Nash

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 6: Η Τεχνολογία Λογισμικού στην Αλληλεπίδραση Ανθρώπου-Υπολογιστή Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 3: Αγορά Χρήματος και επιτόκια. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 3: Αγορά Χρήματος και επιτόκια. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής Ενότητα 3: Αγορά Χρήματος και επιτόκια Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Στοιχειώδεις αντιδράσεις, μηχανισμός και εύρεση του νόμου ταχύτητας Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες

Διαβάστε περισσότερα

Διδάσκων: Νίκος Λαγαρός

Διδάσκων: Νίκος Λαγαρός ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 2: Ανάλυση Πιθανοτήτων, Σενάρια, Αναζήτηση Στόχου και Συγκεντρωτικοί Πίνακες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Το Υπόδειγμα της Οριακής Τιμολόγησης

Το Υπόδειγμα της Οριακής Τιμολόγησης Το Υπόδειγμα της Οριακής Τιμολόγησης (ilgrom, Paul and John Roberts 98, imit Pricing and Entry under Incomplete Information) - Μια επιχείρηση ακολουθεί πολιτική οριακής τιμολόγησης (limit pricing) όταν

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 6: Αυτόματος σχεδιαστής (vector) Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 2: Θεωρία Προσφοράς και Ζήτησης Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Ασκήσεις Κεφαλαίου 2 Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

Διοίκηση Έργου. Ενότητα 2: Επιλογή Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Διοίκηση Έργου. Ενότητα 2: Επιλογή Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Διοίκηση Έργου Ενότητα 2: Επιλογή Έργων Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος. ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος. ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: Δρ. Μαυρίδης Δημήτριος ΤΜΗΜΑ: Εισαγωγή στην Διοίκηση Επιχειρήσεων 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα