ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ"

Transcript

1 ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1-

2 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 2-

3 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ Είναι πολύ σημαντικό για τις σύγχρονες επιχειρήσεις να παρέχουν υπηρεσίεςκαιπροϊόντατηνχρονικήστιγμήπουαπαιτείται(on time), χωρίς να παραβιάζουν τον αρχικό προϋπολογισμό(budget) υλοποίησης ενός έργου. Τα στάδια υλοποίησης ενός έργου περιλαμβάνουν: Αποτελεσματικό σχεδιασμό(effective planning), Αποδοτικό χρονοπρογραμματισμό(efficient scheduling) και Αντικειμενικό έλεγχο(objective control) ενός έργου(project). ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 3-

4 ΟΡΙΣΜΟΣ ΕΡΓΟΥ Αρκετοί ορισμοί έχουν δοθεί, ωστόσο έχει επικρατήσει αυτός που προκύπτει σύμφωνα με το ISO Το Έργο(Project) αποτελεί τη μοναδική διαδικασία που περιλαμβάνει ένα σύνολο από συντονισμένες και ελεγχόμενες δραστηριότητες (activities) - μεχρονικήδιάρκεια, - χρόνο έναρξης και τερματισμού οι οποίες συμβάλλουν στην επίτευξη ενός αντικειμενικού στόχου τηρώντας περιορισμούς χρόνου, κόστους και διαθεσιμότητας πόρων. Αντικειμενικός στόχος: Ο αντικειμενικός στόχος ενός έργου είναι η παροχή μιας υπηρεσίας ή γενικότερα παραγωγή ενός τελικού προϊόντος ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 4-

5 ΣTAΔΙΑ ΟΛΟΚΛΗΡΩΣΗΣ ΕΝΟΣ ΕΡΓΟΥ 1. Σχεδιασμός(planning): Περιλαμβάνει τον ορισμό των δραστηριοτήτων που πρέπει να λάβουν μέρος γιατηνυλοποίησητουαντικειμενικούστόχου. Καθορίζονται οι συνολικές απαιτήσεις πόρων που απαιτούνται Δίνονται εκτιμήσεις για το κόστος, τη χρονική διάρκεια και τις σχέσεις των διαφόρων δραστηριοτήτων. 2. Χρονοπρογραμματισμός(scheduling): Καθορίζεται η ακριβής χρονική σειρά σύμφωνα με την οποία πρέπει να εκτελεστούν οιδραστηριότητες. Υπολογίζονται οι αναμενόμενοι χρόνοι υλοποίησης για κάθε δραστηριότητα. 3. Έλεγχος(control): Εστιάζει στη διαφορά μεταξύ σχεδιασμού και υλοποίησης ενός έργου ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 5-

6 ΟΡΙΣΜΟΣ ΠΕΤΥΧΗΜΕΝΟΥ ΕΡΓΟΥ Ένα επιτυχημένο έργο έχει ολοκληρωθεί μέσα στα προκαθορισμένα χρονικά περιθώρια (on time) δεν ξεπερνά τον αρχικό προϋπολογισμό(within budget) και δεν διαπραγματεύεται καμία από τις αρχικές προδιαγραφές σχεδιασμού(according to specifications). ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 6-

7 ΔΙΑΧΕΙΡΙΣΗ ΧΡΟΝΟΥ Ηκακήδιαχείρισητουχρόνουκαιοκακόςσχεδιασμόςτου χρονοδιαγράμματος υλοποίησης είναι οι πιο συνήθεις λόγοι αποτυχίας ενός έργου(goldratt(1997), Lewis (1995)). Ηκαθυστέρησηενόςέργου(πχηπαρουσίασηενόςνέουπροϊόντος) είναιπολύπιοζημιογόνοςαπότηνπαραβίασητουπροϋπολογισμού. Η HP μελετώντας μία ταχέως αναπτυσσόμενη αγορά, σημείωσε πως εάν υπάρξει καθυστέρηση έξι μηνών στην παραγωγή ενός νέου προϊόντος μέσα στα όρια του προϋπολογισμού, η μείωση του κέρδους ανέχεταιστα33 %, ενώεάντοίδιοέργοαπαιτούσε50% μεγαλύτερο προϋπολογισμό(budget) και ολοκληρωνόταν στην ώρα του, η ζημία θαήτανμόλις3,5 % (Suri1998). ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 7-

8 ΤΟ ΠΡΟΒΛΗΜΑΤΟΥ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΟΥ PROJECT SCHEDULING PROBLEM

9 PROJECT SCHEDULING PROBLEM(PSP) Ένα έργο αποτελείται από δραστηριότητες, οι οποίες πρέπει να εκτελεστούν βάσει ενός συνόλου από περιορισμούς προτεραιότητας (precedence constraints). Το πιο διαδεδομένο είδος περιορισμών προτεραιότητας είναι το finish start με μηδενικό time lag: Μία δραστηριότητα μπορεί να ξεκινήσει μόνο εάν όλες οι προηγούμενες έχουν ολοκληρωθεί. Κάθε δραστηριότητα έχει προκαθορισμένη χρονική διάρκεια και απαιτείένασύνολοπόρωνγιαναπραγματοποιηθεί. Χρηματοοικονομικοίπόροι, ανθρώπινοδυναμικό, μηχανές, εξοπλισμός, ενέργεια, υλικά, χώροι αποθήκευσης, είναι μερικά από τα είδη πόρων που χρησιμοποιούνται για την υλοποίηση ενός έργου. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 9-

10 ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΝΟΣ PSP Ένα έργο, που αποτελείται από ένα αριθμό δραστηριοτήτων με περιορισμούς προτεραιότητας μπορεί να αναπαρασταθεί από ένα γράφο που αποτελείται από δύο πεπερασμένα σύνολα κόμβων (nodes) και συνδέσεων(arcs) αντίστοιχα. Μια απο τις αποδοτικότερες αναπαραστάσεις του προβλήματος είναι γνωστή στη βιβλιογραφία ως Activity on Νode (AonN) αναπαράσταση. H AonN χρησιμοποιεί: - τοσύνολοτωνκόμβωνγιατηναναπαράστασητων δραστηριοτήτων και - το σύνολο των συνδέσεων για την αναπαράσταση των περιορισμών προτεραιότητας και τις σχέσεις μεταξύ των δραστηριοτήτων. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 10-

11 ΠΑΡΑΔΕΙΓΜΑ AonN ΑΝΑΠΑΡΑΣΤΑΣΗΣ Γιαναορισθούνοιχρόνοιέναρξηςκαιτερματισμούτουέργου, εισάγονται οι«τεχνητές» δραστηριότητες s και f με τέτοιο τρόπο που η s να συνδέεται απευθείας με τις δραστηριότητες έναρξης του έργου (μεσκοπόνακαθορισθείποιααπότιςa καιbξεκινάπρώτη) καιηf αντίστοιχα να συνδέεται απευθείας με τις δραστηριότητες που αφορούν την ολοκλήρωση του έργου(με σκοπό να καθορισθεί ποια απότιςd καιeολοκληρώνεταιτελευταία). ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 11-

12 ΠΕΡΙΟΡΙΣΜΟΙ ΤΟΥ PSP Περιορισμοί που αφορούν τις δραστηριότητες: περιορισμοί προτεραιότητας δραστηριοτήτων χρονικήδιάρκειαδραστηριοτήτων, Περιορισμοί διαθέσιμων πόρων ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 12-

13 ΣΥΣΧΕΤΙΣΗ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ Οι γενικευμένες συσχετίσεις προτεραιότητας μεταξύ δραστηριοτήτων ορίζουν το μέγιστο ή ελάχιστο χρονικό διάστημα ανάμεσα σε δύο δραστηριότητες: Start - Start (SS), Finish- Start (FS), Finish - Finish (FF) SS min (x):ηδραστηριότηταjμπορείναξεκινήσειτονωρίτεροxμονάδες χρόνου μετά την έναρξη της προηγούμενης δραστηριότητας i. Αντίστοιχα ορίζονταιοιπροτεραιότητεςfs min (x), SF min (x), FF min (x). SS max (x): ηδραστηριότηταjπρέπειναξεκινήσειτοαργότεροxμονάδες χρόνου μετά την έναρξη της προηγούμενης δραστηριότητας i. Αντίστοιχα ορίζονταιοιπροτεραιότητεςfs max (x), SF max (x), FF max (x). FSmin(0): η δραστηριότητα j μπορεί να ξεκινήσει αμέσως μετά τη δραστηριότητα i ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 13-

14 ΑΝΤΙΚΕΙΜΕΝΙΚΟΣ ΣΤΟΧΟΣ του PSP 1. Ελαχιστοποίηση του χρόνου ολοκλήρωσης του έργου ή 2. Ελαχιστοποίηση κόστους χρησιμοποίησης διαθέσιμων πόρων ή 3. Πολλαπλοί αντικειμενικοί στόχοι κ.α. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 14-

15 Το Πρόβλημα Χρονοπρογραμματισμού Έργου με Περιορισμούς Πόρων The Resource Constrained Project Scheduling Problem - RCPSP

16 RCPSP ΈστωένασύνολοΑ= (1,,n)απόδραστηριότητεςοιοποίεςπρέπεινα εκτελεστούν για την ολοκλήρωση του έργου. Κάθεδραστηριότηταiέχειμίαδεδομένηχρονικήδιάρκειαεκτέλεσηςd i Οι δραστηριότητες συσχετίζονται με την κλασική μορφή περιορισμού προτεραιότηταςfs min (0),σύμφωναμετηνοποίαηδραστηριότηταj μπορεί να ξεκινήσει αμέσως μετά τη δραστηριότητα i ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 16-

17 RCPSP Κάθε δραστηριότητα έχει συγκεκριμένες απαιτήσεις από διαθέσιμους πόρουςέτσιώστεναείναιδυνατόναολοκληρωθείεπιτυχώς. ΈστωένασύνολοαπόδιαθέσιμουςπόρουςΚ={1,,k}. Κάθεπόροςkέχει μια δυναμικότητα, η οποία μπορεί να είναι διαθέσιμη κάθε χρονική περίοδο. Αντικειμενικός στόχος: ελαχιστοποίηση του χρόνου υλοποίησης του έργου δεδομένου ότι οι περιορισμοί προτεραιότητας δεν παραβιάζονται η δυναμικότητα κάθε διαθέσιμου πόρου δεν παραβιάζεται σε κάθε χρονική στιγμή ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 17-

18 ΕΚΦΩΝΗΣΗ ΠΑΡΑΔΕΙΓΜΑΤΟΣ Θεωρείστε ένα συγκεκριμένο έργο, η ολοκλήρωση του οποίου απαιτεί την εκτέλεση 8 δραστηριοτήτων. Επιπλέον, είναι δυνατό να χρησιμοποιηθούν, κάθε χρονική στιγμή, μέχρι 8 μονάδες πόρων(στο συγκεκριμένο έργο χρησιμοποιείται ένα και μόνο είδος διαθέσιμων πόρων). Η διάρκεια κάθε δραστηριότητας αναφέρεται επάνω από το αντίστοιχο κόμβο ενώ οιαπαιτήσειςτωνπόρωνστοκάτωμέρος. Να σχεδιαστεί ένας ΠΚΑ για να υπολογιστεί ο ελάχιστος συνολικός χρόνος ολοκλήρωσης του έργου(γνωστό στη βιβλιογραφία ως makespan). ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 18-

19 Ένας ΠΚΑ αποτελείται από τα ακόλουθα στάδια επιλογών: Καθόρισε τη«μορφής της Λύσης» του εξεταζόμενου προβλήματος. Μια διάταξη δέκα δραστηριοτήτων, η οποία θα εκφράζει τη σειρά που επιλέγεται η έναρξη της κάθε δραστηριότητας. Καθόρισε το«στοιχείο της Λύσης». Στην περίπτωση του συγκεκριμένου προβλήματος το στοιχείο της λύσης είναι η κάθε δραστηριότητα. Καθόρισε το«κριτήριο Επιλογής» του στοιχείου της λύσης, σύμφωνα με το οποίο θα επιλέγεται το«καλύτερο» εφικτό υποψήφιο στοιχείο της λύσης που θα προστεθεί στην«ημιτελή» λύση του προβλήματος Επέλεξε τη δραστηριότητα που θα αυξήσει στο ελάχιστο το συνολικό κόστος(χρόνο) της ημιτελούς λύσης(δηλαδή του ημιτελούς έργου). Καθόρισετο«Κριτήριοαξιολόγησης»τηςολοκληρωμένηςλύσης. Ο συνολικός χρόνος ολοκλήρωσης του έργου. ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 19-

20 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 20-

21 Επανάληψη 1: ΣτηνΕπανάληψη0 ηδιάταξηδεναποτελείταιαπόκαμιά δραστηριότητα. Καθορισμός υποψήφιων δραστηριοτήτων: Επειδή η διάταξη θα ξεκινά με την«τεχνητή» δραστηριότητα 1, η μοναδική υποψήφια δραστηριότητα στην Επανάληψη 1 θα είναι η δραστηριότητα 1 άρα S: (1) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 21-

22 Επανάληψη 2: Η διάταξη αποτελείται από την δραστηριότητα 1 (που επιλέχθηκε στην Επανάληψη1), άραηλύσηs: (1) Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στο γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 2, 5 και 3. Επιλογή της δραστηριότητας που βελτιστοποιεί το«κριτήριο Επιλογής»: f(2)=2 f(5)=4 f(3)=7 min{f(i)}=2, i=2 Makespan= 2 S: (1,2) Η συνάρτηση f εκφράζει το«κριτήριο Επιλογής» που διατυπώθηκε ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 22-

23 2 2 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 23-

24 Επανάληψη 3: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 4, 5 και 3. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(4)=2+3=5 f(5)=4 f(3)=7 min{f(i)}=4, i=5 Makespan =4 S: (1,2,5) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 24-

25 6 4 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 25-

26 Επανάληψη 4: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στο γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 4, 7 και3. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(4)=2+3=5 f(7)=4+6=10 f(3)=2+7=9 min{f(i)}=5, i=4 Makespan =5 S: (1,2,5,4) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 26-

27 5 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 27-

28 Επανάληψη 5: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 6, 7 και3. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(6)=5+8=13 f(7)=4+6=10 f(3)=4+7=11 min{f(i)}=10, i=7 Makespan =10 S: (1,2,5,4,7) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 28-

29 10 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 29-

30 Επανάληψη 6: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 6 και3. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(6)=5+8=13 f(3)=5+7=12 min{f(i)}=12, i=3 Makespan =12 S: (1,2,5,4,7,3) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 30-

31 12 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 31-

32 Επανάληψη 7: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης: Οι υποψήφιες δραστηριότητες είναι οι 6 και8. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(6)=5+8=13 f(8)=12+4=16 min{f(i)}=13, i=6 Makespan =13 S: (1,2,5,4,7,3,6) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 32-

33 13 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 33-

34 Επανάληψη 8: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης: Η μοναδική υποψήφια δραστηριότητα είναιη8. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(8)=12+4=16 min{f(i)}=16, i=8 Makespan =16 S: (1,2,5,4,7,3,6,8) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 34-

35 16 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 35-

36 Επανάληψη 9: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης. Η μοναδική υποψήφια δραστηριότητα είναιη9. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(9)=16+2=18 min{f(i)}=18, i=9 Makespan =18 S: (1,2,5,4,7,3,6,8,9) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 36-

37 18 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 37-

38 Επανάληψη 10: Καθορισμός υποψήφιων δραστηριοτήτων σύμφωνα με τους περιορισμούς προτεραιότητας όπως απεικονίζονται στον γράφο της εκφώνησης. Η μοναδική υποψήφια δραστηριότητα είναιη10. Επιλογή της δραστηριότητας που βελτιστοποιεί το κριτήριο επιλογής: f(10)=18+0=18 min{f(i)}=18, i=10 Makespan =18 S: (1,2,5,4,7,3,6,8,9,10) ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 38-

39 ΗλύσητουπροβλήματοςείναιηS: (1,2,5,4,7,3,6,8,9,10) με κόστος(makespan) =18 ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 39-

40 ΕΡΩΤΗΣΕΙΣΠΑΡΑΚΑΛΩ;;;;; , Πατησίων 95, 3 ος όροφος ΏρεςΓραφείου: Δευτέρα ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 40-

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΜΕΙΟΝΕΚΤΗΜΑ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΗΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ:

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ 1. Διαχείριση έργων Τις τελευταίες δεκαετίες παρατηρείται σημαντική αξιοποίηση της διαχείρισης έργων σαν ένα εργαλείο με το οποίο οι διάφορες επιχειρήσεις

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Πνευματικά Δικαιώματα 2013 Ίδρυμα ECDL (ECDL Foundation - www.ecdl.org)

Πνευματικά Δικαιώματα 2013 Ίδρυμα ECDL (ECDL Foundation - www.ecdl.org) PEOPLECERT Hellas A.E - Φορέας Πιστοποίησης Ανθρώπινου Δυναμικού Κοραή 3, 105 64 Αθήνα, Τηλ.: 210 372 9100, Fax: 210 372 9101, e-mail: info@peoplecert.org, www.peoplecert.org Πνευματικά Δικαιώματα 2013

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια

ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονικός Προγραμματισμός Έργων Project Scheduling Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονοδιαγράμματα Έργων Διαδικασία Κτίζοντας το Πρόγραμμα Έργου 1. Κατανόηση έργου/προδιαγραφών

Διαβάστε περισσότερα

Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων.

Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων. Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων. Στην προηγούμενη Εκπαιδευτική Μονάδα παρουσιάστηκαν ορισμένα χρήσιμα παραδείγματα διαδεδομένων εργαλείων για τον χρονοπρογραμματισμό

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο 5 ο ΜΑΘΗΜΑ ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2 ΠΑΡΑΔΕΙΓΜΑΤΑ 1. Εξετάζεται η κατασκευή μιας τυπικής κατοικίας. Δημιουργήστε το διάγραμμα δομής έργου (Work Breakdown Structure WBS). Συμπληρώστε τους περιορισμούς διαδοχής των εργασιών. Σχεδιάστε το δικτυωτό

Διαβάστε περισσότερα

Χρονοπρογραμματισμός Πολλαπλών Έργων με Περιορισμένους Πόρους και Πολλαπλούς Τρόπους Εκτέλεσης με τη Μέθοδο Βελτιστοποίησης Αποικίας Μυρμηγκιών

Χρονοπρογραμματισμός Πολλαπλών Έργων με Περιορισμένους Πόρους και Πολλαπλούς Τρόπους Εκτέλεσης με τη Μέθοδο Βελτιστοποίησης Αποικίας Μυρμηγκιών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Διπλωματική Εργασία Χρονοπρογραμματισμός Πολλαπλών Έργων με Περιορισμένους Πόρους και Πολλαπλούς

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Χρονοπρογραμματισμός Έργων με χρήση Γενετικών Αλγορίθμων Μελέτη χρονοπρογραμματισμού έργων υπό περιορισμένους πόρους και διακριτή σχέση χρόνου-κόστους

Χρονοπρογραμματισμός Έργων με χρήση Γενετικών Αλγορίθμων Μελέτη χρονοπρογραμματισμού έργων υπό περιορισμένους πόρους και διακριτή σχέση χρόνου-κόστους ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Χρονοπρογραμματισμός Έργων με χρήση Γενετικών Αλγορίθμων Μελέτη χρονοπρογραμματισμού έργων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Κομβικά Δίκτυα Δρ. Βασίλης Π. Αγγελίδης Διαφάνεια 2 Εισαγωγή Στα κομβικά δίκτυα οι κόμβοι

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ «Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

ιοίκηση Παραγωγής και Υπηρεσιών

ιοίκηση Παραγωγής και Υπηρεσιών ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Εισαγωγή Ορισµοί Προβλήµατα µίας µηχανής Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός Προγραµµατισµού Παραγωγής Είδη προβληµάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Ο Ρ Ι Σ Μ Ο Ι Γ Ε Ν Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD.

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Ο Ρ Ι Σ Μ Ο Ι Γ Ε Ν Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD. ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Ο Ρ Ι Σ Μ Ο Ι Γ Ε Ν Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ ΈΝΝΟΙΕΣ ΟΡΙΣΜΟΙ (1) ΠΑΡΑΓΩΓΙΚΗ ΔΙΑΔΙΚΑΣΙΑ - ΕΡΓΟ Κοινά στοιχεία & διαφορές Διενεργούνται από ανθρώπους (και) μηχανές Διαθέτουν περιορισμένους πόρους

Διαβάστε περισσότερα

ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Ορισμοί Κόστος κατασκευής: το σύνολο των δαπανών

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operations Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 3 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Συστήµατα προγραµµατισµού, ελέγχου και διαχείρισης

Διαβάστε περισσότερα

Χαρακτηριστικά και δυνατότητες της εφαρμογής σελ Εγκατάσταση της εφαρμογής σελ Εισαγωγή αρχείου εισόδου σελ. 7

Χαρακτηριστικά και δυνατότητες της εφαρμογής σελ Εγκατάσταση της εφαρμογής σελ Εισαγωγή αρχείου εισόδου σελ. 7 Χαρακτηριστικά και δυνατότητες της εφαρμογής σελ. 3 1. Εγκατάσταση της εφαρμογής σελ. 4 2. Εισαγωγή αρχείου εισόδου σελ. 7 3. Παραμετροποίηση αρχείου εισόδου σελ. 8 4. Ορισμός ζυγού για αποστολή δεδομένων

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Εισαγωγή στην Επιχειρησιακή Έρευνα

Εισαγωγή στην Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στην Επιχειρησιακή Έρευνα Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ

3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ 3 ΕΚΤΙΜΗΣΗ ΙΑΡΚΕΙΑΣ ΚΑΙ ΚΟΣΤΟΥΣ ΡΑΣΤΗΡΙΟΤΗΤΑΣ Προκειµένου να γίνει σωστά ο χρονικός και οικονοµικός προγραµµατισµός ενός έργου, θα πρέπει απαραίτητα να χωριστεί το έργο σε δραστηριότητες, και για κάθε

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΠΟΡΩΝ

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΠΟΡΩΝ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΠΟΡΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. ERP Τι Είναι - Χαρακτηριστικά Οφέλη από την Εφαρµογή τους 2. Μεθοδολογική Προσέγγιση Επιλογής & Υλοποίησης Συστηµάτων ERP

Διαβάστε περισσότερα

Ελαχιστοποίηση της Καταναλισκόμενης Ενέργειας σε Φορητές Συσκευές

Ελαχιστοποίηση της Καταναλισκόμενης Ενέργειας σε Φορητές Συσκευές Ελαχιστοποίηση της Καταναλισκόμενης Ενέργειας σε Φορητές Συσκευές Βασίλης Βλάχος vbill@aueb.gr Υποψήφιος Διδάκτορας Τμήματος Διοικητικής Επιστήμης και Τεχνολογίας 1 Σχεδιασμός ενσωματωμένων συστημάτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άπληστοι Αλγόριθμοι Χρονοπρογραμματισμός

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΟΜΑΔΩΝ ΠΑΡΑΓΩΓΗΣ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ

ΣΥΝΘΕΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΟΜΑΔΩΝ ΠΑΡΑΓΩΓΗΣ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ ΣΥΝΘΕΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΟΜΑΔΩΝ ΠΑΡΑΓΩΓΗΣ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ Εργασία στην Ενότητα Πληροφορική-Πολυμέσα του ΜΠΣ «Γραφικές Τέχνες Πολυμέσα» του ΕΑΠ Μ. Μαργαριτόπουλος ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός παρουσίασης

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη μιας προσαρμοστικής πολιτικής αντικατάστασης αρχείων, με χρήση

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων

ΠΜΣ Παραγωγή και ιαχείριση Ενέργειας ιαχείριση Ενέργειας και ιοίκηση Έργων ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης Εφαρμογές Επιχειρησιακής Έρευνας Δρ. Γεώργιος Κ.Δ. Σαχαρίδης 1 Outline Introduction to mathematical programming Introduction to scheduling Flow shop optimization Scheduling of crude oil Decomposition techniques

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή.

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή. 7 o ΕΞΑΜΗΝΟ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΑΣΚΗΣEIΣ ΓΙΑ ΣΠΙΤΙ (ΘΕΜΑ ΕΞΑΜΗΝΟΥ) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ 19- εκ- 2008 (με προφορική εξέταση) (Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΣΑΝΤΑΣ 25/11/2007. Προγραμματισμός Διαχείριση Έργων. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος

ΝΙΚΟΣ ΤΣΑΝΤΑΣ 25/11/2007. Προγραμματισμός Διαχείριση Έργων. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Επιχειρησιακή Έρευνα Προγραμματισμός ιαχείριση Έργων Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 007-08 Προγραμματισμός Διαχείριση Έργων ΕΡΓΟ (πέρα από κάθε μεγάλη τεχνική κατασκευή)

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

15. ΠΩΣ ΔΙΑΜΟΡΦΩΝΕΤΑΙ Η ΎΛΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

15. ΠΩΣ ΔΙΑΜΟΡΦΩΝΕΤΑΙ Η ΎΛΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ 15. ΠΩΣ ΔΙΑΜΟΡΦΩΝΕΤΑΙ Η ΎΛΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Οικονομική Θεωρία & Ποσοτική Ανάλυση Διδακτική Ενότητα 1: Οικονομική Ανάλυση Σκοπός της συγκεκριμένης διδακτικής ενότητας είναι να αποτυπωθούν οι βασικές αρχές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming) Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου

Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου Διοίκηση Έργων Τι είναι έργο Με τον όρο έργο, εκτός από κάθε μεγάλη και μοναδική τεχνική κατασκευή, εννοούμε προϊόντα συστημάτων παραγωγής, που δεν έχουν όλα αυτά τα βασικά χαρακτηριστικά των τεχνικών

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών ΔΗΜΗΤΡΑ ΤΖΙΓΚΟΥ Λ Ε Υ Κ Α Δ Α 2 0 1 2 (1/2) Ένα έργο (project) Πληροφορικής είναι ένα σύνολο από δραστηριότητες, δηλαδή εργασίες που η υλοποίηση τους απαιτεί

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Πλάνο έργου Εργαλείο ελέγχου για την πορεία του έργου. Περιγραφή έργου Απαιτήσεις Τµηµατοποίηση έργου Χρονο-προγραµµατισµός έργου

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (διαχείριση επεξεργαστή, μνήμης και Ε/Ε)

Λειτουργικά Συστήματα (διαχείριση επεξεργαστή, μνήμης και Ε/Ε) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Λειτουργικά Συστήματα (διαχείριση επεξεργαστή, και Ε/Ε) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Τι είναι ένα λειτουργικό σύστημα (ΛΣ); Μια άλλη απεικόνιση. Το Λειτουργικό Σύστημα ως μέρος του υπολογιστή

Τι είναι ένα λειτουργικό σύστημα (ΛΣ); Μια άλλη απεικόνιση. Το Λειτουργικό Σύστημα ως μέρος του υπολογιστή Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Λειτουργικά Συστήματα (διαχείριση επεξεργαστή, και Ε/Ε) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα