Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών"

Transcript

1 Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/ / 47

2 Περιεχόµενα I. Θεωρήµατα Wedderburn Κλασικά αποτελέσµατα II. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn III. Σχέσεις µηδενιστικών, δυϊκών και ψευδο-h-(τοπολογικών) αλγεβρών - Υλοποίηση συµπληρουσών απεικονίσεων µέσω µηδενιστών - Ψευδο-Hilbert-άλγεβρες ως δυϊκές άλγεβρες IV. Μητρικές αναπαραστάσεις αλγεβρών Ambrose Βιβλιογραφία 2 / 47

3 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

4 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

5 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

6 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

7 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

8 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

9 Εισαγωγή Οι µηδενιστικές απεικονίσεις παίζουν σπουδαίο ϱόλο σε Wedderburn αναλύσεις τοπολογικών αλγεβρών, όπως των συµπληρούµενων τοπολογικών αλγεβρών [Μ.Χ. 1993] µηδενιστικών αλγεβρών [Μ.Χ. 1994] αλγεβρών Ambrose [Μ.Χ. 1995, 2004, 2007] και ψευδο-h-αλγεβρών [Μ.Χ. 2011]. Η ουσία σε οποιαδήποτε θεωρία δοµής τύπου Wedderburn είναι καταρχάς, η ύπαρξη ταυτοδύναµων στοιχείων. Μέσω των µηδενιστών ορίζονται δύο κλάσεις τοπολογικών αλγεβρών οι µηδενιστικές και οι δυϊκές τοπολογικές άλγεβρες. Μία δυϊκή άλγεβρα είναι µηδενιστική. Το αντίστροφο δεν ισχύει γενικά. Μέσω συνθηκών και H-(τοπολογικών δοµών) οι έννοιες µηδενιστική άλγεβρα και δυϊκή άλγεβρα συµπίπτουν [Μ.Χ. 2012]. 3 / 47

10 Ι. Θεωρήµατα Wedderburn - Κλασικά αποτελέσµατα Η ϑεωρία Wedderburn ξεκίνησε στις αρχές του 1900 και οδήγησε στην περίφηµη εργασία του, όπου ο Joseph Henry Maclagan Wedderburn παρουσίασε κοµψές δυνατές αναλύσεις µοναδιαίων αλγεβρών µέσω απλούστερων υποδοµών ή ακόµη µέσω αλγεβρών πινάκων. Οι αποδείξεις που έδωσε ο Wedderburn ϐασίζονται στην ύπαρξη κάποιων στοιχείων (πρωταρχικά, ταυτοδύναµα) που αποτελούν τους γεννήτορες των υποδοµών που εµπλέκονται στις αναλύσεις. Οµως ο Wedderburn περιορίστηκε στην πεπερασµένη διάσταση. 4 / 47

11 Ι. Θεωρήµατα Wedderburn - Κλασικά αποτελέσµατα Η ϑεωρία Wedderburn ξεκίνησε στις αρχές του 1900 και οδήγησε στην περίφηµη εργασία του, όπου ο Joseph Henry Maclagan Wedderburn παρουσίασε κοµψές δυνατές αναλύσεις µοναδιαίων αλγεβρών µέσω απλούστερων υποδοµών ή ακόµη µέσω αλγεβρών πινάκων. Οι αποδείξεις που έδωσε ο Wedderburn ϐασίζονται στην ύπαρξη κάποιων στοιχείων (πρωταρχικά, ταυτοδύναµα) που αποτελούν τους γεννήτορες των υποδοµών που εµπλέκονται στις αναλύσεις. Οµως ο Wedderburn περιορίστηκε στην πεπερασµένη διάσταση. 4 / 47

12 Για µοναδιαίες προσεταιριστικές άλγεβρες τα ϑεωρήµατα δοµής Wedderburn διατυπώνονται ως εξής : Το κύριο ϑεώρηµα Wedderburn - Αναγωγή σε άλγεβρες που είναι µηδενοδύναµες και ηµιαπλές αντίστοιχα Μία πεπερασµένης διάστασης άλγεβρα A (υπεράνω ενός σώµατος χαρακτηριστικής 0) µε ριζικό Jacobson R(A), αναλύεται (µέσω ενός ισοµορφισµού διανυσµατικών χώρων) στο ευθύ άθροισµα του R(A) και µιάς ηµιαπλής υπάλγεβρας B, που είναι µοναδική (ως προς έναν ισοµορφισµό). 5 / 47

13 Το πρώτο θεώρηµα δοµής Wedderburn - Αναγωγή σε απλές άλγεβρες (εµπνευσµένο από το ϑεώρηµα Cartan-Killing για άλγεβρες Lie ( ) ϐάσει του οποίου, έχουµε ουσιαστικά, ταξινόµηση των πεπερασµένης διάστασης ηµιαπλών αλγεβρών Lie). Κάθε ηµιαπλή άλγεβρα εκφράζεται µε µοναδικό τρόπο (εκτός από τη σειρά) ως το ευθύ άθροισµα απλών 2-πλευρων ιδεωδών. Επίσης, ο Cartan απέδειξε ότι στην πεπερασµένη διάσταση, κάθε ηµιαπλή άλγεβρα υπεράνω του σώµατος των πραγµατικών ή ακόµα του σώµατος των µιγαδικών αριθµών είναι ευθύ άθροισµα full µητρικών αλγεβρών. Το αποτέλεσµα αυτό ισχύει, γενικότερα, όταν οι άλγεβρες λαµβάνονται υπεράνω αυθαίρετων σωµάτων και οφείλεται στον Wedderburn. 6 / 47

14 Το πρώτο θεώρηµα δοµής Wedderburn - Αναγωγή σε απλές άλγεβρες (εµπνευσµένο από το ϑεώρηµα Cartan-Killing για άλγεβρες Lie ( ) ϐάσει του οποίου, έχουµε ουσιαστικά, ταξινόµηση των πεπερασµένης διάστασης ηµιαπλών αλγεβρών Lie). Κάθε ηµιαπλή άλγεβρα εκφράζεται µε µοναδικό τρόπο (εκτός από τη σειρά) ως το ευθύ άθροισµα απλών 2-πλευρων ιδεωδών. Επίσης, ο Cartan απέδειξε ότι στην πεπερασµένη διάσταση, κάθε ηµιαπλή άλγεβρα υπεράνω του σώµατος των πραγµατικών ή ακόµα του σώµατος των µιγαδικών αριθµών είναι ευθύ άθροισµα full µητρικών αλγεβρών. Το αποτέλεσµα αυτό ισχύει, γενικότερα, όταν οι άλγεβρες λαµβάνονται υπεράνω αυθαίρετων σωµάτων και οφείλεται στον Wedderburn. 6 / 47

15 Το δεύτερο θεώρηµα δοµής Wedderburn - Αναγωγή σε µητρικές και διαιρετικές άλγεβρες Κάθε απλή άλγεβρα A µπορεί να εκφραστεί ως το ευθύ γινόµενο A = M D, όπου M είναι µία ολική άλγεβρα πινάκων και η D είναι µία διαιρετική άλγεβρα (και οι δύο άλγεβρες είναι µοναδικές ως προς ισοµορφισµούς). Μία παραλλαγή του τελευταίου αποτελέσµατος διατυπώνεται ως εξής : 7 / 47

16 Το δεύτερο θεώρηµα δοµής Wedderburn - Αναγωγή σε µητρικές και διαιρετικές άλγεβρες Κάθε απλή άλγεβρα A µπορεί να εκφραστεί ως το ευθύ γινόµενο A = M D, όπου M είναι µία ολική άλγεβρα πινάκων και η D είναι µία διαιρετική άλγεβρα (και οι δύο άλγεβρες είναι µοναδικές ως προς ισοµορφισµούς). Μία παραλλαγή του τελευταίου αποτελέσµατος διατυπώνεται ως εξής : 7 / 47

17 Θεώρηµα - Μητρική αναπαράσταση Μία πεπερασµένης διάστασης, µοναδιαία άλγεβρα (υπεράνω ενός σώµατος F χαρακτηριστικής 0) είναι απλή αν και µόνο αν A = M n (D) για κάποιον ακέραιο n 1 και κάποια διαιρετική άλγεβρα D υπεράνω του F. Στην περίπτωση που το F είναι αλγεβρικά κλειστό, τότε A = M n (F) για κάποιο θετικό ακέραιο n. 8 / 47

18 Στο πλαίσιο της αφηρηµένης άλγεβρας, διαπιστώνεται µια αξιόλογη παρουσίαση των ϑεωρηµάτων δοµής για διαφορετικές κλάσεις προσεταιριστικών ή ακόµη µη προσεταιριστικών αλγεβρών µε την έννοια του Wedderburn. Για παράδειγµα, έχει αναπτυχθεί µια δοµική ϑεωρία από τον ίδιο τον Wedderburn για την κλάση των προσεταιριστικών αλγεβρών όπως έχει ήδη αναφερθεί παραπάνω. Για το κύριο (πρωταρχικό) ϑεώρηµα Wedderburn, και για την προσεταιριστική περίπτωση υπάρχουν εργασίες από τους Albert, Campbell, Chaffer, Hemminger kai Rodabaugh. Σχετικές εργασίες έχουν δοθεί από τον Helemskii για µη µεταθετικές συµµετρικές άλγεβρες και τον Kolesnikov για σύµµορφες (conformal) άλγεβρες. Για εναλλάσσουσες (alternative) άλγεβρες από τους Schafer, Smith, ενώ για άλγεβρες Jordan από τους Albert, Khan, Penico, Thedy. το κύριο ϑεώρηµα Wedderburn έχει αντιµετωπιστεί για ορισµένα τριπλά συστήµατα ( Kamiya). οµική ϑεωρία Wedderburn σε άλγεβρες Banach έχει δοθεί από τους Curtis, Bade-Dales, Feldman, Johnson, Solovej και τον White. - Ανάλυση ή και ισχυρή ανάλυση Wedderburn (Wedderburnian άλγεβρα, η ονοµασία οφείλεται στον Glaeser). 9 / 47

19 Τι κοινό έχουν οι θεωρίες δοµής τύπου Wedderburn Το πρότυπο της δοµικής ϑεωρίας είναι, κατά κάποιο τρόπο, αξιοσηµείωτα παρόµοιο. Πράγµατι, και στις δύο περιπτώσεις την προσεταιριστική και την µη- προσεταιριστική, καθορίζεται η έννοια ενός ϱιζικού, και όταν είναι µηδέν, κάθε άλγεβρα, όπως περιγράφηκε παραπάνω, αναλύεται σε ένα πεπερασµένο άθροισµα απλών υπο-δοµών που µοιράζονται ορισµένα χαρακτηριστικά κληρονοµούµενα σε αυτές, από την αρχική άλγεβρα. 10 / 47

20 Τι κοινό έχουν οι θεωρίες δοµής τύπου Wedderburn Το πρότυπο της δοµικής ϑεωρίας είναι, κατά κάποιο τρόπο, αξιοσηµείωτα παρόµοιο. Πράγµατι, και στις δύο περιπτώσεις την προσεταιριστική και την µη- προσεταιριστική, καθορίζεται η έννοια ενός ϱιζικού, και όταν είναι µηδέν, κάθε άλγεβρα, όπως περιγράφηκε παραπάνω, αναλύεται σε ένα πεπερασµένο άθροισµα απλών υπο-δοµών που µοιράζονται ορισµένα χαρακτηριστικά κληρονοµούµενα σε αυτές, από την αρχική άλγεβρα. 10 / 47

21 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

22 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

23 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

24 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

25 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

26 Στις µη-νορµαρισµένες τοπολογικές άλγεβρες, χρησιµοποιούµε τις ακόλουθες ονοµασίες : Το πρώτο θεώρηµα δοµής, για να υποδηλώσουµε τις εκφράσεις είτε µέσω του ϐάθρου είτε µέσω µιας οικογένειας αξόνων της τοπολογικής άλγεβρας. ( Υπαρξη ελαχίστων ιδεωδών - Οικονοµικές Αναλύσεις). Το κύριο (πρωταρχικό) θεώρηµα δοµής Wedderburn, για διασπάσεις µέσω του ϱιζικού. Η ονοµασία αυτή είναι η συνήθης. Το δεύτερο θεώρηµα δοµής Wedderburn για εκφράσεις µέσω τοπολογικά απλών υπο-δοµών (ιδεώδη). Και Το τρίτο θεώρηµα δοµής Wedderburn όταν µία τοπολογική άλγεβρα µπορεί να ϑεωρηθεί ως άλγεβρα πινάκων. 11 / 47

27 ΙΙ. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn Ολοι οι διανυσµατικοί χώροι και οι άλγεβρες λαµβάνονται υπεράνω του σώµατος C των µιγαδικών αριθµών, και οι άλγεβρες ϑεωρούνται προσεταιριστικές. Ορισµός Ενας ψεύδο-h-χώρος είναι ένας διανυσµατικός χώρος E εφοδιασµένος µε µία οικογένεια (<, > α ) α A ϑετικά ηµι-ορισµένων (: ψευδο-)εσωτερικών γινοµένων έτσι ώστε η επαγόµενη τοπολογία κάνει τον E τοπικά κυρτό χώρο. Μία ψεύδο-h-άλγεβρα είναι ένας ψεύδο-h-χώρος και άλγεβρα που είναι τοπικά κυρτή µε χωριστά συνεχή πολλαπλασιασµό (ή ακόµη m-κυρτή). Η τοπολογία µιάς ψεύδο-h-άλγεβρας E ορίζεται από µία οικογένεια ηµινορµών (p α ) α A έτσι ώστε p α (x) =< x, x > 1/2 α για κάθε x E. 12 / 47

28 ΙΙ. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn Ολοι οι διανυσµατικοί χώροι και οι άλγεβρες λαµβάνονται υπεράνω του σώµατος C των µιγαδικών αριθµών, και οι άλγεβρες ϑεωρούνται προσεταιριστικές. Ορισµός Ενας ψεύδο-h-χώρος είναι ένας διανυσµατικός χώρος E εφοδιασµένος µε µία οικογένεια (<, > α ) α A ϑετικά ηµι-ορισµένων (: ψευδο-)εσωτερικών γινοµένων έτσι ώστε η επαγόµενη τοπολογία κάνει τον E τοπικά κυρτό χώρο. Μία ψεύδο-h-άλγεβρα είναι ένας ψεύδο-h-χώρος και άλγεβρα που είναι τοπικά κυρτή µε χωριστά συνεχή πολλαπλασιασµό (ή ακόµη m-κυρτή). Η τοπολογία µιάς ψεύδο-h-άλγεβρας E ορίζεται από µία οικογένεια ηµινορµών (p α ) α A έτσι ώστε p α (x) =< x, x > 1/2 α για κάθε x E. 12 / 47

29 ΙΙ. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn Ολοι οι διανυσµατικοί χώροι και οι άλγεβρες λαµβάνονται υπεράνω του σώµατος C των µιγαδικών αριθµών, και οι άλγεβρες ϑεωρούνται προσεταιριστικές. Ορισµός Ενας ψεύδο-h-χώρος είναι ένας διανυσµατικός χώρος E εφοδιασµένος µε µία οικογένεια (<, > α ) α A ϑετικά ηµι-ορισµένων (: ψευδο-)εσωτερικών γινοµένων έτσι ώστε η επαγόµενη τοπολογία κάνει τον E τοπικά κυρτό χώρο. Μία ψεύδο-h-άλγεβρα είναι ένας ψεύδο-h-χώρος και άλγεβρα που είναι τοπικά κυρτή µε χωριστά συνεχή πολλαπλασιασµό (ή ακόµη m-κυρτή). Η τοπολογία µιάς ψεύδο-h-άλγεβρας E ορίζεται από µία οικογένεια ηµινορµών (p α ) α A έτσι ώστε p α (x) =< x, x > 1/2 α για κάθε x E. 12 / 47

30 ΙΙ. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn Ολοι οι διανυσµατικοί χώροι και οι άλγεβρες λαµβάνονται υπεράνω του σώµατος C των µιγαδικών αριθµών, και οι άλγεβρες ϑεωρούνται προσεταιριστικές. Ορισµός Ενας ψεύδο-h-χώρος είναι ένας διανυσµατικός χώρος E εφοδιασµένος µε µία οικογένεια (<, > α ) α A ϑετικά ηµι-ορισµένων (: ψευδο-)εσωτερικών γινοµένων έτσι ώστε η επαγόµενη τοπολογία κάνει τον E τοπικά κυρτό χώρο. Μία ψεύδο-h-άλγεβρα είναι ένας ψεύδο-h-χώρος και άλγεβρα που είναι τοπικά κυρτή µε χωριστά συνεχή πολλαπλασιασµό (ή ακόµη m-κυρτή). Η τοπολογία µιάς ψεύδο-h-άλγεβρας E ορίζεται από µία οικογένεια ηµινορµών (p α ) α A έτσι ώστε p α (x) =< x, x > 1/2 α για κάθε x E. 12 / 47

31 ΙΙ. Ψευδο-H-δοµές Κανονικές µηδενιστικές άλγεβρες Θεωρήµατα Wedderburn Ολοι οι διανυσµατικοί χώροι και οι άλγεβρες λαµβάνονται υπεράνω του σώµατος C των µιγαδικών αριθµών, και οι άλγεβρες ϑεωρούνται προσεταιριστικές. Ορισµός Ενας ψεύδο-h-χώρος είναι ένας διανυσµατικός χώρος E εφοδιασµένος µε µία οικογένεια (<, > α ) α A ϑετικά ηµι-ορισµένων (: ψευδο-)εσωτερικών γινοµένων έτσι ώστε η επαγόµενη τοπολογία κάνει τον E τοπικά κυρτό χώρο. Μία ψεύδο-h-άλγεβρα είναι ένας ψεύδο-h-χώρος και άλγεβρα που είναι τοπικά κυρτή µε χωριστά συνεχή πολλαπλασιασµό (ή ακόµη m-κυρτή). Η τοπολογία µιάς ψεύδο-h-άλγεβρας E ορίζεται από µία οικογένεια ηµινορµών (p α ) α A έτσι ώστε p α (x) =< x, x > 1/2 α για κάθε x E. 12 / 47

32 Ορισµός Μία ψεύδο-h-άλγεβρα E καλείται αριστερά modular συµπληρούµενη H-άλγεβρα αν ικανοποιεί τις συνθήκες : (1) Οποιοδήποτε αριστερό ή δεξιό ιδεώδες I στην E µε I = (0) είναι πυκνό στην E (ιδιότητα της πυκνότητας). (2) M M l(e) M = (0) και M είναι ένα αριστερό ιδεώδες για κάθε M M l (E) (ιδιότητα της τοµής). γνησίως αριστερά προσυµπληρούµενη H-άλγεβρα αν E = M M για κάθε µέγιστο κανονικό αριστερό ιδεώδες M της E. 13 / 47

33 Ορισµός Μία ψεύδο-h-άλγεβρα E καλείται αριστερά modular συµπληρούµενη H-άλγεβρα αν ικανοποιεί τις συνθήκες : (1) Οποιοδήποτε αριστερό ή δεξιό ιδεώδες I στην E µε I = (0) είναι πυκνό στην E (ιδιότητα της πυκνότητας). (2) M M l(e) M = (0) και M είναι ένα αριστερό ιδεώδες για κάθε M M l (E) (ιδιότητα της τοµής). γνησίως αριστερά προσυµπληρούµενη H-άλγεβρα αν E = M M για κάθε µέγιστο κανονικό αριστερό ιδεώδες M της E. 13 / 47

34 Ορισµός Μία ψεύδο-h-άλγεβρα E καλείται αριστερά modular συµπληρούµενη H-άλγεβρα αν ικανοποιεί τις συνθήκες : (1) Οποιοδήποτε αριστερό ή δεξιό ιδεώδες I στην E µε I = (0) είναι πυκνό στην E (ιδιότητα της πυκνότητας). (2) M M l(e) M = (0) και M είναι ένα αριστερό ιδεώδες για κάθε M M l (E) (ιδιότητα της τοµής). γνησίως αριστερά προσυµπληρούµενη H-άλγεβρα αν E = M M για κάθε µέγιστο κανονικό αριστερό ιδεώδες M της E. 13 / 47

35 Ορισµός Μία ψεύδο-h-άλγεβρα E καλείται αριστερά modular συµπληρούµενη H-άλγεβρα αν ικανοποιεί τις συνθήκες : (1) Οποιοδήποτε αριστερό ή δεξιό ιδεώδες I στην E µε I = (0) είναι πυκνό στην E (ιδιότητα της πυκνότητας). (2) M M l(e) M = (0) και M είναι ένα αριστερό ιδεώδες για κάθε M M l (E) (ιδιότητα της τοµής). γνησίως αριστερά προσυµπληρούµενη H-άλγεβρα αν E = M M για κάθε µέγιστο κανονικό αριστερό ιδεώδες M της E. 13 / 47

36 Ορισµός Μία ψεύδο-h-άλγεβρα E καλείται αριστερά modular συµπληρούµενη H-άλγεβρα αν ικανοποιεί τις συνθήκες : (1) Οποιοδήποτε αριστερό ή δεξιό ιδεώδες I στην E µε I = (0) είναι πυκνό στην E (ιδιότητα της πυκνότητας). (2) M M l(e) M = (0) και M είναι ένα αριστερό ιδεώδες για κάθε M M l (E) (ιδιότητα της τοµής). γνησίως αριστερά προσυµπληρούµενη H-άλγεβρα αν E = M M για κάθε µέγιστο κανονικό αριστερό ιδεώδες M της E. 13 / 47

37 ΠΑΡΑΤΗΡΗΣΗ Στην ιδιότητα τοµής, η δεύτερη συνθήκη ικανοποιείται για οποιαδήποτε ψεύδο-h-άλγεβρα (E, (<, > α ) α A ) που έχει την ιδιότητα: Για κάθε x E, υπάρχει, x E µε < xy, z > α =< y, x z > α για όλα τα α A. για κάθε α A. (Θεωρούµε για παράδειγµα µία τοπικά κυρτή H -άλγεβρα - το υπόβαθρο των αλγεβρών Ambrose ). 14 / 47

38 ΠΑΡΑΤΗΡΗΣΗ Στην ιδιότητα τοµής, η δεύτερη συνθήκη ικανοποιείται για οποιαδήποτε ψεύδο-h-άλγεβρα (E, (<, > α ) α A ) που έχει την ιδιότητα: Για κάθε x E, υπάρχει, x E µε < xy, z > α =< y, x z > α για όλα τα α A. για κάθε α A. (Θεωρούµε για παράδειγµα µία τοπικά κυρτή H -άλγεβρα - το υπόβαθρο των αλγεβρών Ambrose ). 14 / 47

39 Θεωρία οµής Μία ψεύδο-h-άλγεβρα E έχει αριστερά την ιδιότητα Peirce αν ικανοποιεί τη συνθήκη: Αν x 0 είναι µία δεξιά µονάδα για την E modulo ένα µέγιστο κανονικό αριστερό ιδεώδες M της E, τότε x 0 M και το M είναι ένα αριστερό ιδεώδες. Η τελευταία ορολογία δικαιολογείται από το γεγονός ότι η ιδιότητα Peirce οδηγεί στην ανάλυση Peirce για Hausdorff ψεύδο-h-άλγεβρες. Για ευκολία µία ψεύδο-h-άλγεβρα που ικανοποιεί την ιδιότητα Peirce αριστερά και δεξιά καλείται συντόµως Peirce H-άλγεβρα. 15 / 47

40 Θεωρία οµής Μία ψεύδο-h-άλγεβρα E έχει αριστερά την ιδιότητα Peirce αν ικανοποιεί τη συνθήκη: Αν x 0 είναι µία δεξιά µονάδα για την E modulo ένα µέγιστο κανονικό αριστερό ιδεώδες M της E, τότε x 0 M και το M είναι ένα αριστερό ιδεώδες. Η τελευταία ορολογία δικαιολογείται από το γεγονός ότι η ιδιότητα Peirce οδηγεί στην ανάλυση Peirce για Hausdorff ψεύδο-h-άλγεβρες. Για ευκολία µία ψεύδο-h-άλγεβρα που ικανοποιεί την ιδιότητα Peirce αριστερά και δεξιά καλείται συντόµως Peirce H-άλγεβρα. 15 / 47

41 Θεωρία οµής Μία ψεύδο-h-άλγεβρα E έχει αριστερά την ιδιότητα Peirce αν ικανοποιεί τη συνθήκη: Αν x 0 είναι µία δεξιά µονάδα για την E modulo ένα µέγιστο κανονικό αριστερό ιδεώδες M της E, τότε x 0 M και το M είναι ένα αριστερό ιδεώδες. Η τελευταία ορολογία δικαιολογείται από το γεγονός ότι η ιδιότητα Peirce οδηγεί στην ανάλυση Peirce για Hausdorff ψεύδο-h-άλγεβρες. Για ευκολία µία ψεύδο-h-άλγεβρα που ικανοποιεί την ιδιότητα Peirce αριστερά και δεξιά καλείται συντόµως Peirce H-άλγεβρα. 15 / 47

42 Πρώτο Θεώρηµα οµής Εστω (E, (p α ) α A ) µία ηµιαπλή Hausdorff γνησίως προσυµπληρούµενη H-άλγεβρα, που ικανοποιεί την ιδιότητα της πυκνότητας. Τότε η E είναι µία Q modular συµπληρούµενη H-άλγεβρα µε πυκνό ϐάθρο. 16 / 47

43 Πρώτο Θεώρηµα οµής Εστω (E, (p α ) α A ) µία ηµιαπλή Hausdorff γνησίως προσυµπληρούµενη H-άλγεβρα, που ικανοποιεί την ιδιότητα της πυκνότητας. Τότε η E είναι µία Q modular συµπληρούµενη H-άλγεβρα µε πυκνό ϐάθρο. 16 / 47

44 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

45 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

46 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

47 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

48 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

49 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

50 Βήµατα της απόδειξης Η E, ως µη ϱιζική, περιέχει γνήσια κανονικά αριστερά ιδεώδη και άρα περιέχει µέγιστα ιδεώδη τέτοιου τύπου. Αποδεικνύουµε ότι η E ικανοποιεί την ιδιότητα Peirce και εποµένως γίνεται µία Q -άλγεβρα. Από την ηµιαπλότητα, ικανοποιείται επίσης η ιδιότητα της τοµής. Ετσι η E είναι µία modular συµπληρούµενη H-άλγεβρα. Η µεγιστότητα ενός ιδεώδους, έστω M, όπως προηγουµένως, δίνει ένα ελάχιστο αριστερό ιδεώδες M και έτσι το αριστερό ϐάθρο της E ορίζεται. Ανάλογα, οδηγούµαστε στην ύπαρξη του δεξιού ϐάθρου της E. Χρησιµοποιώντας εκτός άλλων, την ηµιαπλότητα της E, αποδεικνύουµε ότι το ορθογώνιο του αλγεβρικού αθροίσµατος S = M όπου το M διατρέχει τα µέγιστα κανονικά αριστερά ιδεώδη της E ταυτίζεται µε το (0). Επειδή S S E η ιδιότητα της πυκνότητας οδηγεί στην πυκνότητα του ϐάθρου. 17 / 47

51 Ορολογία - Σύµβολα Εστω E µία άλγεβρα. Αν ( )S E, τότε A l (S) συµβολίζει τον αριστερό µηδενιστή του S. Το A l (S) είναι ένα αριστερό ιδεώδες της E, το οποίο είναι ιδιαίτερα, 2-πλευρο αν το S είναι ένα αριστερό ιδεώδες. Ανάλογα ορίζεται ο δεξιός µηδενιστής A r (S) του S µε αντίστοιχες ιδιότητες. Στην περίπτωση µιας τοπολογικής άλγεβρας (χωριστά συνεχής πολλαπλασιασµός) τα προηγούµενα ιδεώδη είναι κλειστά. Μία άλγεβρα E καλείται αριστερά (αντ. δεξιά ) προµηδενιστική αν A l (E) = (0) (αντ. A r (E) = (0)). Αν A l (E) = A r (E) = (0), τότε η E καλείται προµηδενιστική άλγεβρα. Για µία δεξιά προµηδενιστική άλγεβρα χρησιµοποιείται επίσης ο όρος γνήσια άλγεβρα. 18 / 47

52 Ορολογία - Σύµβολα Εστω E µία άλγεβρα. Αν ( )S E, τότε A l (S) συµβολίζει τον αριστερό µηδενιστή του S. Το A l (S) είναι ένα αριστερό ιδεώδες της E, το οποίο είναι ιδιαίτερα, 2-πλευρο αν το S είναι ένα αριστερό ιδεώδες. Ανάλογα ορίζεται ο δεξιός µηδενιστής A r (S) του S µε αντίστοιχες ιδιότητες. Στην περίπτωση µιας τοπολογικής άλγεβρας (χωριστά συνεχής πολλαπλασιασµός) τα προηγούµενα ιδεώδη είναι κλειστά. Μία άλγεβρα E καλείται αριστερά (αντ. δεξιά ) προµηδενιστική αν A l (E) = (0) (αντ. A r (E) = (0)). Αν A l (E) = A r (E) = (0), τότε η E καλείται προµηδενιστική άλγεβρα. Για µία δεξιά προµηδενιστική άλγεβρα χρησιµοποιείται επίσης ο όρος γνήσια άλγεβρα. 18 / 47

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 9 Μαρτίου 2018 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπολογικοί χώροι Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2017/lai2017.html Παρασκευή 22 εκεµβρίου 2017

Διαβάστε περισσότερα

f I X i I f i X, για κάθεi I.

f I X i I f i X, για κάθεi I. 47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - II Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 52 9 Η Κανονική Μορφή Jordan - II

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών 8 Ιουλίου 2015 1 τοπολογικές οµάδες 2 3 4 τοπολογικές οµάδες Ορισµός Μια οµάδα G λέγεται τοπολογική οµάδα αν είναι εφοδιασµένη µε µια τοπολογία τ.ω. οι (x, y) xy και x x 1 να είναι συνεχείς. Παραδείγµατα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

a 11 a 1n b 1 a m1 a mn b n

a 11 a 1n b 1 a m1 a mn b n Γραμμική Άλγεβρα ΙΙ Διάλεξη 13 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 28/4/2014 ΧΚουρουνιώτης (ΠανΚρήτης) Διάλεξη 13 28/4/2014 1 / 14 Πίνακες πάνω από σώμα K Πίνακες πάνω από σώμα K Το σύνολο των m n

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html ευτέρα 23

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων Τοµεας Γεωµετριας Γεωµετρικη Θεωρια Ελεγχου Πρώτη Εργασία, 2017-2018 1. ίνεται ϱοή φ(p, t). (αʹ) είξτε ότι το ω οριακό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ταυτόχρονη ιαγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 31 6. Ταυτόχρονη ιαγωνοποίηση 6.1. Ταυτόχρονη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 12 Απριλίου 2019 Αν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html ευτέρα 23 Απριλίου 2018 Αν C

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 11 Μαίου 2018

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα