A generalized Holland model for wave diffraction by thin wires

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A generalized Holland model for wave diffraction by thin wires"

Transcript

1 A generalized Holland model for wave diffraction by thin wires Xavier Claeys Joint work with Francis Collino Marc Duruflé POEMS, Inria Rocquencourt, France Generalized Holland model p.1/26

2 Motivation Incident wave Hypothesis: λ = wavelength Diffracted wave perfectly conducting wire. ε λ. ɛ = thickness of the wire Context: simulation of EM wave propagation in media including perfectly Context: conducting thin wires (ex: antennas). Wish: propose a volumic method with no mesh refinement. Wish: Different from integral equation approach (Rogier, Fedoryuk, Mazari.) Generalized Holland model p.2/26

3 Motivation Holland method Heuristic method used for straight wires in FDTD schemes based on: Assumption: the current is constant across any section of the wire. Assumption: the field is electrostatic close to the wire. Technical ingredient: averaging operator in a region as large as a cell close to the wire (parameter). R.Holland and L.Simpson Finite difference analysis of emp coupling to thin struts and wires, IEEE Trans. Electromagn. Compat Generalized Holland model p.3/26

4 Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε Ω R = D(0, R), Γ R = Ω R. Ω ε = D(0, ε), Γ ε = Ω ε. u 0 (x) = e ik x (incident wave). Γ R Generalized Holland model p.4/26

5 Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε Ω R = D(0, R), Γ R = Ω R. Ω ε = D(0, ε), Γ ε = Ω ε. u 0 (x) = e ik x (incident wave). Γ R Generalized Holland model p.5/26

6 Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε 8 >< >: u ε H 1 (Ω R \ Ω ε ), u ε + k 2 u ε = 0 in Ω R \ Ω ε, u ε = 0 on Γ ε, u ε u 0 outgoing. Γ R Generalized Holland model p.6/26

7 eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 X.Claeys, H.Haddar and P.Joly Etude d un problème modèle pour la diffraction par des fils minces par développements asymptotiques raccordés. cas 2-d. Research Report 5839, INRIA,2006. Generalized Holland model p.7/26

8 eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 1.5χ ε Cut-off function χ ε Gauge function λ 0 = π γ, γ: Euler constant. 2 More complicated in general Incident field u 0 0 x ε 2 ε u 0 (x) = e ik x. Generalized Holland model p.8/26

9 eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 Far field v 0 Close Field V ε 0 v 0 (x) = 1 i H(1) 0 (k x ). V ε 0 (x) = 1 2π ln x ε 1 Ω R \Ω ε. Close Field V ε 0 Incident field u 0 u 0 (x) = e ik x. V ε 0 (x) = 1 2π ln x ε 1 Ω R \Ω ε. Generalized Holland model p.9/26

10 Asymptotic analysis eu ε = (1 χ ε ) u 0 + Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 Matched asymptotic expansions H = H 1 (Ω R ) H 1 (Ω R \ Ω R ) u ε eu ε H ε 1/2 ε u ε u 0 H ln ε 1/2 ln ε 1 Γ ε Ω R \ Ω R Generalized Holland model p.10/26

11 Usual formulation Usual formulation without any obstacle a(u, v) = R Ω R u v k 2 uv + R Γ R v T R u u, v H 1 (Ω R ) 8 >< >: Find (u ε, p ε ) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε, v)+b ε (p ε, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ) = 0, q H 1/2 (Γ ε ). Generalized Holland model p.11/26

12 Usual formulation Fictitious domain formulation b ε (q, v) = R Γ ε q v q H 1/2 (Γ ε ), v H 1 (Ω R ). 8 >< >: Find (u ε, p ε ) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε, v)+b ε (p ε, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ) = 0, q H 1/2 (Γ ε ). Remarks u ε Γ ε = 0 and pε = [ uε n ] Γ ε on Γε. u ε is extended by 0 in Ω ε. Generalized Holland model p.12/26

13 Asymptotic analysis Approximate jump of the normal derivative p ε = [ uε n ] Γ ε for uε = 0 in Ω ε. ep ε = [ euε n ] Γ ε = 2πu 0(0) V0 ε ln 1/ε + λ 0 n = 2πu 0(0) 1 ln 1/ε + λ 0 2πε P 0. v 2 H 1/2 (Γ ε ) = ε2 X n Z (1 + n 2 ) 1/2 Z 2π 0 v(θ)e inθ dθ 2. Matched asymptotic expansions p ε 0 H 1/2 (Γ ε ) κ ln ε 1. p ε ep ε H 1/2 (Γ ε ) κ ε. Generalized Holland model p.13/26

14 Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Initial fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q H 1/2 (Γ ε ). Generalized Holland model p.14/26

15 Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Simplified fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) P 0 such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q P 0. Generalized Holland model p.15/26

16 Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Simplified fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) P 0 such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q P 0. Remarks: Uniform Inf-Sup condition on a and b ε with respect to ε. Continuity of b ε : b ε κ p ln 1/ε. Well posed and nearly stable problem for ε sufficiently small. Generalized Holland model p.15/26

17 Simplified problem Asymptotic analysis H = H 1 (Ω R ) H 1 (Ω R \ Ω R ) u ε ap u 0 H ln ε 1/2 ln ε 1 eu ε u ε H ε 1/2 ε u ε ap u ε H ε 1/2 ε u ε ap provides an approximation of u ε of the same quality as eu ε. p ε ap 0 H 1/2 (Γ ε ) = ε pε ap κ ln ε 1. p ε ap p ε H 1/2 (Γ ε ) = ε pε ap p ε κ ε. Generalized Holland model p.16/26

18 Finite element approximation 8 >< >: Discrete simplified fictitious domain formulation Find (u ε,h ap, p ε,h ap ) V h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh v h V h, b ε (q h, u ε,h ap ) = 0, q h P 0. Hypothesis: Uniformly regular triangulation and ε < κ h Error estimate: u ε ap u ε,h ap H 1 κ p ln 1/ε inf v h V h uε ap v h H 1 Generalized Holland model p.17/26

19 Finite element approximation 8 >< >: Discrete simplified fictitious domain formulation Find (u ε,h ap, p ε,h ap ) V h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh v h V h, b ε (q h, u ε,h ap ) = 0, q h P 0. Hypothesis: Uniformly regular triangulation and ε < κ h Error estimate: u ε ap u ε,h ap H 1 κ p ln 1/ε inf v h V h uε ap v h H 1 Problem: inf v h V h uε ap v h H 1 is not small: Problem: inf uε v h V h ap v h H 1 κ h 1 2 δ u ε ap 3 δ and u ε H 2 ap 3 δ κ H 2 ε. 1 2 δ Generalized Holland model p.17/26

20 Numerical locking We use Q 3 finite elements. u ε ap u ε,h ap H u ε ap H h/λ H = H 1 (Ω R \ Ω R ) Ω R = D(0, 3) Ω R = D(0, 1.5) eps = 1e 2 eps = 1e 3 eps = 1e 4 eps = 1e 5 ε/λ slope Generalized Holland model p.18/26

21 Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. χ 0 ϕ ε ad x ε x Generalized Holland model p.19/26

22 Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h ap, p ε,h ap ) Ve h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h ap ) = 0, q h P 0. v h V h e, P.Ciarlet, B.Jung, S.Kaddouri, S.Labrunie, J.Zou The Fourier Singular Complement Method. Part I&II. Numer.Math M.Bourlard, M.Dauge, M-S.Lubuma, S.Nicaise Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III: Finite element methods on polygonal domains. SIAM J.Numer.Anal Generalized Holland model p.19/26

23 Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h ap, p ε,h ap ) Ve h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h ap ) = 0, q h P 0. v h V h e, Lemma: u ε u ε,h ap H 1 (Ω R ) κ p ln 1/ε (ε 1/2 + h). Generalized Holland model p.20/26

24 Locking free We use Q 3 finite elements H = H 1 (Ω R \ Ω R ) Ω R = D(0, 3) Ω R = D(0, 1.5) u ε ap u ε,h ap H u ε ap H h/λ eps = 1e 2 eps = 1e 3 eps = 1e 4 eps = 1e 5 ε/λ slope Generalized Holland model p.21/26

25 Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Generalized Holland model p.22/26

26 Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Decomposition in singular and regular part Or u ε,h ap = eu ε,h reg + p ε,h s ϕ ε ad, u ε,h reg V h. Or u ε,h ap = u ε,h reg + p ε,h s δ h (ϕ ε ad), u ε,h reg = eu ε,h reg + P h (ϕ ε ad) V h. Generalized Holland model p.22/26

27 Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Decomposition in singular and regular part Or u ε,h ap = eu ε,h reg + p ε,h s ϕ ε ad, u ε,h reg V h. Or u ε,h ap = u ε,h reg + p ε,h s δ h (ϕ ε ad), u ε,h reg = eu ε,h reg + P h (ϕ ε ad) V h. Q 3 ε = 0.01 h = Re{ϕ ε ad } Re{δ h(ϕ ε ad )} Generalized Holland model p.22/26

28 Generalized Holland model Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h reg, p ε,h ap ) V h P 0 such that a(u ε,h reg, v h ) + b ε (p ε,h ap, v h ) = R Γ R (T R u 0 + u 0 n )vh b ε (q h, u ε,h reg ) L ε,h c(p ε,h ap, q h ) = G ε,h (q h ), q h P 0 v h V h With L ε,h = bε`1, δ h (ϕ ε ad) 2 a(δ h (ϕ ε ad), δ h (ϕ ε ad)) and c(p ε,h ap, q h ) = p ε,h ap q h. Generalized Holland model p.23/26

29 Generalized Holland model Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h reg, p ε,h ap ) V h P 0 such that a(u ε,h reg, v h ) + b ε (p ε,h ap, v h ) = R Γ R (T R u 0 + u 0 n )vh b ε (q h, u ε,h reg ) L ε,h c(p ε,h ap, q h ) = G ε,h (q h ), q h P 0 v h V h F.Collino and F.Millot Fils et méthodes d éléments finis pour les équations de Maxwell. Le modèle de Holland revisité. Research Report 3472, INRIA, >< >: Find (u ε,h hol Holland formulation, p ε,h hol ) V h P 0 such that a(u ε,h hol, v h ) + b ε (p ε,h hol, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h hol ) L hol c(p ε,h hol, q h ) = 0, q h P 0 v h V h Generalized Holland model p.24/26

30 Generalized Holland model 8 >< >: Find (u ε,h hol Holland formulation, p ε,h hol ) V h P 0 such that a(u ε,h hol, v h ) + b ε (p ε,h hol, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h hol ) L ε,h hol c(p ε,h hol, q h ) = 0, q h P 0 v h V h H3: There exists κ > and ν > 0 such that κh ν < ε. Lemma: Under H3 there exists κ > 0 (idpdt of ε and h) such that G ε,h < κ h q. Lemma: Under H3, for L hol = L ε,h there exists κ > 0 (idpdt of ε and h) such that u ε,h reg u ε,h hol H 1 (Ω R ) + p ε,h ap p ε,h hol H 1/2 (Γ ε ) κ hq. Generalized Holland model p.25/26

31 Conclusions Method compatible with high order FEM. Generalization of the Holland method for arbitrary meshes. Analytical expression of L hol. Weakly locking method. Not local with respect to the mesh. Generalized Holland model p.26/26

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Discretization of Generalized Convection-Diffusion

Discretization of Generalized Convection-Diffusion Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes Oberwolfach meeting on Computational Electromagnetism Feb 22 - Feb 28 Singularities of electromagnetic fields in the Maxwell and eddy current formulations Martin COSTABEL, Monique DAUGE, Serge NICAISE

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

The wave equation in elastodynamic

The wave equation in elastodynamic The wave equation in elastodynamic Wave propagation in a non-homogeneous anisotropic elastic medium occupying a bounded domain R d, d = 2, 3, with boundary Γ, is described by the linear wave equation:

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

(As on April 16, 2002 no changes since Dec 24.)

(As on April 16, 2002 no changes since Dec 24.) ~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

On optimal FEM and impedance conditions for thin electromagnetic shielding sheets

On optimal FEM and impedance conditions for thin electromagnetic shielding sheets On optimal FEM and impedance conditions for thin electromagnetic shielding sheets Kersten Schmidt Research Center Matheon, Berlin, Germany, Institut für Mathematik, Technische Universität Berlin, Germany

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ 515 ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ~ " ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ ΠΡΟΣΤΑΤΕΥΤΙΚΟΥ ΙΜΑΤΙΣΜΟΥ ΑΡΓΥΡΟΠΟΥ ΛΟΣ ΘΕΜΙΣΤΟΚΛΗΣ

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model September 28, 2016 Antoine Tordeux 2 Forschungszentrum Jülich, Germany 2 a.tordeux@fz-juelich.de Outline

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιπλωµατική Εργασία «ΙΕΡΕΥΝΗΣΗ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΚΑΘΟΛΙΚΟΥ ΚΑΙ ΤΟΠΙΚΟΥ ΑΝΕΛΑΣΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕ ΤΗ ΜΕΘΟ

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Part 4 RAYLEIGH AND LAMB WAVES

Part 4 RAYLEIGH AND LAMB WAVES Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:

Διαβάστε περισσότερα

Linearized Lifting Surface Theory Thin-Wing Theory

Linearized Lifting Surface Theory Thin-Wing Theory 13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor

Διαβάστε περισσότερα

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements /5/ FEM Method We will explore: D linear & higher order elements D triangular & rectangular elements Powerful method developed originally to solve structural mechanics problems (e.g. bridges, buildings,

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

posterior distribution is well defined for any prior π and ν-almost all x X. Moreover,

posterior distribution is well defined for any prior π and ν-almost all x X. Moreover, A Proof of Theorem 2 (i) If the likelihood ratio p(x θ i )/p(x θ ) is an absolutely continuous random variable for any i, then p(x θ ), = 1,..., m, have the same support and the posterior distribution

Διαβάστε περισσότερα

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10] 3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]

Διαβάστε περισσότερα