ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ)"

Transcript

1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ) Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

2 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Ηλκτρικό Πδί Αγωγύ Τα υλικά σύμφωνα μ τις ηλκτρικές τυς ιδιότητς διακρίννται σ μνωτές (όπως γυαλί, καυτσύκ), όπυ κάθ ηλκτρόνι ίναι δσμυμέν σ κάπι άτμ και σ αγωγύς (όπως τα μέταλλα), όπυ ένας παρά πλύ μγάλς αριθμός λύθρων ηλκτρνίων μπρύν να κινηθύν λύθρα σ λόκληρ τν όγκ τυ. Οι βασικές ηλκτρστατικές ιδιότητς των αγωγών ίναι ι ακόλυθς : α) Η ένταση τυ ηλκτρικύ πδίυ στ σωτρικό νός αγωγύ ίναι μηδέν, Εσ = 0. Επιδή στην ηλκτρστατική νδιαφέρυν μόν καταστάσις, στις πίς τα ηλκτρόνια τυ αγωγύ βρίσκνται σ ισρρπία (ακινητύν), η απαραίτητη συνθήκη για να συμβαίνι αυτό ίναι τα ηλκτρόνια να κατανέμνται μ τέτι τρόπ ώστ η ένταση τυ ηλκτρικύ πδίυ στ σωτρικό τυ αγωγύ να ίναι μηδέν. Διαφρτικά αν υπήρχ πιδήπτ πδί στ σωτρικό τυ αγωγύ, τα λύθρά τυ φρτία θα κινύνταν, γγνός πυ αντιτίθται στην ηλκτρστατική. Επιδή η ένταση τυ ηλκτρικύ πδίυ ίναι μηδέν στ σωτρικό μιας αγώγιμης κιλότητας, η κιλότητα αυτή απτλί ένα χώρ θωράκισης από τ ηλκτρικό πδί (κλωβός Faraday). β) Η χωρική πυκνότητα στ σωτρικό νός αγωγύ ίναι μηδέν, ρ=0. Σύμφωνα μ τη διαφρική μρφή τυ νόμυ τυ Gauss ρ /, πιδή η ένταση τυ πδίυ στ σωτρικό κάθ αγωγύ ίναι μηδέν ( 0 ), πρκύπτι ύκλα ότι στ σωτρικό κάθ αγωγύ ίναι ρ=0. Αυτό δν σημαίνι ότι δν υπάρχι φρτί στ σωτρικό τυ αγωγύ, αλλά ότι τ θτικό φρτί ίναι ακριβώς όσ και τ αρνητικό, έτσι ώστ η λική πυκνότητα φρτίυ στ σωτρικό να ίναι μηδέν. γ) Τα φρτία κατανέμνται μόν στην πιφάνια τυ αγωγύ. Τα φρτία νός αγωγύ σ κάθ πρίπτωση κατανέμνται στην πιφάνιά τυ και κατά τέτι τρόπ, ώστ στ σωτρικό η ένταση τυ πδίυ να ίναι μηδέν. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

3 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ δ) Τ ηλκτρικό δυναμικό ίναι σταθρό σ όλ τν αγωγό. Εφόσν η ένταση τυ πδίυ στ σωτρικό τυ αγωγύ ίναι μηδέν θα ισχύι ότι 0, δηλαδή = σταθ. Επμένως τ δυναμικό θα ίναι σταθρό σ όλη την έκταση τυ αγωγύ πριλαμβανμένης και της πιφάνιάς τυ, η πία ως κ τύτυ ίναι πάντα ισδυναμική πιφάνια. Αυτό πρκύπτι και από την παρατήρηση ότι πιαδήπτ διαφρά δυναμικύ τόσ στην πιφάνια, όσ και μταξύ της πιφάνιας και τυ σωτρικύ τυ αγωγύ θα ίχ ως απτέλσμα κίνηση των φρτίων κι πμένως διατάραξη της κατάστασης ισρρπίας. ) Η ένταση τυ πδίυ ίναι κάθτη στην πιφάνια τυ αγωγύ. Αγωγός σ 0 Σχήμα 3. Αν η ένταση δν ήταν κάθτη στην πιφάνια τυ αγωγύ αλλά υπό κλίση, τότ θα αναλυόταν σ δυ συνιστώσς, μια κάθτη στν αγωγό και μια φαπτόμνη στν αγωγό, η πία θα κινύσ τα φρτία κατά την διύθυνση αυτή. Αλλά κάτι τέτι αντιβαίνι στην συνθήκη ισρρπίας των φρτίων (ηλκτρστατική). Άρα πράγματι τ διάνυσμα της έντασης ίναι πάντα κάθτ στην πιφάνια τυ αγωγύ. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

4 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Παράδιγμα: Να υπλγιστί η ένταση και τ δυναμικό τυ ηλκτρικύ πδίυ κντά στην πιφάνια αγωγύ πιυδήπτ σχήματς μ θτική πιφανιακή πυκνότητα φρτίυ σ. Λύση Ε = 0 Σχήμα 3. Τνίζται ότι για έναν τυχαί αγωγό η πιφανιακή πυκνότητα φρτίυ δν ίναι σταθρή, αλλά μπρί να θωρηθί σταθρή σ μια σχτικά μικρή πριχή. Σύμφωνα μ την ιδιότητα () των αγωγών, η ένταση κντά στν αγωγό ίναι κάθτη στην πιφάνιά τυ. Επμένως λαμβάνντας ως πιφάνια Gauss στιχιώδη κλιστό κύλινδρ μ άξνα κάθτ στην πιφάνια τυ αγωγύ, παρατηρίται ότι η ηλκτρική ρή πυ διέρχται τόσ από την πιφάνια τυ κυλίνδρυ πυ βρίσκται στ σωτρικό τυ αγωγύ, όπυ Ε = 0, όσ και από την κτός τυ αγωγύ παράπλυρη πιφάνια αυτύ, πρς την πία η ένταση ίναι παράλληλη, ίναι μηδέν. Δηλαδή ρή ξέρχται μόν από την ξωτρική βάση τυ κυλίνδρυ. Άρα νόμς τυ Gauss δίνι: q d enc σ σ () Τ δυναμικό υπλγίζται από την σχέση : (3) d d Edx dx 0 d σ x σ dx 0 x ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

5 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Πυκνωτές Μια διάταξη δυ γιτνικών αγωγών πιυδήπτ σχήματς, πυ φέρυν ίσα και αντίθτα φρτία λέγται πυκνωτής και ι αγωγί πλισμί αυτύ. Χαρακτηριστικό μέγθς κάθ πυκνωτή ίναι η χωρητικότητα C, η πία ρίζται ως τ πηλίκ τυ μέτρυ τυ φρτίυ τυ κάθ πλισμύ πρς τη διαφρά δυναμικύ μταξύ των πλισμών. Δηλαδή : C () Η χωρητικότητα κάθ πυκνωτή ξαρτάται από τ σχήμα κάθ πλισμύ, τη διάταξη των πλισμών στ χώρ και τ υλικό μέσα στ πί βρίσκνται ι πλισμί. Μνάδα μέτρησης της χωρητικότητας στ.i. ίναι τ Farad (F = Cb/olt). Συνδσμλγία πυκνωτών α) Σύνδση πυκνωτών σ σιρά : C C C3 3 Σχήμα 3.3 Πυκνωτές συνδδμένι σ σιρά παρυσιάζυν τ ίδι φρτί στυς πλισμύς τυς και διαφρτική διαφρά δυναμικύ σ αυτύς. Από αυτή την ιδιότητα πρκύπτι ότι τ αντίστρφ της ισδύναμης χωρητικότητας Ceq τυ συνδυασμύ σ σιρά ισύται μ τ άθρισμα των αντιστρόφων των πί μέρυς χωρητικτήτων. Δηλαδή : C eq... (3) C C C 3 ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

6 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ β) Παράλληλη σύνδση πυκνωτών : Πυκνωτές συνδδμένι παράλληλα παρυσιάζυν την ίδια διαφρά δυναμικύ μταξύ των πλισμών τυς και διαφρτικό φρτί σ αυτύς. C C C 3 3 Από την ιδιότητα αυτή πρκύπτι ότι η ισδύναμη χωρητικότητα Ceq τυ συνδυασμύ παράλληλης σύνδσης ισύται μ τ άθρισμα των πί μέρυς χωρητικτήτων. Δηλαδή : Σχήμα 3.4 Ceq 3 C C C... (4) Ενέργια πυκνωτή Κάθ φρτισμένς πυκνωτής έχι απθηκυμένη δυναμική νέργια U ίση μ τ έργ πυ απαιτίται για τη φόρτισή τυ. Η νέργια αυτή απδίδται αν πιτραπί στν πυκνωτή να κφρτιστί. Υπθέτντας ότι σ χρόν t έχι μταφρθί στν πυκνωτή φρτί q, η διαφρά δυναμικύ μταξύ των πλισμών τυ ίναι σύμφωνα μ την () : = q/c. Τ στιχιώδς έργ dw πυ απαιτίται για να μταφρθί πιπλέν φρτί dq στν πυκνωτή ίναι: dw dq q dq C Επμένως τ λικό έργ W πυ απαιτίται για να αυξηθί τ φρτί q από τ μηδέν ως την τλική τιμή ίναι : W W dw qdq 0 C Άρα η νέργια U νός πυκνωτή, χρησιμπιώντας και την () μπρί να κφραστί ως : 0 C U U C (5) C ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

7 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Εφαρμγές. Χωρητικότητα πίπδυ πυκνωτή d Σχήμα 3.5 Θωρύμ έναν πίπδ πυκνωτή, δηλαδή σύστημα από δυ μταλλικές αγώγιμς παράλληλς πίπδς πλάκς μβαδύ, σ απόσταση d μταξύ τυς, φρτισμένς μ ίσα και αντίθτα φρτία. Λόγω αμιβαίας έλξως τα φρτία κατανέμνται στην σωτρική πιφάνια των πλακών. Αν παραβλέψυμ την ανωμαλία στις άκρς των πλακών, η πιφανιακή πυκνότητα φρτίυ σ ίναι σταθρή σ λόκληρη την έκταση της σωτρικής πιφάνιας κάθ πλάκας. Συνπώς μταξύ των δυ πλακών δημιυργίται μγνές ηλκτρικό πδί, πυ σύμφωνα μ τ παράδιγμα της παραγράφυ ίναι : σ (πιδή σ / ) Άρα η διαφρά δυναμικύ μταξύ των πλισμών ίναι : d dx d 0 d dx Δ d Επμένως σύμφωνα μ την (3 ) η χωρητικότητα πίπδυ πυκνωτή ίναι: C Δ d C (6) d Παρατηρίται ότι η χωρητικότητα πίπδυ πυκνωτή ξαρτάται μόν από τις γωμτρικές παραμέτρυς και από τ παρμβαλλόμν υλικό μταξύ των πλισμών. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

8 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Χωρητικότητα σφαιρικύ πυκνωτή - O Σχήμα 3.6 Ένας σφαιρικός πυκνωτής απτλίται από δυ μόκντρυς σφαιρικύς αγωγύς ακτίνων και, φρτισμένων μ ίσα και αντίθτα φρτία. Για τν υπλγισμό της έντασης τυ πδίυ μταξύ των πλισμών (σ πιαδήπτ άλλη πριχή ίναι Ε=0), λαμβάνται μια σφαιρική κλιστή πιφάνια ακτίνας < r <, πότ νόμς Gauss δίνι : q d enc 4πr 4π r Επμένως η διαφρά δυναμικύ μταξύ των πλισμών ίναι : d dr d dr 4π dr r 4π 4π Πρσέξτ ότι η διαφρά δυναμικύ μταξύ των πλισμών κάθ πυκνωτή ίναι τ δυναμικό τυ θτικύ αγωγύ μίν τ δυναμικό τυ αρνητικύ. Άρα σύμφωνα μ την (3 ) η χωρητικότητα σφαιρικύ πυκνωτή ίναι : C 4π C 4π (7) Δηλαδή ξαρτάται μόν από τα γωμτρικά στιχία τυ και τ υλικό μταξύ των πλισμών τυ. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

9 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Χωρητικότητα κυλινδρικύ πυκνωτή O - Ένας κυλινδρικός πυκνωτής απτλίται από δυ μαξνικύς κυλινδρικύς αγωγύς απίρυ μήκυς και ακτινών,, φρτισμένυς μ ίσα και αντίθτα φρτία. Θωρώντας ως πιφάνια Gauss μαξνικό κύλινδρ ακτίνας < r < και μήκυς κι φαρμόζντας τ νόμ Gauss, υπλγίζται η ένταση τυ πδίυ μταξύ των πλισμών ως ξής : Σχήμα 3.7 q d enc πr π r Επμένως η διαφρά δυναμικύ μταξύ των πλισμών ίναι : d dr d dr π dr r n π π n Άρα σύμφωνα μ την () η χωρητικότητα κυλινδρικύ πυκνωτή ανά μνάδα μήκυς ίναι : C n π C π n( / ) (8) Δηλαδή και στν κυλινδρικό πυκνωτή η χωρητικότητα ίναι συνάρτηση των γωμτρικών στιχίων τυ και τυ υλικύ πυ παρμβάλλται μταξύ των πλισμών τυ. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

10 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

Κεφάλαιο 5 ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ

Κεφάλαιο 5 ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ Κφάλαι 5 ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ Σύνψη Στ πέμπτ τύτ κφάλαι πριγράφται η έννις της χωρητικότητας και τυ διηλκτρικύ υλικύ. Επίσης, παρυσιάζνται τα ίδη των πυκνωτών και η συνδσμλγία τυς. Επιπλέν, ρίζται

Διαβάστε περισσότερα

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας. . Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν

Διαβάστε περισσότερα

Θεώρηµα ( ) x x. f (x)

Θεώρηµα ( ) x x. f (x) Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ

ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ /6/ ΘΕΜΑ (3 μνάδες) (α) Η αντίσταση ενός D λευκόχρυσυ μετρήθηκε στη θερμκρασία πήξης τυ νερύ και βρέθηκε 8 Ω, ενώ στη συνέχεια μετρήθηκε σε θερμκρασία θ και βρέθηκε 448 Ω Να

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.o ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Σγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmias.weebly.m ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL Συγγρφή Επιέλι: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ Συγγφή Επιμέλι: Πνγιώτης Φ. Μίς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

ΣΤΑΤΙΚΑ ΗΜΜ ΠΕΔΙΑ. Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Το έργο που παράγεται από το ηλεκτρικό πεδίο πάνω σ ένα ελεύθερο φορτίο του αγωγού είναι,

ΣΤΑΤΙΚΑ ΗΜΜ ΠΕΔΙΑ. Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Το έργο που παράγεται από το ηλεκτρικό πεδίο πάνω σ ένα ελεύθερο φορτίο του αγωγού είναι, Kεφ. 16 (Part III, pages 6-34) ΣΤΤΙΚ ΗΜΜ ΠΕΔΙ Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Τ έργ πυ παράγεται από τ ηλεκτρικό πεδί πάνω σ ένα ελεύθερ φρτί τυ αγωγύ είναι, dw = f dr = qe υdt άρα Ρ = dw dt = qυ

Διαβάστε περισσότερα

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids) ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Φαίνεται αµέσως ότι η πυκνότητα ενέργειας του ηλεκτρικού πεδίου ισούται µε την πυκνότητα ενέργειας του µαγνητικού πεδίου.

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Φαίνεται αµέσως ότι η πυκνότητα ενέργειας του ηλεκτρικού πεδίου ισούται µε την πυκνότητα ενέργειας του µαγνητικού πεδίου. ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 9 I believe that we shuld adhee t the stict validity f the enegy pinciple until we shall have fund imptant easns f enuncing this guiding sta A.instein 9 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΜΗ ΣΤΑ Η/Μ ΚΥΜΑΤΑ-

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλς Μαθήματς: Γενική Φυσική (Ηλεκτρμαγνητισμός) νότητα: ΝΟΜΟΣ ΤΟΥ GAUSS Διδάσκων: πίκυρς Καθηγητής Τμήμα: Μηχανικών Ηλεκτρνικών Υπλγιστών και Πληρφρικής ΚΦΑΛΑΙΟ 3 Ο ΝΟΜΟΣ ΤΟΥ GAUSS 3.1 Ηλεκτρική ρή Όπως

Διαβάστε περισσότερα

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146) Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο

Διαβάστε περισσότερα

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς. ΑΑΝΤΉΣΕΙΣ ΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάρις ρωτπαπάς 1. Σωστή απάντηση είναι η γ. ΘΕΜΑ 1. Σωστή απάντηση είναι η α. Σχόλι: Σε μια απλή αρμνική

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΒΛΗΤΗΣ ΜΑΖΑΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΒΛΗΤΗΣ ΜΑΖΑΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΒΛΗΤΗΣ ΜΑΖΑΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.piras.weebly.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, E-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1 Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα τ γράμμα πυ αντιστιχεί στη σωστή απάντηση. 1. Αν δείκτης διάθλασης ενός πτικύ υλικύ μέσυ είναι n= 4 3 ακτινβλία

Διαβάστε περισσότερα

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24)

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24) ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ (ΚΕΦ 24) ΧΩΡΗΤΙΚΟΤΗΤΑ Ένας πυκνωτής έχει ως σκοπό να αποθηκεύει ηλεκτρική ενέργεια που μπορεί να ελευθερώνεται με ελεγχόμενο τρόπο σε βραχύ χρονικό διάστημα. Ένας πυκνωτής

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται; Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ ΘΕΩΡΗΤΙΚΟΣ κι ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ρ. Α. Μγουλάς Νοέµριος 5 ) Ν υπολογιστί το ηλκτρικό πδίο που δηµιουργί µι τέλι γώγιµη κοίλη σφίρ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΜΑΘΗΜΑ 6.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ R Η έννια τυ ρίυ Όρι ταυττικής σταθερής συνάρτησης Ι ΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όρι και διάταξη Όρια και πράξεις Κριτήρι παρεµβλής Τριγωνµετρικά όρια Όρι σύνθετης συνάρτησης Θεωρία

Διαβάστε περισσότερα

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου Ο νόμος του Apèr Ο νόμος του Apèr Bis μ μ Ji Επιφάνια Bi μ π r ( π s B s r μ Η κυκλοφορία του μαγνητικού πδίου κατά μηκός μιάς κλιστής διαδρομής ισούται μ μ Ι, όπου Ι ίναι το ολικό σταθρό (χρονικά αμτάβλητο

Διαβάστε περισσότερα

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Εισαγωγή Ρεύµατα βρόχων ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Η µέθδς ρευµάτων βρόχων για την επίλυση κυκλωµάτων (ή δικτύων) είναι υσιαστικά εφαρµγή τυ νόµυ τάσεων τυ Kirchhff µε κατάλληλη εκλγή κλειστών βρόχων ρεύµατς.

Διαβάστε περισσότερα

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ Ένας πυκνωτής έχει ως σκοπό να αποθηκεύει ηλεκτρική ενέργεια που μπορεί να ελευθερώνεται με ελεγχόμενο τρόπο σε βραχύ χρονικό διάστημα. Αποτελείται από 2 χωρικά

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: // ΘΕΜΑ ( μνάδες) T κύκλωμα τυ παρακάτω σχήματς λαμβάνει ως εισόδυς τις εξόδυς των αισθητήρων Α και Β. Η έξδς τυ αισθητήρα Α είναι ημιτνικό

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = = ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.piras.weebly.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών:

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών: τμικάενεργειακάδιαγράμματα: Χωρικές διαστάσεις ενεργειακές απστάσεις χρνική κλίμακα Καταστάσεις ydg Θεώρημα μεταβλών: Εφαρμγή σε πρόβλημα της ατμικής Πρσέγγιση on- Opnhm: Εφαρμγή στ Η Θεωρία μριακών τρχιακών:

Διαβάστε περισσότερα

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης

Διαβάστε περισσότερα

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη

Διαβάστε περισσότερα

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις ίας : λαια ς ά φ τα κ κτρισµό ύµα ι χ έ Πρι τικός Ηλ τρικό ρ α κ Στ χές ηλ νητισµός ις ν γ Συ κτροµα λαντώσ α τ λ Η χανικές ουν η χ ρ Μ ά π αιο υ λ ά φ θ κ θωρίας ά κ ογής ς Σ α ι λ ί ι π σ χ ι ς ο κή

Διαβάστε περισσότερα

5.6 Ενέργεια του ηλεκτρικού πεδίου παρουσία πολωμένων διηλεκτρικών. 5.6 Ενέργεια του ηλεκτρικού πεδίου παρουσία πολωμένων διηλεκτρικών

5.6 Ενέργεια του ηλεκτρικού πεδίου παρουσία πολωμένων διηλεκτρικών. 5.6 Ενέργεια του ηλεκτρικού πεδίου παρουσία πολωμένων διηλεκτρικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) ΔΙΔΑΣΚΩΝ : ΔΗΜΗΤΡΙΟΣ ΣΚΑΡΛΑΤΟΣ, Επίκουρος Καθηγητής ΚΕΦΑΛΑΙΟ 5 : Διηλκτρικά 5.1 Γνικές Ιδιότητς 5. Διηλκτρικά

Διαβάστε περισσότερα

Α ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ

Α ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ A ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙ ΙΟΥ ΣΕ ΣΤΑΤΙΚΑ ΠΕ ΙΑ Α. Γνική ξίσωση κίνησης για µη ρλατιβιστικές πριπτώσις q( ) + B Α. Αρχή διατήρησης της νέργιας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12 ΑΝΑΚΛΑΣΗ ΚΑΙ ΙΑΘΛΑΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 12 ΑΝΑΚΛΑΣΗ ΚΑΙ ΙΑΘΛΑΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ΑΝΑΚΛΑΣΗ ΚΑΙ ΙΑΘΛΑΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ. Οι βασικοί νόµοι ανάκλασης διάλασης Στο παρόν κφάλαιο ξτάζται η πρίπτωση όπου ένα πίπδο κύµα προσπίπτι σ µια πίπδη πιφάνια S που διαχωρίζι δύο µέσα

Διαβάστε περισσότερα

Συµπάγεια και οµοιόµορφη συνέχεια

Συµπάγεια και οµοιόµορφη συνέχεια 35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.

Διαβάστε περισσότερα

III Η ΥΛΗ ΣΤΟ ΠΕ ΙΟ ΠΟΛΩΣΗ ΙΗΛΕΚΤΡΙΚΟΥ ΙΙI ΥΛΗ ΣΤΟ ΠΕ ΙΟ

III Η ΥΛΗ ΣΤΟ ΠΕ ΙΟ ΠΟΛΩΣΗ ΙΗΛΕΚΤΡΙΚΟΥ ΙΙI ΥΛΗ ΣΤΟ ΠΕ ΙΟ III Η ΥΛΗ ΣΤΟ ΠΕ ΙΟ ΠΟΛΩΣΗ ΙΗΛΕΚΤΡΙΚΟΥ ΙΙΙ. Συνολική οπή των διπόλων που πιέχονται στον όγκο δ V, όπου N ο αιθµός διπόλων ανά µονάδα όγκου και p η διπολική οπή του -στού διπόλου p t NV δ p ΙΙΙ. Το διάνυσµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (Απαντσεις) ΗΜΕΡΟΜΗΝΙΑ: 6/03/04 ΘΕΜΑ Α Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτσεις

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA. ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.. HΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΣ Μεταλλικί αγωγί: τα ελεύθερα φρτία είναι τα ηλεκτρόνια σθένυς τυ µετάλλυ. Πυκνότης ρεύµατς (τ ρεύµα πυ διαπερνά µια κάθετη διατµή τυ αγωγύ ανά µνάδα επιφανείας

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

Ηλεκτρική και Μαγνητική Πόλωση

Ηλεκτρική και Μαγνητική Πόλωση Ηλκτρική και Μαγνητική Πόλωση Μαγνητικά και Ηλκτρικά πδία στα υλικά Μαγνήτιση και Ηλκτρική Πόλωση Οµοιότητς και ιαφορές Συµµτρία αντιστροφής ώρου και ρόνου Μαγνητική και Σιδηροηλκτρική Υστέρηση Εξισώσις

Διαβάστε περισσότερα

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης.

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης. Kεφ. 4 OΔEYONTA KYMATA (pges -7 (Trveling Wves Eξετάσυμε ανικτά συστήματα, δηλ. συστήματα χωρίς σύνρα. Oδεύντα κύματα είναι διαταραχές (πυ μεταφέρυν ενέργεια και ρμή πυ διαδίδνται στν ανικτό χώρ με ρισμένη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλος Μαθήματος: Γνική Φυσική (Ηλκτρομαγνητισμός) Ενότητα: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Διδάσκων: Επίκουρος Καθηγητής Τμήμα: Μηχανικών Ηλκτρονικών Υπολογιστών και Πληροφορικής Κφάλαιο 7 1 Κφάλαιο 7 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 09/12/2012

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 09/12/2012 ΔΙΑΓΩΝΙΣΜΑ ΚΠ. ΤΟΥΣ 0-03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΚΤΡΟΛΟΓΙΑ ΚΑΤΥΘΥΝΣΗΣ/Γ ΛΥΚΙΟΥ ΘΡΙΝΑ ΣΙΡΑ: ΗΜΡΟΜΗΝΙΑ: 09//0 ΟΜΑΔΑ Α Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό κάθε μίας αό τις αρακάτω ερωτήσεις Α.- Α.5 και

Διαβάστε περισσότερα

Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος

Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος Εφαρµογές στη δυναµική του κέντρου µάζας στρού σώµατος Εφαρµογή 1η Οµογνής δίσκος ακτίνας R ηρµί στην άκρη οριζόντιου τραπζιού µ το κέντρο του Κ να βρίσκται στην κατακόρυφη που διέρχται από την ία Ο του

Διαβάστε περισσότερα

Τετάρτη 5 Νοεμβρίου 2014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Τετάρτη 5 Νοεμβρίου 2014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Τετάρτη 5 Νεμρίυ 014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ Β Β1. Ένα κινητό διέρχεται τη χρνική στιγμή to=0 από τη θέση xo=0 ενός πρσανατλισμένυ άξνα Οx, κινύμεν κατά μήκς τυ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡ: ΗΜΕΡΟΜΗΝΙ: 6/03/04 ΘΕΜ Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα τ γράμμα π

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

Β Λυκείου 29 Απριλίου 2001

Β Λυκείου 29 Απριλίου 2001 Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Πανεπιστήμι Αθηνών Εργαστήρι Φυσικών Επιστημών, Τεχνλγίας, Περιβάλλντς Θεωρητικό Μέρς ΘΕΜΑ Β Λυκείυ 9 Απριλίυ Μια αγώγιμη μεταλλική σφαίρα ακτίνας

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ 1 1. ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΠΥΚΝΩΤΕΣ Ένας πυκνωτής είναι μια διάταξη που αποθηκεύει ηλεκτρικό φορτίο. Οι πυκνωτές μπορεί να διαφέρουν σε σχήμα και μέγεθος αλλά

Διαβάστε περισσότερα

Κεφάλαιο 10 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

Κεφάλαιο 10 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Κφάλαιο 10 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Σύνοψη Στο δέκατο τούτο κφάλαιο παρουσιάζται το φαινόμνο της ηλκτρομαγνητικής παγωγής, το οποίο πριγράφται από το νόμο του Faraday. Επξηγίται ο κανόνας του Lenz και

Διαβάστε περισσότερα

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΟΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ» ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΑΤΑΞΗΣ ΔΙΗΛΕΚΤΡΙΚΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία 1.0 Βασικές Έννιες στην Τριγωνμετρία 1 η Μρφή Ασκήσεων: Ασκήσεις όπυ θέλυμε να βρύμε στιχεία ενός γεωμετρικύ σχήματς 1. Στ διπλανό σχήμα να απδείξετε ότι: ΒΓ υ εφω + εφθ. Τ τρίγων ΑΔΒ είναι ρθγώνι στ Δ,

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ 3. ΘΡΟΙΣΜ ΩΝΙΩΝ ΤΡΙΩΝΟΥ ΙΙΟΤΗΤΕΣ ΙΣΟΣΚΕΛΟΥΣ ΤΡΙΩΝΟΥ ΘΕΩΡΙ. Άθρισµα γωνιών τριγώνυ Σε πιδήπτε τρίγων τ άθρισµα των γωνιών τυ είναι ίσ µε 80. Ιδιότητες ισσκελύς τριγώνυ Η ευθεία της διαµέσυ πυ αντιστιχεί

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150 http://www.a-s-t.gr I OLAR NDUTRY ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AT COMPACT 110 & 150 1. Περιγραφή Τ σύστημα Compact με τα μντέλα πυδιαθέτυν δεξαμενή των 100 και 150 λίτρων, παράγεται από την A..T. solar industry

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλος Μαθήματος: Γνική Φυσική (Ηλκτρομαγνητισμός) Ενότητα: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Διδάσκων: Επίκουρος Καθηγητής Τμήμα: Μηχανικών Ηλκτρονικών Υπολογιστών και Πληροφορικής 1 ΚΕΦΑΛΑΙΟ 10 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλος Μαθήματος: Γνική Φυσική (Ηλκτρομαγνητισμός) Ενότητα: ΑΥΤΕΠΑΓΩΓΗ ΚΑ ΑΜΟΒΑΑ ΕΠΑΓΩΓΗ Διδάσκων: Επίκουρος Καθηγητής Τμήμα: Μηχανικών Ηλκτρονικών Υπολογιστών και Πληροφορικής ΚΕΦΑΛΑΟ 11 ΑΥΤΕΠΑΓΩΓΗ ΚΑ

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

10 ΠΡΟΣΠΤΩΣΗ Η/Μ ΚΥΜΑΤΩΝ ΣΤΗ ΙΑΧΩΡΙΣΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΥΟ ΜΕΣΩΝ

10 ΠΡΟΣΠΤΩΣΗ Η/Μ ΚΥΜΑΤΩΝ ΣΤΗ ΙΑΧΩΡΙΣΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΥΟ ΜΕΣΩΝ ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ ΠΡΟΣΠΤΩΣΗ Η/Μ ΚΥΜΑΤΩΝ ΣΤΗ ΙΑΧΩΡΙΣΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΥΟ ΜΕΣΩΝ ΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ. Η φατονική συνιστώσα του ηλκτρικού δίου δύο έσα t t. Η κάθτη συνιστώσα του ανύσατος της ηλκτρικής τατόισης σταθρή

Διαβάστε περισσότερα

Δυο κρούσεις σε μια τραμπάλα

Δυο κρούσεις σε μια τραμπάλα Δ κρύσις σ μια τραμάλα μια τραμάλα μήκς και μάζας της ίας τ μέσ στηρίζται σ βάση ύψς αφήνμ να έσι στ ένα άκρ της αό ύψς άν αό τ έδαφς σφαιρίδι μάζας νώ στ άλλ άκρ της έχμ ττήσι σ ήκη σφαιρίδι μάζας. Να

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλς Μαθήματς: Γενική Φυσική (Ηλεκτρμαγνητισμός) Ενότητα: ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Διδάσκων: Επίκυρς Καθηγητής Δημήτρις Βλάχς Τμήμα: Μηχανικών Ηλεκτρνικών Υπλγιστών και Πληρφρικής Κεφάλαι4 1 Δημήτρις

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( ) 19/11/9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9-1 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθσµία παράδοσης /1/9 Άσκηση 1 Η γνική µορφή νός ΗΜ κύµατος δίνται από E E sin k r ωt (1) ( ) Α) Το µέτρο του πλάτους πλάτος

Διαβάστε περισσότερα

Κεφάλαιο 4 ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΚΑΙ ΕΝΕΡΓΕΙΑ

Κεφάλαιο 4 ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Κεφάλαι 4 ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Σύνψη Στ τέταρτ τύτ κεφάλαι, ρίζνται ι φυσικές πσότητες τυ ηλεκτρικύ δυναμικύ και της ηλεκτρικής δυναμικής ενέργειας για σημειακά και μη φρτία. ενώ μελετάται τ

Διαβάστε περισσότερα

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης. Ο Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δίκτη διάθλασης. 1 Σκοπός Ο δίκτης διάθλασης νός διαφανούς οπτικού μέσου ίναι ένα ιδιαίτρο σημαντικό φυσικό μέγθος στην οπτική. Ο δίκτης διάθλασης όχι μόνο

Διαβάστε περισσότερα

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι 4.6 4.8 σκήσεις σχλικύ βιβλίυ σελίδας 87 88 ρωτήσεις Κατανόησης. Να υπλγίσετε την γωνία ω στ παρακάτω σχήµα πάντηση ω ίναι φ =8 = 6 άρα ω = 5 + 6 = 5 φ. ν = και x διχτόµς της γωνίας πάντηση ω φ ω 55 x

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) Μηχανικό ανάλογο

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) Μηχανικό ανάλογο ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) κατανάλωση νέργιας για την μταφορά θτικών φορτίων από το στο της μπαταρίας Υψηλό δυναμικό Χαμηλό δυναμικό κατανάλωση ηλκ.νέργιας λόγω συγκρούσων μέσα στην αντίσταση (αγωγό)

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ 005 . Ένας εθύγραµµς αγωγός, απείρ θεωρητικά µήκς, παρσιάζει ανά µνάδα µήκς ωµική αντίσταση ρ και διαρρέεται από ηλεκτρικό ρεύµα σταθερής έντασης I. Να απδείξετε ότι η ηλεκτρµαγνητική

Διαβάστε περισσότερα

Πέµπτη, 6 Ιουνίου 2002 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

Πέµπτη, 6 Ιουνίου 2002 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, 6 Ιυνίυ 00 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπλα τ γράµµα πυ αντιστιχεί στη σωστή

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ Πηγές Κατανομή χωικής d

Διαβάστε περισσότερα