Kupaonski bojleri s trenutačnim paljenjem s otvorenim i zatvorenim ložištem

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kupaonski bojleri s trenutačnim paljenjem s otvorenim i zatvorenim ložištem"

Transcript

1 Kupaonski bojleri s trenutačnim paljenjem Kupaonski bojleri s trenutačnim paljenjem s otvorenim i zatvorenim ložištem

2 Idrabagno: za svaku potrebu Liniju kupaonskih bojlera Idrabagno je Beretta projektirala da bi odgovorila na sve vaše potrebe za toplom vodom i da bi Vam istovremeno jamčila maksimalan komfor.»ak 16 različitih modela tvore gamu, koja nudi aparate kako sa otvorenom komorom i prirodnom ventilacijom, tako i one s zatvorenom komorom i prisilnom ventilacijom, tako da mogu zadovoljiti Vaše potrebe za većom snagom i potrošnjom vode do 17 litara u minuti. otvorena komora/prirodno provjetravanje zatvorena komora/prisilno provjetravanje MODELL Paljenje dinamom Paljenje baterijom Jonizacijska kontrola Modulacija plamena Proizvodnja san.vode* (l/min) MODELLO Elektroničko paljenje Jonizacijska kontrola Elektronička modulacija Stupanj el. zaštite IPX4D Proizvodnja san.vode* (l/min) 11 AD AB AD AE ESI ESI 17 * ΔT=25 C 14 AE AE 17 * ΔT=25 C KUPAONSKI BOJLERI

3 Otvorena komora: brojna rješenja U verzijama s otvorenom komorom, gama Idrabagno nudi modele kako s pilot plamenikom (s piezoelektričnim ili baterijskim paljenjem), kao i one s ionizacijskim plamenom (s automatskim paljenjem pomoću baterije). Svi aparati imaju predviđenu modulaciju plamena što omogućava održavanje stalne temperature i pri promjeni protoka tople vode, uz istovremeno optimiziranje potrošnje. Zajamčen komfor i ušteda Neosporivu prednost predstavlja ugrađena funkcija ekonomiziranja koja osigurava smanjenje potrošnje plina, osiguravajući značajnu uštedu. Zahvaljujući namjenskom ručnom izborniku, moguće je zadati temperaturu vode prema potrebama. Modulacija plamena Izbornik paljenje/ gašenje i ekomomiziranje Izbornik temperature Protok hladne vode iskorišten za proizvodnju tople Hidroelektrični generator (dinamo), koristeći samo prolaz vode, može proizvesti električni napon potreban za paljenje kupaonskog grijača vode. Idrabagno AD ima dakle neosporivu prednost, a ta je da ne ostaje iznenada bez električne energije (istrošena baterija) i da tako ne može osigurati potrebnu toplu vodu. Električno napajanje Voda Voda

4 Zatvorena komora Modele s zatvorenom komorom, Idrabagno ESI, obilježava visoki tehnološki standard jer su opremljeni automatskim paljenjem s ionizacijskim nadzorom plamena, elektronskom modulacijom i inovativnim sustavom autodijagnostike. Modele s zatvorenom komorom, Idrabagno ESI, obilježava visoki tehnološki standard jer su opremljeni automatskim paljenjem s ionizacijskim nadzorom plamena, elektronskom modulacijom i inovativnim sistemom autodijagnostike. Mogu funkcionirati s jako smanjenim hidrauličkim tlakom (0,15 bar) i osim normalnih sigurnosnih sustava imaju električnu zaštitu IPX4D. Dugme za paljenje i poništavanje Led Birač temperature vode za grijanje 7 signalizacija s 2 LED diode Inteligentan i funkcionalan elektronski uređaj omogućuje 7 različitih signalizacija sa samo 2 led diode, i omogućuje serviseru da provjeri eventualne nepravilnosti u radu, te da intervenira brzo, točno i ciljano. ISKLJUČENO UKLJUČENO ugašeno 5 sek upaljeno 1 sek Normalan rad Plamen ugašen ugašeno 5 sek upaljeno 1 sek Normalan rad Plamen upaljen Blokada zbog gašenja plamena Blokada zbog graničnog termostata Upaljeno Ugašeno Ugašeno Ugašeno Ugašeno Upaljeno Upaljeno ugašeno 0,5 sek upaljeno 0,5 sek Blokada zbog presostata zraka ugašeno 0,5 sek upaljeno 0,5 sek Ugašeno Blokada zbog osjetnika temperature ugašeno 0,5 sek upaljeno 0,5 sek ugašeno 0,5 sek upaljeno 0,5 sek Bilješka: razlika između stanja OFF (0) i ON (1) je prikazana položajem birača KUPAONSKI BOJLERI

5 Tehnologija se udružuje s komforom Elektronska kartica s mikroprocesorom: nadzire kako dijagnostičke funkcije, tako i ionizaciju i modulaciju; ima predviđenu mogućnost ugradnje pribora za zaštitu od smrzavanja. Inovativni pribor za zaštitu od smrzavanja Zahvaljujući priboru za zaštitu od smrzavanja (na zahtjev), kupaonski bojler Idrabagno ESI se može ugraditi i u prostorije s vrlo niskim temperaturama. Pribor, koji se sastoji od dva poklopca (gornjeg i donjeg) i posebnog električnog otpornika, omogućuje zaštitu do -14 C.

6 E Tehnički podaci: LEGENDA Izlaz U Plin G Ulaz E Otcoreno ložište AP/AB/AE zatvoreno ložište ESI D AB/ 14 AE/ AE/AD AD 17 AE A B C D E U G A E C U G E Najčešće korišteni dimovodi (za cjelokupni Berettin program pribora za odvod dimnih plinova pogledajte cjenik) Koncentrični okomiti odvod Kolektor kod ili teleskopski kolektor kod Koncentrični stražnji/bočni odvod Kolektor kod Mogućnost umetanja produžetaka 0,75 mt. kod produžetaka 1,47 mt. kod Crijep kod Koljeno kod Završni ispusni element kod Razdvojeni sustav s elementom za razdvajanj e Koljeno kod Završni usisni element kod Mogućnost umetanja produžetaka 0,75 mt. kod produžetaka 1,47 mt. kod Mogućnost umetanja produžetaka 0,5 mt. kod produžetaka 1 mt. kod Razdvojeni sistem kod Koncentrični okomiti odvod Dužina cijevi (m) Model Prirubnica za dimove Pad tlaka na svakom koljenu ø 48 mm Koncentrični stražnji/bočni odvod Dužina cijevi (m) Model Prirubnica za dimove Pad tlaka na svakom koljenu ø 48 mm Razdvojeni sustav s elementom za razdvajanje Dužina cijevi (m) Prirubnica za dimove Pad tlaka na svakom koljenu ø 48 mm do ugrađena od 1.75 do 3.8 od 0.55 do 3.8 nije ugrađ do ugrađena od 1.75 do 3.5 od 1.2 do 2.4 nije ugrađ do 4 do 4 do 8 ugrađena nije ugrađ Kod svih vrsta dimovodnog sustava pridržavati se odredaba lokalnih normi i pravilnika. KUPAONSKI BOJLERI

7 Svojstva i raspoloživi modeli Vrsta Paljenje Nadzor plamena Modulacija plamena Jedinica mjere 11 AE 14 AE 17 AE Otvorena komora - prirodna vuča Baterija od 1.5 V ionizacijski Kontinuirana Proizvodnja tople vode uz T=25 C l/min Nazivni toplinski protok kw Nazivna toplinska snaga kw Dimenzije (V x Š x D) mm 760x350x x400x x400x275 Težina kg plin Voda Raspoložive verzije za zemni plin i UNP Protok - izbornik na minimumu l/min od 2.5 do 5 od 2.5 do 7 od 3.5 do 8.5 Protok - izbornik na maksimumu l/min od 5 do 11 od 7 do 14 od 8.5 do 17 Povećanje temperature vode - izbornik na min. C Povećanje temperature vode - izbornik na maks. C Tlak minimlan/normalan/maksimalan bar 0.2/ 2 /10 0.2/ 2 /10 0.2/ 2 /10 Priključak vode Ø 1/2 1/2 1/2 Plin Nazivni tlak zemnog plina mbar Nazivni tlak UNP G30 - G31 mbar Priključak plina Ø 1/2 1/2 1/2 Temperatura dimnih plinova C Dimovod Promjer mm Svojstva i raspoloživi modeli Vrsta Paljenje Nadzor plamena Modulacija plamena Jedinica mjere 13 ESI 17C ESI Zatvoreno ložište - prisilna vuča Elektronsko ionizacijski Elektronska Proizvodnja tople vode uz T=25 C l/min Nazivni toplinski protok kw Nazivna toplinska snaga kw Dimenzije (V x Š x D) mm 640x400x x400x246 Težina kg plin Voda Raspoložive verzije za zemni plin i UNP Protok l/min od 2 do 8 od 2 do 11 Područje izbora temperature C od 40 do 58 od 40 do 58 Tlak minimlan/normalan/maksimalan bar 0.15 / 2 / / 2 / 10 Priključak vode Ø 1/2 1/2 Plin Nazivni tlak zemnog plina mbar Nazivni tlak UNP G30 - G31 mbar Priključak plina Ø 3/4 3/4 Temperatura dimnih plinova C Dimovod Promjer: koaksijalni mm 60 / / 100 odvojeni mm 80 / / 80 Električne vrijednosti Apsorbirana snaga W Osigurač A 2 2 Napon napajanja V/Hz 230/50 230/50 Stupanj električne zaštite IP X4D X4D

8 03/2006 GARANCIJA 3 godine DISTRIBUTER: Via Risorgimento Lecco - Predstavništvo za Hrvatsku Jupico d.o.o. Martićeva 41, Zagreb, Hrvatska Tel.: , Fax.: info@beretta.com.hr Beretta zadržava pravo izmjene karakteristika koje su dio ovog kataloga bez prethodne najave a u cilju poboljšanja samih proizvoda

BOILER. Kombinovani gasni kotao sa bojlerom zapremine 60 l od nerđajućeg čelika. BOILER kotlovi na gas

BOILER. Kombinovani gasni kotao sa bojlerom zapremine 60 l od nerđajućeg čelika. BOILER kotlovi na gas ZIDNI KOTLOVI SA SPREMNIKOM Kombinovani gasni kotao sa bojlerom zapremine 60 l od nerđajućeg čelika Boiler: more tople vode. Boiler je zidni kotao Beretta sa akumulacijom koji zadovoljava sve potrebe za

Διαβάστε περισσότερα

Fonte Protočni bojleri sa otvorenom komorom

Fonte Protočni bojleri sa otvorenom komorom Fonte Protočni bojleri sa otvorenom komorom Jagodinska2,090 Beograd, Srbija Tel./Fax:+383700, 2379496 FONTE / Scaldabagni Protočni bojleri sa otvorenom a camera aperta komorom Fonte, topla voda u kompaktnim

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Bosch klima uređaji. Vaše zdravlje i udobnost ovisi o zraku u prostoriji

Bosch klima uređaji. Vaše zdravlje i udobnost ovisi o zraku u prostoriji Bosch klima uređaji Vaše zdravlje i udobnost ovisi o zraku u prostoriji ENERGIA EHEPΓИЯ EΝEPΓЕΙΑ EΝERGIJA EΝERGY EΝERGIE EΝERGI 626/2011 2 Bosch klima uređaji Zahtjeve ErP smjernica mogu ispuniti samo

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Vitodens 100-W. 1.1 Opis proizvoda. Prednosti. Preporuka za primjenu. Stanje kod isporuke. Ispitana kvaliteta

Vitodens 100-W. 1.1 Opis proizvoda. Prednosti. Preporuka za primjenu. Stanje kod isporuke. Ispitana kvaliteta Vitodens 00-W. Opis proizvoda Prednosti A Modulacijski cilindrični plamenik MatriX B Integrirana membranska tlačna ekspanzijska posuda C Grijaće površine Inox-Radial od nehrđajućeg plemenitog čelika za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

VIESMANN VITODENS 200-W

VIESMANN VITODENS 200-W VIESMANN VITODENS 200-W Informacijski list Br. narudž. i cijene: vidi cjenik VITODENS 200-W Tip B2HA, B2KA Plinski kondenzacijski zidni uređaj, 3,2 do 35,0 kw, za zemni i tekući plin 5/2013 Opis proizvoda

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR KGV Šutalo d.o.o. Vukovarska 14 34308 Jakšić, Hrvatska +385 34 257 734 info@kgv-sutalo.hr OIB VAT ID: HR06692893248 grijač za bojler 1 1/4 ravni / water heating element 1 1/4 straight RTS12 1200W/230V

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

ČELIČNA UŽAD 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49. Ø 1,5-20 mm 6 X 19 + T.J. = X 19 + J.J. = 133. Ø 3-30 mm

ČELIČNA UŽAD 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49. Ø 1,5-20 mm 6 X 19 + T.J. = X 19 + J.J. = 133. Ø 3-30 mm ČELIČNA UŽAD STANDARD - OPIS Broj žica dimenzije DIN 3053 19 Ø 1-10 mm DIN 3054 37 Ø 3-10 mm DIN 3055 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49 Ø 1,5-20 mm DIN 3060 6 X 19 + T.J. = 114 6 X 19 + J.J. = 133 Ø

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Vrijedi: OD 20. LIPNJA Lindab CJENiK Cijene su izražene u KN exw Lučko Zagreb, bez PDV-a; Cjenik vrijedi od

Vrijedi: OD 20. LIPNJA Lindab CJENiK Cijene su izražene u KN exw Lučko Zagreb, bez PDV-a; Cjenik vrijedi od Vrijedi: OD 20 LIPNJA 2012 Lindab CJENiK 2012 Sustav za odvodnju oborinskih voda i dodaci Lindab Elite sustav zaštite proizvoda >>> 3 Lindab Rainline Lindab Elite R Žlijeb Duljina: 4 m i 6 m 190 Elite

Διαβάστε περισσότερα

Informacioni list. VITOCAL 300-G Oznaka BWC 301.A06 do A17, WWC 301.A06 do A17. VITOCAL 300-G Oznaka BW 301.A06 do A45, WW 301.

Informacioni list. VITOCAL 300-G Oznaka BWC 301.A06 do A17, WWC 301.A06 do A17. VITOCAL 300-G Oznaka BW 301.A06 do A45, WW 301. VIESMANN VITOCAL 300-G Jednostepena i dvostepena toplotna pumpa kao toplotna pumpa zemlja/voda od 5,9 do 85,6 kw kao toplotna pumpa voda/voda od 7,9 do 117,8 kw Informacioni list Br. naruđbe;. i cene:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Katalog proizvoda. Kondenzacijski i tradicionalni plinski kotlovi

Katalog proizvoda. Kondenzacijski i tradicionalni plinski kotlovi Katalog proizvoda Kondenzacijski i tradicionalni plinski kotlovi 2 SADRŽAJ Kondenzacijski zidni kotlovi KONDENZACIJSKI ZIDNI KOTLOVI ZA POJEDINAČNO I KASKADNO SPAJANJE OD 49 DO 400 KW Power PLUS 4 KONDENZACIJSKI

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Zašto Vaillant? Da bi planiranje sustava bilo jednostavno.

Zašto Vaillant? Da bi planiranje sustava bilo jednostavno. Projektantske podloge - kondenzacijski uređaji Zašto Vaillant? Da bi planiranje sustava bilo jednostavno. Onaj dobar osjećaj da činimo pravu stvar. Sadržaj 1 2 1. Plinski zidni kondenzacijski uređaji...4

Διαβάστε περισσότερα

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Tehnički podaci Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Opis VL 2 VL 3 Ventili VL 2 i VL 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

CJENIK PLINSKI BOJLERI SVIBANJ

CJENIK PLINSKI BOJLERI SVIBANJ CJENIK PLINSKI BOJLERI SVIBANJ 2016 www.sime.it SADRŽAJ PLINSKI ZIDNI BOJLERI 5 Emisija NOx manja 30 mg/kwh Emisija NOx u klasi 5 (manje od 70 mg/kwh) Integrirana klimatska regulacija Zaštita od smrzavanja

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

VIESMANN VITOCELL 100-L Spremnik PTV-a za instalacije sa zagrijavanjem pitke vode u sustavu za punjenje spremnika

VIESMANN VITOCELL 100-L Spremnik PTV-a za instalacije sa zagrijavanjem pitke vode u sustavu za punjenje spremnika VIESMANN VITOCELL 100-L Spremnik PTV-a za instalacije sa zagrijavanjem pitke vode u sustavu za punjenje spremnika Informacijski list Br. narudž. i cijene: vidi cjenik VITOCELL 100-L Tip CVL Stojeći spremnik

Διαβάστε περισσότερα

Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički

Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički Tehnički podaci Ventil sa dosjedom (PN 16) VFM 2 prolazni ventil, prirubnički Opis Funkcije: Logaritamska karakteristika Odnos maksimalnog i minimalnog protoka >100:1 Tlačno rasterećeni Ventil za sustave

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

BRAVA MALE DIMENZIJE, VELIKE PERFORMANSE.

BRAVA MALE DIMENZIJE, VELIKE PERFORMANSE. BRAVA MALE DIMENZIJE, VELIKE PERFORMANSE www.sime.it BRAVA: MALE DIMENZIJE, VELIKE PERFORMANSE Brava Slim i Brava ONE, su dio nove generacije posebno kompaktnih i funkcionalnih zidnih plinskih bojlera.

Διαβάστε περισσότερα

ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA

ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA 80 GODINA RASTA POTAKNUTI INOVACIJAMA Aristonov prioritet već 50 godina jest omogućivanje maksimalne udobnosti u kućanstvima naših klijenata.

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica

Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica Tehnički podaci Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica Opis VF 2 VF 3 Ventili VF 2 i VF 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA

ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA ELEKTRIČNI BOJLERI TOPLA VODA I GRIJANJE I OBNOVLJIVA ENERGIJA 80 GODINA RASTA POTAKNUTI INOVACIJAMA Aristonov prioritet već 50 godina jest omogućivanje maksimalne udobnosti u kućanstvima naših klijenata.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Električni uređaji. Zašto Vaillant? Struja može biti korisna alternativa. eloblock VER VES VED minived VEN VEK

Električni uređaji. Zašto Vaillant? Struja može biti korisna alternativa. eloblock VER VES VED minived VEN VEK Električni uređaji Zašto Vaillant? Struja može biti korisna alternativa eloblock VER VES VED minived VEN VEK Zašto električni uređaji? Jednostavnije ne može Stručnost i kompetencija stečena iskustvom od

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Zašto Vaillant? Jer struja može biti korisna alternativa.

Zašto Vaillant? Jer struja može biti korisna alternativa. Električni uređaji Zašto Vaillant? Jer struja može biti korisna alternativa. eloblock VER VES VED minived VEN VEK Onaj dobar osjećaj da činimo pravu stvar. Zašto električni uređaji? Jednostavnije ne može

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Regulatori za redukciju tlaka (PN 25) AVD - za vodu AVDS - za paru

Regulatori za redukciju tlaka (PN 25) AVD - za vodu AVDS - za paru Tehnički podaci Regulatori za redukciju tlaka (PN 25) AVD - za vodu - za paru Opis Osnovni podaci za AVD: DN -50 k VS 0,4-25 m 3 /h PN 25 Raspon podešenja: 1-5 bar / 3-12 bar Temperatura: - cirkulacijska

Διαβάστε περισσότερα

Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE HR ( ) JS

Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE HR ( ) JS Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE 6 720 608 692 HR (2007.04) JS Sadržaj Sadržaj 1 Upute za siguran rad i simboli 3 1.1 Upute za siguran rad 3 1.2 Objašnjenje simbola 3 2 Primjena 4 2.1

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Plinski zidni kondenzacijski kombi bojler UPUTE ZA MONTAŽU I UPOTREBU

Plinski zidni kondenzacijski kombi bojler UPUTE ZA MONTAŽU I UPOTREBU Plinski zidni kondenzacijski kombi bojler UPUTE ZA MONTAŽU I UPOTREBU HR SIGURNOSNA UPOZORENJA I ODREDBE OGRANIČENJA OPREZ - Nakon što ste uklonili ambalažu, provjerite da je proizvod isporučen cijel i

Διαβάστε περισσότερα

Ciao S 20 C.S.I. Ciao S 24 C.S.I. Ciao S 24 R.S.I.

Ciao S 20 C.S.I. Ciao S 24 C.S.I. Ciao S 24 R.S.I. Ciao S 20 C.S.I. Ciao S 24 C.S.I. Ciao S 24 R.S.I. HR PRIRUČNIK ZA INSTALATERE I KORISNIKE SRB PRIRUČNIK ZA MONTAŽU I KORIŠĆENJE SK NÁVOD NA INŠTALÁCIU A POUŽITIE LT MONTAVIMO IR NAUDOJIMO INSTRUKCIJA

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Dimenzije: visina mm širina mm dubina mm Težina kg

Dimenzije: visina mm širina mm dubina mm Težina kg TehniËki podaci Tip ureappleaja: solarni ploëasti kolektor Jedinica VFK 145 V VFK 145 H VFK pro 125 Površina bruto/neto m 2 2,51 / 2,35 2,51 / 2,35 2,51 / 2,35 Sadržaj apsorbera l 1,85 2,16 1,85 PrikljuËak

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα